首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yu H  Kwok Y  Hurley LH  Kerwin SM 《Biochemistry》2000,39(33):10236-10246
The quinobenzoxazines, a group of structural analogues of the antibacterial fluoroquinolones, are topoisomerase II inhibitors that have demonstrated promising anticancer activity in mice. It has been proposed that the quinobenzoxazines form a 2:2 drug-Mg(2+) self-assembly complex on DNA. The quinobenzoxazine (S)-A-62176 is photochemically unstable and undergoes a DNA-accelerated photochemical reaction to afford a highly fluorescent photoproduct. Here we report that the irradiation of both supercoiled DNA and DNA oligonucleotides in the presence of (S)-A-62176 results in photochemical cleavage of the DNA. The (S)-A-62176-mediated DNA photocleavage reaction requires Mg(2+). Photochemical cleavage of supercoiled DNA by (S)-A-62176 is much more efficient that the DNA photocleavage reactions of the fluoroquinolones norfloxacin, ciprofloxacin, and enoxacin. The photocleavage of supercoiled DNA by (S)-A-62176 is unaffected by the presence of SOD, catalase, or other reactive oxygen scavengers, but is inhibited by deoxygenation. The photochemical cleavage of supercoiled DNA is also inhibited by 1 mM KI. Photochemical cleavage of DNA oligonucleotides by (S)-A-62176 occurs most extensively at DNA sites bound by drug, as determined by DNase I footprinting, and especially at certain G and T residues. The nature of the DNA photoproducts, and inhibition studies, indicate that the photocleavage reaction occurs by a free radical mechanism initiated by abstraction of the 4'- and 1'-hydrogens from the DNA minor groove. These results lend further support for the proposed DNA binding model for the quinobenzoxazine 2:2 drug-Mg(2+) complex and serve to define the position of this complex on the minor groove of DNA.  相似文献   

2.
Terry CA  Fernández MJ  Gude L  Lorente A  Grant KB 《Biochemistry》2011,50(47):10375-10389
This paper describes the synthesis of a new 9-aminomethylanthracene dye N-substituted with a pyridinylpolyamine side chain (4). The effects of NaCl and KCl on anthracene/DNA interactions were then studied, with the goal of simulating the conditions of high ionic strength that a DNA photosensitizer might encounter in the cell nucleus (~150 mM of NaCl and 260 mM of KCl). As exemplified by methylene blue (5), the expected effect of increasing ionic strength is to decrease DNA binding and photocleavage yields. In contrast, the addition of 150 mM of NaCl in combination with 260 mM of KCl to photocleavage reactions containing micromolar concentrations of 4 triggers the conversion of supercoiled, nicked, and linear forms of pUC19 plasmid into a highly degraded band of DNA fragments (350 nm hν, pH 7.0). Circular dichroism spectra point to a correlation between salt-induced unwinding of the DNA helix and the increase in DNA photocleavage yields. The results of circular dichroism, UV-vis absorption, fluorescence emission, thermal denaturation, and photocleavage inhibition experiments suggest that the combination of salts causes a change in the DNA binding mode of 4 from intercalation to an external interaction. This in turn leads to an increase in the anthracene-sensitized production of DNA-damaging reactive oxygen species.  相似文献   

3.
We have prepared zinc(II) complexes of cationic bis-porphyrins, as one of the attempts to improve less DNA photocleavage activities of the metal-free bis-porphyrins composed of two H(2)TMPyP-like chromophores, linked with a series of aliphatic diamines. The less activities seemed to be derived from their intermolecular self-aggregation properties in aqueous solution. The zinc(II) insertion into the metal-free cationic bis-porphyrins completely removed their self-aggregation properties, most probably due to steric hindrance between axial ligands of zinc(II) chromophores of the cationic bis-porphyrins. The DNA photocleavage activities of the zinc(II) complexes were fully enhanced, which were three times larger than that of the lead compound H(2)TMPyP. Quantitative analysis of singlet oxygen production by photosensitization of cationic bis-porphyrins was performed using 1,3-diphenylisobenzofuran, and the singlet oxygen productivities of them were found to be related to their solution properties. There is a good relationship between the activities and the productivities, which will provide insights into the further development of more effective DNA photocleavage agents.  相似文献   

4.
Metal ions are very important in mediating the folding of nucleic acids, as exemplified by the folding of the four-way DNA junction into the stacked X-conformation. Uranyl ion-mediated photocleavage provides a method for the localization of high-affinity ion binding sites in nucleic acids, and we have applied this to the four-way DNA junction. We have made the following observations. (i) Uranyl ions (UO2(2+)) suppressed the reactivity of junction thymine bases against attack by osmium tetroxide, indicating that the uranyl ion induces folding of the junction into a stacked conformation. (ii) DNA located immediately at the point of strand exchange on the two exchanging strands was hypersensitive to uranyl photocleavage. The relative hypersensitivity was considerably accentuated when the photocleavage was carried out in the presence of citrate ions. This suggests the presence of a tight binding site for the uranyl ion in the junction. (iii) The same positions were significantly protected from uranyl cleavage by the presence of hexamminecobalt (III) or spermidine. These ions are known to induce the folded conformation of the four-way junction with high efficiency, suggesting a direct competition between the ions. By contrast, magnesium ions failed to generate a similar protection against photocleavage. These results suggest that the uranyl, hexamminecobalt (III) and spermidine ions compete for the same high affinity binding site on the junction. This site is located at the centre of the junction, at the point where the exchanging strands pass between the stacked helices. We believe that we have observed the first known example of a metal ion 'footprint' on a folded nucleic acid structure.  相似文献   

5.
A novel polypyridyl ligand pteridino[7,6-f][1,10]phenanthroline-1,13(10H,12H)-dione (ppd) and its ruthenium(II) complex [Ru(bpy)2ppd]2+ have been synthesized and characterized by elemental analysis, electrospray mass spectra and 1H NMR. The interaction of the complex with calf thymus DNA was investigated by spectroscopic and viscosity measurements. The results suggest that the complex binds to DNA via an intercalative mode and serves as a molecular "light switch" for DNA. Moreover, the complex has been found to promote the photocleavage of plasmid DNA pBR322 under irradiation at 365 nm. The mechanism studies reveal that singlet oxygen (1O2) and superoxide anion radical (O2*(-))play a significant role in the photocleavage.  相似文献   

6.
Photochemical cleavage of DNA by nitrobenzamides linked to 9-aminoacridine   总被引:1,自引:0,他引:1  
Nitrobenzamido ligands linked to the DNA intercalator 9-aminoacridine via poly(methylene) chains induce single-strand nicks in DNA upon irradiation with long-wavelength ultraviolet light (lambda greater than or equal to 300 nm). Optimal photocleavage activity was found for the reagent 9-[[6-(4-nitrobenzamido)hexyl]amino]-acridine. Removal of the acridinyl ligand or changing the position of the nitro group from the 4- to the 2-position caused a 10-fold decrease in photocleavage efficiency, whereas a change to the 3-position caused a 30-fold reduction. The DNA cleavage was 5-fold enhanced by subsequent piperidine treatment and showed some sequence dependency with predominant cleavage at G and T residues. Furthermore, significant differences in cleavage preference were observed when the poly(methylene) linker length was changed.  相似文献   

7.
A new asymmetry ligand pibi (pibi = 2-(pyridine-2-yl)-1-H-imidazo[4,5-f]benzo[d]imidazolone) and its ruthenium complexes with [Ru(L)2(pibi)]2+ (L = bpy (2, 2′-bipyridine), phen (1, 10-phenanthroline)), have been synthesized and characterized. The binding of two complexes with calf thymus DNA has been investigated by spectroscopic and viscosity measurement. The results indicate that both complexes can bind to CT-DNA through intercalative mode. Under irradiation at 365 nm, both complexes can partly promote the photocleavage of plasmid pBR322DNA. The low singlet oxygen generation abilities of the two complexes may be the factor for the low DNA photocleavage abilities.  相似文献   

8.
Uranyl mediated photocleavage of double stranded DNA is proposed as a general probing for DNA helix conformation in terms of minor groove width/electronegative potential. Specifically, it is found that A/T-tracts known to constitute strong distamycin binding sites are preferentially photocleaved by uranyl in a way indicating strongest uranyl binding at the center of the minor groove of the AT-region. The A-tracts of kinetoplast DNA show the highest reactivity at the 3'-end of the tract--as opposed to cleavage by EDTA/Fell--in accordance with the minor groove being more narrow at this end. Finally, uranyl photocleavage of the internal control region (ICR) of the 5S-RNA gene yields a cleavage modulation pattern fully compatible with that obtained by DNase I which also--in a more complex way--senses DNA minor groove width.  相似文献   

9.
DNA binding properties of 9-substituted harmine derivatives   总被引:3,自引:0,他引:3  
The beta-carboline alkaloids have been characterized as a group of potential antitumor agents. The underlying mechanisms of harmine and its derivatives were investigated by DNA binding assay and Topoisomerase (Topo) inhibition assay. Meanwhile, the DNA photocleavage potential of these compounds and their cytotoxicity were also examined by DNA photocleavage assay and cytotoxicity assay in vitro. Harmine and its derivatives exhibited remarkable DNA intercalation capacity and significant Topo I inhibition activity but no effect with Topo II. Introducing an appropriate substituent into position-9 of beta-carboline nucleus enhanced the affinity of the drug to DNA resulting in remarkable Topo I inhibition effects. These results suggested that the ability of these compounds to act as intercalating agents and Topo I inhibitors was related to the antitumor activity. Moreover, these data showing a correlation between cytotoxicity and Topo I inhibition or DNA binding capacity are very important as they strongly suggested that the Topo I-mediated DNA cleavage assay and DNA binding assay could be used as a guide to design and develop superior analogues for antitumor activities.  相似文献   

10.
In order to explore the biological potential, some synthesized triazolylnucleosides were evaluated for their antibacterial, tyrosinase and DNA photocleavage activities. Triazolylnucleosides (5–12) were screened against Staphylococcus aureus (ATCC 6538), gram-positive and Escherichia coli (ATCC 10536), gram-negative bacterial strains. Among the series, compound 9 exhibited a significant level of antibacterial activity against both strains at higher concentration in reference to the standard drug, Levofloxacin. Tyrosinase activity and inhibition of these compounds were also studied, and it has been found that compounds 8 and 11 displayed more than 50% inhibitory activity. In addition, six compounds (7–12) were evaluated for their DNA photocleavage activity. The compounds 8 and 12 exhibited excellent DNA photocleavage activity at a concentration of 10 μg and may be used as template for antitumor drugs in the future.  相似文献   

11.
A new Ru(II) complex [Ru(phen)2(mdpz)]2+ (phen = 1,10-phenanthroline, mdpz = 7,7′-methylenedioxyphenyl-dipyrido-[3,2-a:2′,3′-c]phenazine) has been synthesized and characterized in detail by elemental analysis, mass spectrometry and 1H NMR spectroscopy. The interaction of the complex with calf thymus DNA was investigated by spectroscopic and viscosity measurements. The results suggest that the complex binds to DNA via an intercalative mode and serves as a molecular “light switch” for DNA. Moreover, the complex has been found to promote the photocleavage of plasmid DNA pBR322 under irradiation at 365 nm. The mechanism studies reveal that singlet oxygen (1O2) plays a significant role in the photocleavage.  相似文献   

12.
Effective photocleavage of DNA by pheophorbide a.   总被引:1,自引:0,他引:1  
Remarkably effective photocleavage of plasmid DNA with pheophorbide a, as a visible light sensitizer, has been found for the first time. DNA is photocleaved even in the absence of oxygen. The novel oxygen-independent scission is ascribed to specific photodynamic function of the ring V in pheophorbide a.  相似文献   

13.
Gao F  Chao H  Ji LN 《化学与生物多样性》2008,5(10):1962-1979
The interaction of ruthenium(II)-polypyridyl complexes with DNA has attracted considerable interests during the past two decades. This paper presents some recent progresses in our laboratory on the interaction of Ru(II)-polypyridyl complexes with DNA. The first part describes the effect of modulating the intercalative ligand on the DNA-binding behaviors of the complexes, such as DNA-binding affinity, DNA-binding enantioselectivity, DNA molecular 'light switch' effect, and DNA sequence selectivity. The second part focuses on the DNA photocleavage by the complexes and its mechanism. In the final part, we discuss the topoisomerase inhibition and its mechanism, as well as the antitumor activity of the Ru(II)-polypyridyl complexes.  相似文献   

14.
A novel polypyridyl ligand 2-(4'-benzyloxyphenyl)imidazo[4,5-f][1,10]phenanthroline (BPIP) and its complex [Ru(bpy)2(BPIP)]2+ (1) (bpy=2,2'-bipyridine) and (2) [Ru(phen)2(BPIP)]2+) (phen=1,10-phenanthroline) have been synthesized and characterized by elemental analysis, electrospray mass spectra and 1H NMR. The DNA-binding properties of the two complexes were investigated by spectroscopic and viscosity measurements. The results suggest that both complexes bind to DNA via an intercalative mode. Both complexes can enantioselectively interact with calf thymus DNA (CT-DNA) in a way. The Lambda enantiomer of complex 1 is slightly predominant for binding to CT-DNA to the Delta enantiomer. Under irradiation at 365 nm, both complexes have also been found to promote the photocleavage of plasmid pBR 322 DNA. Inhibitors studies suggest that singlet oxygen ((1)O2) and hydroxyl radical (*OH) play a significant role in the cleavage mechanism for both complexes. Moreover, the DNA-binding and photocleavage properties of both complexes were compared with that of [Ru(bpy)2(BPIP)]2+ and [Ru(phen)2(BPIP)]2+. The experimental results indicate that methene group existence or not have a significant effect on the DNA-binding and cleavage mechanism of these complexes.  相似文献   

15.
The uranyl(VI)-mediated photocleavage of a Drew–Dickerson sequence oligonucleotide (5′-dGATCACGCGAATTCGCGT) either as the (self-complementary) duplex or cloned into the BamH1 site of pUC19 has been studied. At pH 6.5 in acetate buffer relatively enhanced photocleavage is observed at the 3′-end of the AATT sequence corresponding to maximum cleavage across the minor groove in the A/T tract. Thus maximum cleavage correlates with minimum minor groove width in the crystal structure and also with the largest electronegative potential according to computations. Using plasmid constructs with cloned inserts of the type [CGCG(A/T4)]n, we also analysed all possible sequence combinations of the (A/T)4 tract and in all cases we observed maximum uranyl-mediated photocleavage across the minor groove in the (A/T)4 tract without any significant differences between the various sequences. From these results we infer that DNA double helices of all (A/T)4 sequences share the same narrow minor groove helix conformation.  相似文献   

16.
It is shown that, when irradiated in the visible, ethidium bromide (EB) engages in direct photochemistry with its DNA binding site. At the photochemical end point, an average of one single-strand break is produced per bound EB molecule in a reaction which also bleaches the dye chromophore. Using high-resolution electrophoresis, we have mapped the distribution of EB photocleavage sites on DNA, at one-base resolution. It is argued that because the photocleavage is stoichiometric, the resulting pattern is similar to, if not identical with, the local distribution of EB binding affinity. When interpreted in the context of the extensive thermodynamic and structural data which are available for EB, a binding distribution of that kind can be used to infer details of DNA structure variation within the underlying helix. As a first application of the method, we have used EB to probe the structure of a 265 bp fragment of DNA, which had been described as being bent as the result of a periodic array of oligo(A) segments [Kitchin et al. (1986) J. Biol. Chem. 261, 11302]. The EB mapping data provide evidence that the oligo(A) elements in this fragment assume a local secondary structure which is different than that assumed by isolated ApA nearest neighbors and that the ends of the oligo(A) elements comprise a junctional domain with EB binding properties which differ from those of the oligo(A) element or of random-sequence DNA.  相似文献   

17.
Novel N-Aroyloxylthioxo-naphthalimides as highly efficient 'time-resolved' DNA photocleavers of aroyloxyl radicals type were designed and synthesized. The substituents at the aroyloxyl moiety have an important and unusual influence on the DNA photocleavage, and DNA photodamages of the compounds were unusually not depended on the electronic effects of substituents on the corresponding oxygen-centered radicals. With AM1 semi-empirical quantum calculation, it was found that their photocleaving activities were correlated with the densities of electron clouds on the N-O bonds in the triplet state. N-(m-Dichloro-benzoyloxy)-thioxo-naphthalimide could photodamage DNA effectively at less than the concentration of 2 microM.  相似文献   

18.
DNA curtain is a high-throughput system, integrating a lipid bilayer, fluorescence imaging, and microfluidics to probe protein–DNA interactions in real-time and has provided in-depth understanding of DNA metabolism. Especially, the microfluidic platform of a DNA curtain is highly suitable for a biochip. In the DNA curtain, DNA molecules are aligned along chromium nanobarriers, which are fabricated on a slide surface, and visualized using an intercalating dye, YOYO-1. Although the chromium barriers confer precise geometric alignment of DNA, reuse of the slides is limited by wear of the barriers during cleaning. YOYO-1 is rapidly photobleached and causes photocleavage of DNA under continuous laser illumination, restricting DNA observation to a brief time window. To address these challenges, we developed a new nanopatterned slide, upon which carved nanotrenches serve as diffusion barriers. The nanotrenches were robust under harsh cleaning conditions, facilitating the maintenance of surface cleanliness that is essential to slide reuse. We also stained DNA with a fluorescent protein with a DNA-binding motif, fluorescent protein–DNA binding peptide (FP–DBP). FP–DBP was slowly photobleached and did not cause DNA photocleavage. This new DNA curtain system enables a more stable and repeatable investigation of real-time protein–DNA interactions and will serve as a good platform for lab-on-a-chip.  相似文献   

19.
Here we report the synthesis of seven symmetrical carbocyanine dyes in which two nitrogen-substituted benz[e]indolium rings are joined by a pentamethine bridge that is meso-substituted with chlorine or bromine versus hydrogen. The heteroatom of benz[e]indolium is modified with a phenylpropyl, methyl, or cationic quaternary ammonium group. In reactions containing micro molar concentrations of halogenated dye, irradiation at 575, 588, 623, or 700 nm produces good photocleavage of plasmid DNA. UV–visible spectra show that the carbocyanines are in their H-aggregated and monomeric forms. Scavenger experiments point to the involvement of singlet oxygen and hydroxyl radicals in DNA photocleavage.  相似文献   

20.
The porphyrin-based photosensitizers capable of binding to DNA are perspective drug candidates. Here we report the interactions with calf thymus DNA of 5,10,15,20-tetrakis(N-carboxymethyl-4-pyridinium)porphyrin (P1) and its derivatives containing Zn(II) or Ni(II) in the coordination sphere. These interactions were studied with absorption and circular dichroism spectroscopy. NiP1 and ZnP1 formed different types of complexes with DNA. NiP1 intercalated into the double helix, whereas ZnP1 bound the DNA groove. Compound P1 displayed both binding modes. The ZnP1-DNA binding constant was approximately three times smaller than the respective values for P1-DNA and NiP1-DNA complexes. Light induced degradation of the reactive oxygen species (ROS) trap 1,3-diphenylisobenzofuran in the presence of P1 and its metal derivatives revealed that NiP1 was a weaker photooxidative agent, whereas P1 and ZnP1 generated ROS to similar extents. Nevertheless, the DNA photodamaging effect of ZnP1 was the most pronounced. Illumination of the supercoiled plasmid caused single-strand DNA photocleavage in the presence of P1 and ZnP1; double strand breaks were detectable with micromolar concentrations of ZnP1. The concentration of ZnP1 required for plasmid photonicking was two times smaller than that of P1 and ~20 times lower than that for NiP1. Thus, the modes of P1, NiP1 and ZnP1 binding to DNA determine the differential photodamaging potency of these porphyrins. A greater accessibility to the solvent of the groove binder ZnP1, compared to the shielded intercalator NiP1 and the intercalated P1 molecules, allows for an efficient local generation of ROS followed by DNA photocleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号