共查询到20条相似文献,搜索用时 15 毫秒
1.
对汽爆玉米秸秆同步酶解发酵生产乙醇的条件进行优化。首先利用Fractional Factorial设计法对影响乙醇产量的7个因素进行评价,筛选出具有显著效应的3个因素,即反应温度、酶添加量、总反应时间,再以Box—Behnken设计法及响应面分析法确定主要因素的最佳水平,即反应温度37℃,每g纤维素添加纤维素酶32u,反应时间87h,此时乙醇体积分数达到3.69%。新工艺条件实验结果表明,乙醇体积分数在87h可达到3.76%,和原工艺相比,反应时间缩短了9h,乙醇体积分数提高了13%。 相似文献
2.
A cascade type of fermentation, designated the cascade simultaneous saccharification and fermentation (CSSF), was studied to convert corn stover derived pentose and hexose to ethanol with reduced enzyme input. In detail, each step of CSSF utilizes two sequential SSF phases operating on pentose and hexose, i.e., pentose conversion using xylanase, endo-glucanase, and recombinant Escherichia coli (KO11) with minimal glucose conversion in the first phase SSF, and hexose conversion in the second phase SSF using cellulase, β-glucosidase, and Saccharomyces cerevisiae (D(5)A). In this cascade scheme, multiple stages of 1st and 2nd phase SSF were performed in series; enzymes are recycled from the fermentation broth of the last stage for the use of the next stage. This bioconversion process yielded up to 60% of the theoretical maximum ethanol yield based on the total sugars in untreated corn stover, while enzyme loadings were reduced by 50% (v/v) and the final ethanol concentration reached 27 g/l. 相似文献
3.
Background
Simultaneous saccharification and fermentation (SSF) is a promising process for bioconversion of lignocellulosic biomass. High glucan loading for hydrolysis and fermentation is an efficient approach to reduce the capital costs for bio-based products production. The SSF of steam-exploded corn stover (SECS) for ethanol production at high glucan loading and high temperature was investigated in this study.Results
Glucan conversion of corn stover biomass pretreated by steam explosion was maintained at approximately 71 to 79% at an enzyme loading of 30 filter paper units (FPU)/g glucan, and 74 to 82% at an enzyme loading of 60 FPU/g glucan, with glucan loading varying from 3 to 12%. Glucan conversion decreased obviously with glucan loading beyond 15%. The results indicated that the mixture was most efficient in enzymatic hydrolysis of SECS at 3 to 12% glucan loading. The optimal SSF conditions of SECS using a novel Saccharomyces cerevisiae were inoculation optical density (OD)600?=?4.0, initial pH 4.8, 50% nutrients added, 36 hours pre-hydrolysis time, 39°C, and 12% glucan loading (20% solid loading). With the addition of 2% Tween 20, glucan conversion, ethanol yield, final ethanol concentration reached 78.6%, 77.2%, and 59.8 g/L, respectively, under the optimal conditions. The results suggested that the solid and degradation products’ inhibitory effect on the hydrolysis and fermentation of SECS were also not obvious at high glucan loading. Additionally, glucan conversion and final ethanol concentration in SSF of SECS increased by 13.6% and 18.7%, respectively, compared with separate hydrolysis and fermentation (SHF).Conclusions
Our research suggested that high glucan loading (6 to 12% glucan loading) and high temperature (39°C) significantly improved the SSF performance of SECS using a thermal- and ethanol-tolerant strain of S. cerevisiae due to the removal of degradation products, sugar feedback, and solid’s inhibitory effects. Furthermore, the surfactant addition obviously increased ethanol yield in SSF process of SECS.4.
The kinetics of crystalline cellulose and hemicellulose hydrolysis in corn stover were studied with a nonisothermal technique. Reactions were arrested at temperatures between 160 and 240 degrees C and product sugars were analyzed using a Bio-Rad HPX-85 liquid chromatographic column. A simple first-order series reaction model was used for both cellulose and hemicellulose hydrolysis reactions. Kinetic parameters were obtained for three different sulphuric acid concentrations (0.49, 0.92, and 1.47 wt %). Activation energies remained constant over this acid concentration range but the preexponential factors showed an increase with acid concentration. Relationships were obtained between the preexponential factors and acid concentrations. Cellulose hydrolysis and glucose degradation reactions were observed to be of higher order with respect to acid concentration in comparison with the previous studies with other raw materials. 相似文献
5.
Shao X Jin M Guseva A Liu C Balan V Hogsett D Dale BE Lynd L 《Bioresource technology》2011,102(17):8040-8045
In this study, efforts were taken to compare solubilization of Avicel and AFEX pretreated corn stover (AFEX CS) by SSF and Clostridium thermocellum fermentation, with an aim to gain insights into microbial conversion of pretreated cellulosic biomass. Solubilization rates for AFEX CS are comparable for the two systems while solubilization of Avicel is much faster by C. thermocellum. Initial catalyst loading impacts final cellulose conversion for SSF but not for C. thermocellum. Hydrolysis of the two substrates using cell-free C. thermocellum fermentation broth revealed much smaller difference in cellulose conversion than the difference observed for growing cultures. Tests on hemicellulose removal and particle size reduction for AFEX CS indicated that substrate accessibility is very important for enhanced solubilization by C. thermocellum. 相似文献
6.
Enzymatic saccharification of pretreated corn stover in a fed-batch membrane bioreactor 总被引:1,自引:0,他引:1
Enzymatic hydrolysis of corn stover was performed in an integrated membrane bioreactor (MBR) incorporating a 10 kDa flat sheet polysulfone membrane to increase cellulose conversion and to reduce enzyme dosage. Several pretreatment methods and semi-continuous MBR were examined to investigate their effect on the glucose yield and enzyme utilization efficiency. Compared with conventional batch reactor (CBR), cellulose conversion increased by 5% in a MBR because of the removal of glucose and cellobiose inhibitors. More than 15% increment in cellulose conversion was obtained using fed-MBR, and the reaction rate improved significantly. Enzyme utilization efficiency in a fed-batch MBR were 1.94-fold of CBR and 1.34-fold of fed-CBR for corn stover pretreated by soaking in aqueous ammonia and 3.31-fold of CBR and 1.32-fold of fed-CBR for corn stover pretreated by diluted sulfuric acid?Csodium hydroxide. 相似文献
7.
A new biorefining process is presented that embodies green processing and sustainable development. In the spirit of a true
biorefinery, the objective is to convert agricultural residues and other biomass feedstocks into value-added products such
as fuel ethanol, dissolving pulp, and lignin for resin production. The continuous biomass fractionation process yields a liquid
stream rich in hemicellulosic sugars, a lignin-rich liquid stream, and a solid cellulose stream. This paper generally discusses
potential applications of the three streams and specifically provides results on the evaluation of the cellulose stream from
corn stover as a source of fermentation sugars and specialty pulp. Enzymatic hydrolysis of this relatively pure cellulose
stream requires significantly lower enzyme loadings because of minimal enzyme deactivation from nonspecific binding to lignin.
A correlation was shown to exist between lignin removal efficiency and enzymatic digestibility. The cellulose produced was
also demonstrated to be a suitable replacement for hardwood pulp, especially in the top ply of a linerboard. Also, the relatively
pure nature of the cellulose renders it suitable as raw material for making dissolving pulp. This pulping approach has significantly
smaller environmental footprint compared to the industry-standard kraft process because no sulfur- or chlorine-containing
compounds are used. Although this option needs some minimal post-processing, it produces a higher value commodity than ethanol
and, unlike ethanol, does not need extensive processing such as hydrolysis or fermentation. Potential use of low-molecular
weight lignin as a raw material for wood adhesive production is discussed as well as its use as cement and feed binder. As
a baseline application the hemicellulosic sugars captured in the hydrolyzate liquor can be used to produce ethanol, but potential
utilization of xylose for xylitol fermentation is also feasible. Markets and values of these applications are juxtaposed with
market penetration and saturation. 相似文献
8.
The rheological characteristics of untreated and dilute acid pretreated corn stover (CS) slurries at high solids concentrations were studied under continuous shear using plate-plate type measurements. Slurry rheological behavior was examined as a function of insoluble solids concentration (10-40%), extent of pretreatment (0-75% removal of xylan) and particle size (-20 and -80 mesh). Results show that CS slurries exhibit shear-thinning behavior describable using a Casson model. Further, results demonstrate that the apparent viscosity and yield stress increase with increasing solids concentration (which corresponds to a decrease in free water). Dilute acid pretreatment leads to lower viscosity and yield stresses at equivalent solids concentrations, as does smaller particle size. Taken together, these findings are consistent with the hypothesis that the availability of free water in the slurry plays a significant role in determining its rheological behavior. In particular, as the free water content of the slurry decreases, e.g., with increasing solids concentration, the greater interaction among particles likely increases the apparent viscosity and yield stress properties of the slurry. The results also suggest that the availability of free water, and thereby slurry rheological properties, depend on the chemical composition of the corn stover as well as its physical characteristics such as particle size and porosity. Hydrophilic polymers within the cell wall, such as xylan or pectin, or larger pores within bigger particles, facilitate sequestration of water in the solid phase resulting in decreased availability of free water. Thus, dilute acid pretreated slurries, which contain smaller size particles having significantly lower xylan content than slurries of untreated milled stover, exhibit much lower viscosities and yield stresses than untreated slurries containing large particles at similar solid concentrations. 相似文献
9.
The efficient biological conversion of all the available sugars in biomass residues to fuels and chemicals is crucial to the efficiency of any process intended to compete economically with petrochemical products. Both hemicellulose- and cellulose-derived carbohydrates from wood and agricultural wastes can be converted to 2,3-butanediol by simultaneous saccharification and fermentation. This approach results in improved butanediol yields and process productivities, and also enables biomass substrates, after a simple pretreatment (steam-explosion), to be directly used for efficient butanediol production. 相似文献
10.
Ethanol was produced using the simultaneous saccharification and fermentation (SSF) method with macroalgae polysaccharide from the seaweed Saccharina japonica (Sea tangle, Dasima) as biomass. The seaweed was dried by hot air, ground with a hammer mill and filtered with a 200-mesh sieve prior to pretreatment. Saccharification was carried out by thermal acid hydrolysis with H(2)SO(4) and the industrial enzyme, Termamyl 120 L. To increase the yield of saccharification, isolated marine bacteria were used; the optimal saccharification conditions were 10% (w/v) seaweed slurry, 40 mM H(2)SO(4) and 1 g dcw/L isolated Bacillus sp. JS-1. Using this saccharification procedure, the reducing sugar concentration and viscosity were 45.6 ± 5.0 g/L and 24.9 cp, respectively, and the total yield of the saccharification with optimal conditions and S. japonica was 69.1%. Simultaneous saccharification and fermentation was carried out for ethanol production. The highest ethanol concentration, 7.7 g/L (9.8 ml/L) with a theoretical yield of 33.3%, was obtained by SSF with 0.39 g dcw/L Bacillus sp. JS-1 and 0.45 g dcw/L of the yeast, Pichia angophorae KCTC 17574. 相似文献
11.
以马铃薯淀粉为原料,采用同步糖化发酵方法制备乳酸。通过Plackett-Burman实验设计对影响乳酸产量的7个因子进行筛选,结果表明淀粉质量浓度、糖化酶用量和发酵温度3个因素对乳酸产量影响显著。利用最陡爬坡试验逼近最大响应区,采用中心复合实验设计及响应面分析法进行回归分析,建立影响乳酸产量的二次模型。模型求解得出最优淀粉质量浓度为271.89g/L,糖化酶用量为265.09U/g,发酵温度为39.05℃,最大理论乳酸产量为196.99g/L。3批验证实验结果平均值与预测值接近,表明该模型与实际情况拟合良好,实际最大乳酸产量为193.6g/L,较优化前提高了13.9%,L-乳酸的平均纯度达到95.2%。 相似文献
12.
The physicochemical properties (capacity, kinetics and selectivity) of the ion exchange resins Amberlite IRA900, IRA400, IRA96 and IRA67 were determined to evaluate their comparative suitability for lactic acid recovery. Both the kinetics of lactic acid sorption from aqueous solutions and the equilibrium were assessed using mathematical models, which provided a close interpretation of the experimental results. The best resins (Amberlite IRA96 and IRA67) were employed in further fixed-bed operation using aqueous lactic acid solutions as feed. In this set of experiments, parameters such as capacity, regenerant consumption, percentage of lactic acid recovery and product concentration were measured. Amberlite IRA67, a weak base resin, was selected for lactic acid recovery from SSF (simultaneous saccharification and fermentation) broths. Owing to the presence of nutrients and ions other than lactate, a slightly decreased capacity was determined when using SSF media instead aqueous lactic acid solutions, but quantitative lactic acid recoveries at constant capacities were obtained in four sequential load/regeneration cycles. 相似文献
13.
Murthy GS Johnston DB Rausch KD Tumbleson ME Singh V 《Bioprocess and biosystems engineering》2012,35(4):519-534
Many mathematical models by researchers have been formulated for Saccharomyces cerevisiae which is the common yeast strain used in modern distilleries. A cybernetic model that can account for varying concentrations
of glucose, ethanol and organic acids on yeast cell growth dynamics does not exist. A cybernetic model, consisting of 4 reactions
and 11 metabolites simulating yeast metabolism, was developed. The effects of variables such as temperature, pH, organic acids,
initial inoculum levels and initial glucose concentration were incorporated into the model. Further, substrate and product
inhibitions were included. The model simulations over a range of variables agreed with hypothesized trends and to observations
from other researchers. Simulations converged to expected results and exhibited continuity in predictions for all ranges of
variables simulated. The cybernetic model did not exhibit instability under any conditions simulated. 相似文献
14.
Physicochemical properties of pretreated poplar feedstocks during simultaneous saccharification and fermentation 总被引:2,自引:0,他引:2
Lisbeth Meunier-Goddik Michelle Bothwell Kunruedee Sangseethong Kuakoon Piyachomkwan Yun-Chin Chung Khamphet Thammasouk Djuhartini Tanjo Michael H. Penner 《Enzyme and microbial technology》1999,24(10):77-674
Physicochemical properties of native and dilute acid pretreated (0.6% H2SO4, 10 min, and either 170°C or 180°C) poplar were investigated before and during simultaneous saccharification and fermentation (SSF). SSF duration was 5 days and employed Trichoderma reesei cellulases and Saccharomyces cerevisiae fermentation. Chemical composition (glucan, xylan, lignin), enzyme-accessible surface area (based on solute exclusion), crystallinity index, particle size distribution, particle shape, and enzyme adsorption (cellulase, β-glucosidase) were compared to cellulose conversion. Cellulose conversion varied from 8% for native poplar to 78% for the 180°C-pretreated poplar. The physicochemical properties of native poplar changed little during SSF. In contrast, the physicochemical properties of the 180°C-pretreated feedstock changed markedly. Enzyme-accessible surface area and β-glucosidase adsorption increased by 83% and 65%, respectively, as cellulose was removed from the feedstock. Crystallinity index and particle size (large fraction) decreased by 65% and 93%, respectively. Cellulase adsorption per unit weight increased initially (+45%) followed by a slight decrease (−13%). The same trends were observed, although to a lesser extent, for 170°C-pretreated feedstock. 相似文献
15.
Corn stover was pretreated with various chemical agents, including sodium hydroxide, sulfuric acid, ethylenediamine, n-butylamine (either alone or in solution with methanol), and acetonitrile or ethanol containing hydrochloric acid. Of these chemicals, n-butylamine was the best reagent for pretreatment of corn stover, considering the degree of loss of total carbohydrate, delignification, cumulative weight loss, cumulative yield of reducing sugars per original total carbohydrate, and the potential ease of recovery and reuse of reagent. In comparison to the other reagents tested, n-butylamine (n-BA) selectively delignified corn stover. The best conditions were as follows: a 12-h presoak of about a 155 g dry wt/L slurry (1 mm average particle size) in 100% n-BA at room temperature, followed by 30 min of refluxing (86.5 degrees C) with 40% (w/w) n-BA-distilled water solution. The cumulative yield of reducing sugars after enzymic hydrolysis was 44.5% of the original total carbohydrate and the cumulative total weight loss (dry basis) was 59%. Degradative loss of total carbohydrate during pretreatment was not detected. 相似文献
16.
Product inhibition in simultaneous saccharification and fermentation of cellulose into lactic acid 总被引:5,自引:0,他引:5
The product, lactic acid, strongly inhibited microbial activity in lactic acid fermentation. The volumetric productivity declined from 1.19 g/l.h with zero lactic acid (control) to only 0.18 g/l.h when lactic acid reached 65 g/l. Lactic acid also inhibited cellulase activity but less severely than the inhibition on microbial activity as lactic acid above 90 g/l was needed for 50% inhibition. A gradual deterioration of the Simultaneous Saccharification and Fermentation (SSF) process occurred with the build-up of lactic acid and the rate-controlling step in SSF shifted from hydrolysis to fermentation as the bioprocess proceeded. 相似文献
17.
Maobing Tu Xiao Zhang Mike Paice Paul McFarlane Jack N. Saddler 《Biotechnology progress》2009,25(4):1122-1129
The effects of surfactants addition on enzymatic hydrolysis and subsequent fermentation of steam exploded lodgepole pine (SELP) and ethanol pretreated lodgepole pine (EPLP) were investigated in this study. Supplementing Tween 80 during cellulase hydrolysis of SELP resulted in a 32% increase in the cellulose‐to‐glucose yield. However, little improvement was obtained from hydrolyzing EPLP in the presence of the same amount of surfactant. The positive effect of surfactants on SELP hydrolysis led to an increase in final ethanol yield after the fermentation. It was found that the addition of surfactant led to a substantial increase in the amount of free enzymes in the 48 h hydrolysates derived from both substrates. The effect of surfactant addition on final ethanol yield of simultaneous saccharification and fermentation (SSF) was also investigated by using SELP in the presence of additional furfural and hydroxymethylfurfural (HMF). The results showed that the surfactants slightly increased the conversion rates of furfural and HMF during SSF process by Saccharomyces cerevisiae. The presence of furfural and HMF at the experimental concentrations did not affect the final ethanol concentration either. The strategy of applying surfactants in cellulase recycling to reduce enzyme cost is presented. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 相似文献
18.
The high degree of fermentability required in light beer production can be achieved by concurrent saccharification and fermentation of a wort containing an enzyme prepared corn syrup adjunct and glucoamylase. Traditional acid or acid-enzyme syrups used as adjuncts in regular beer production are not effective in a concurrent saccharification/fermentation process due to the presence of oligosaccharides that are resistant to the action of glucoamylase. 相似文献
19.
Naresh Sharma K. L. Kalra Harinder Singh Oberoi Sunil Bansal 《Indian journal of microbiology》2007,47(4):310-316
A study was taken up to evaluate the role of some fermentation parameters like inoculum concentration, temperature, incubation
period and agitation time on ethanol production from kinnow waste and banana peels by simultaneous saccharification and fermentation
using cellulase and co-culture of Saccharomyces cerevisiae G and Pachysolen tannophilus MTCC 1077. Steam pretreated kinnow waste and banana peels were used as substrate for ethanol production in the ratio 4:6
(kinnow waste: banana peels). Temperature of 30°C, inoculum size of S. cerevisiae G 6% and (v/v) Pachysolen tannophilus MTCC 1077 4% (v/v), incubation period of 48 h and agitation for the first 24 h were found to be best for ethanol production
using the combination of two wastes. The pretreated steam exploded biomass after enzymatic saccharification containing 63
gL−1 reducing sugars was fermented with both hexose and pentose fermenting yeast strains under optimized conditions resulting
in ethanol production, yield and fermentation efficiency of 26.84 gL−1, 0.426 gg −1 and 83.52 % respectively. This study could establish the effective utilization of kinnow waste and banana peels for bioethanol
production using optimized fermentation parameters. 相似文献