首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidation of quercetin by horseradish peroxidase/H(2)O(2) was studied in the absence but especially also in the presence of glutathione (GSH). HPLC analysis of the reaction products formed in the absence of GSH revealed formation of at least 20 different products, a result in line with other studies reporting the peroxidase-mediated oxidation of flavonoids. In the presence of GSH, however, these products were no longer observed and formation of two major new products was detected. (1)H NMR identified these two products as 6-glutathionylquercetin and 8-glutathionylquercetin, representing glutathione adducts originating from glutathione conjugation at the A ring instead of at the B ring of quercetin. Glutathione addition at positions 6 and 8 of the A ring can best be explained by taking into consideration a further oxidation of the quercetin semiquinone, initially formed by the HRP-mediated one-electron oxidation, to give the o-quinone, followed by the isomerization of the o-quinone to its p-quinone methide isomer. All together, the results of the present study provide evidence for a reaction chemistry of quercetin semiquinones with horseradish peroxidase/H(2)O(2) and GSH ultimately leading to adduct formation instead of to preferential GSH-mediated chemical reduction to regenerate the parent flavonoid.  相似文献   

2.
Potentiometric, visible, infrared, electron spin, and nuclear magnetic resonance studies of the complexation of N-(2-acetamido)iminodiacetic acid (H2ADA) by Ca(II), Mg(II), Mn(II), Zn(II), Co(II), Ni(II), and Cu(II) are reported. Ca(II) and Mg(II) were found not to form 2:1 ADA2- to M(II) complexes, while Mn(II), Cu(II), Ni(II), Zn(II), and Co(II) did form 2:1 metal chelates at or below physiological pH values. Co(II) and Zn(II), but not Cu(II), were found to induce stepwise deprotonation of the amide groups to form [M(H-1ADA)4-(2)]. Formation (affinity) constants for the various metal complexes are reported, and the probable structures of the various metal chelates in solution are discussed on the basis of various spectral data.  相似文献   

3.
The visible absorption spectra of 1,4-(dihydroxy)-9,10-anthraquinone and of Co(II), Ni(II), Cu(II) and Zn(II) chelates have been studied in different organic solvents. This system provides a model for the anthracycline antibiotics and their metal chelates. The band structure of the spectrum has been determined using the second and fourth derivatives of the spectrum. The visible absorption band of the parent molecule can be assigned to a single electronic state with a reduced dipole moment in the excited state; structure in this band is ascribed to two overlapping vibrational progressions. In contrast, the dianion (hydroxy protons removed) shows a single electronic state with an increased dipole moment in the excited state; structure in this band can be assigned to a single vibrational progression. All of the metal chelates show spectra which are similar in appearance to that of the dianion although the identity of the metal determines the bathochromic shift of the absorption band. Titration of 1,4-dihydroxyanthraquinone with Cu(ClO4)2.6H2O demonstrates that three chelates with metal-to-ligand ratios of 1:2, 1:1 and 2:1 can form depending on the identity of the metal, ratio of metal to ligand, and donor character of the solvent.  相似文献   

4.
Azo-Schiff base ligand (N′-((E)-2-hydroxy-5-((E)-(2-hydroxyphenyl)diazenyl)benzylidene)nicotinohydrazide) and its Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) chelates were prepared and elucidated. The geometrical structures of the prepared chelates were characterized by several spectroanalytical techniques and thermogravimetric analysis. The obtained data revealed that the chelates have (1M:1L), (1M:2L), (1M:3L), and (1M:4L) molar ratios. The infrared spectra displayed that the H2L ligand behaves in a pentacoordinate fashion in chelates of Mn(II), Ni(II), and Cu(II) ions. However, in Zn(II) and Pd(II) chelates, the ligand is coordinated as a tetradentate species (NONO) through nitrogen atoms of azomethine and azo groups as well as oxygen atoms of phenolic hydroxy, and carbonyl groups. Besides, it was concluded that the oxygen atoms of carbonyl and hydroxy groups along with the azomethine nitrogen atom of the ligand are bounded with Co(II) ion in metal chelate ( 2 ). According to the measured molar conductance values, the chelates of Cu(II), Zn(II), and Pd(II) are weak electrolytes, but Mn(II), Co(II), and Ni(II) chelates are ionic. The azo-Schiff base ligand and its prepared metal chelates were tested for their antioxidant and antibacterial properties. The Ni(II) chelate was found to be considered an effective antioxidant agent. In addition, the available antibacterial data suggest that the Ni(II) and Co(II) chelates may be employed as inhibitor agents against Proteus vulgaris, Escherichia coli, and Bacillus subtilis bacteria. Furthermore, the data showed that, in comparison to the ligand and other metal chelates, copper(II) chelate (4) exhibited higher action against Bacillus subtilis bacteria.  相似文献   

5.
C E Barry  P G Nayar  T P Begley 《Biochemistry》1989,28(15):6323-6333
Phenoxazinone synthase is a copper-containing oxidase that catalyzes the coupling of 2-aminophenols to form the 2-aminophenoxazinone chromophore. This reaction constitutes the final step in the biosynthesis of the potent antineoplastic agent actinomycin. The mechanism of this complex 6-electron oxidation was determined by using a variety of substituted 2-aminophenols, designed to block the reaction at intermediate stages. Thus, with 3,5-di-tert-butyl-2-aminophenol as substrate, the reaction was blocked at the o-quinone imine 17; with 5-tert-butyl-2-aminophenol (19) as substrate, the reaction was blocked at the p-quinone imine 20; and with 5-methyl-2-aminophenol (21) as substrate, the reaction was blocked at the dihydro-2-aminophenoxazinone 22. These findings suggested a mechanism in which 2-aminophenoxazinone formation proceeded via a quinone imine intermediate 4 that was trapped by a second molecule of 2-aminophenol. Oxidation of the adduct 5 to the p-quinone imine 6 was followed by a second conjugate addition and a final 2-electron oxidation to give the product, 2-aminophenoxazinone. The role of the enzyme in the catalysis of each of these steps was examined. It was found that the second conjugate addition generated a racemic center at C4a, suggesting that this reaction did not occur at the active site. A deuterium isotope effect on the cleavage of the C4-H bond of 2-aminophenol suggested that partial dissociation of an intermediate from the enzyme occurred after the first conjugate addition. It is proposed that 2-aminophenoxazinone synthesis proceeds via a sequence of three consecutive 2-electron aminophenol oxidations and that the aminophenol moiety is regenerated during the reaction sequence by facile tautomerization reactions. Thus, what initially appears to be an impressively complex mechanism may, in fact, be ingeniously simple.  相似文献   

6.
The formation of ortho-quinone from ortho-diphenol is a key step in its dimerization. An NMR analysis of the oxidation of 3,4-dihydroxycinnamic acid (caffeic acid) by NaIO4 revealed the formation of 3-(3',4'-dioxo-1',5'-cyclohexadienyl) propenoic acid (o-quinone) prior to the formation of furofuran-type lignan 4,8-exo-bis (3,4-dihydroxyphenyl)-3,7-dioxabicyclo[3.3.0]octane-2,6-dione. Both electrolytic and enzymatic oxidation of caffeic acid also generated o-quinone. The yields of o-quinone from caffeic acid were quantified by NMR and HPLC analyses. A stable isotope-labeling study of the formation of lignans directly proved the random radical coupling of semiquinone radicals formed from a set of caffeic acid and o-quinone.  相似文献   

7.
Quinones are potentially dangerous substances generated from quinols via the intermediates semiquinone and hydrogen peroxide. Low semiquinone radical concentrations are acting as radical scavengers while high concentrations produce reactive oxygen species and quinones, leading to oxidative stress, apoptosis, and/or DNA damage. Recently it was recognised that thioredoxin reductase/thioredoxin (TR/T) reduces both p- and o-quinones. In this report we examine additional reduction mechanisms for p- and o-quinones generated from hydroquinone (HQ) and coenzyme Q10 and by 17beta-estradiol by the common cofactor 6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin (6BH(4)). Our results confirmed that TR reduces the p-quinone 1,4 benzoquinone and coenzyme Q10-quinone back to HQ and coenzyme Q10-quinol, respectively, while 6BH(4) has the capacity to reduce coenzyme Q10-quinone and the o-quinone produced from 17beta-estradiol. 6BH(4) is present in the cytosol and in the nucleus of epidermal melanocytes and keratinocytes as well as melanoma cells and colocalises with TR/T. Therefore we conclude that both mechanisms are major players in the prevention of quinone-mediated oxidative stress and DNA damage.  相似文献   

8.
The formation of ortho-quinone from ortho-diphenol is a key step in its dimerization. An NMR analysis of the oxidation of 3,4-dihydroxycinnamic acid (caffein acid) by NaIO4 revealed the formation of 3-(3',4'-dioxo-1',5'-cyclohexadienyl) propenoic acid (o-quinone) prior to the formation of furofuran-type lignan 4,8-exo-bis(3,4-dihydroxyphenyl)-3,7-dioxabicyclo[3.3.0]octane-2,6-dione. Both electrolytic and enzymatic oxidation of caffeic acid also generated o-quinone. The yields of o-quinone from caffeic acid were quantified by NMR and HPLC analyses. A stable isotope-labeling study of the formation of lignans directly proved the random radical coupling of semiquinone radicals formed from a set of caffeic acid and o-quinone.  相似文献   

9.
Oxidation products of quercetin catalyzed by mushroom tyrosinase   总被引:1,自引:0,他引:1  
Quercetin was oxidized as a substrate catalyzed by mushroom tyrosinase to the corresponding o-quinone and subsequent isomerization to p-quinone methide type intermediate; followed by the addition of water on C-2 yielding a relatively stable intermediate, 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone. In the presence of a catalytic amount of l-DOPA as a cofactor, the rate of this oxidation was enhanced. Fisetin, which lacks the C-5 hydroxyl group, was also oxidized but the rate of oxidation was faster than that of quercetin, indicating that the C-5 hydroxyl group is not essential but is associated with the activity.  相似文献   

10.
The thermodynamics of formation for DIMBOA-Cu(II) complexes (where DIMBOA = 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-4H-one, a hydroxamic acid from maize) has been investigated in aqueous solutions by a potentiometric method. DIMBOA forms 1:1 and 1:2 chelates with Cu(II) at ionic strength 0.05 M (NaCl04). The stability constants measured were about 105 and 104 for the 1:1 and 1:2 complexes respectively, determined at 10, 20 and 30°. The contribution of ΔH and ΔS to the stability of complexes is examined and the pK values are compared with other ligands found in maize. Although DIMBOA has similar or higher constants to form copper complexes than other plant ligands, its possible role as a transport agent in maize remains to be established.  相似文献   

11.
Grixazone contains a phenoxazinone chromophore and is a secondary metabolite produced by Streptomyces griseus. In the grixazone biosynthesis gene cluster, griF (encoding a tyrosinase homolog) and griE (encoding a protein similar to copper chaperons for tyrosinases) are encoded. An expression study of GriE and GriF in Escherichia coli showed that GriE activated GriF by transferring copper ions to GriF, as has been observed for a Streptomyces melanogenesis system in which the MelC1 copper chaperon transfers copper ions to MelC2 tyrosinase. In contrast with tyrosinases, GriF showed no monophenolase activity, although it oxidized various o-aminophenols as preferable substrates rather than catechol-type substrates. Deletion of the griEF locus on the chromosome resulted in accumulation of 3-amino-4-hydroxybenzaldehyde (3,4-AHBAL) and its acetylated compound, 3-acetylamino-4-hydroxybenzaldehyde. GriF oxidized 3,4-AHBAL to yield an o-quinone imine derivative, which was then non-enzymatically coupled with another molecule of the o-quinone imine to form a phenoxazinone. The coexistence of N-acetylcysteine in the in vitro oxidation of 3,4-AH-BAL by GriF resulted in the formation of grixazone A, suggesting that the -SH group of N-acetylcysteine is conjugated to the o-quinone imine formed from 3,4-AHBAL and that the conjugate is presumably coupled with another molecule of the o-quinone imine. GriF is thus a novel o-aminophenol oxidase that is responsible for the formation of the phenoxazinone chromophore in the grixazone biosynthetic pathway.  相似文献   

12.
M Sugumaran  V Semensi  H Dali  S Saul 《FEBS letters》1989,255(2):345-349
We have recently demonstrated that the side chain hydroxylation of N-acetyldopamine and related compounds observed in several insects is caused by a two-enzyme system catalyzing the initial oxidation of catecholamine derivatives and subsequent isomerization of the resultant quinones to isomeric quinone methides, which undergo rapid nonenzymatic hydration to yield the observed products [Saul, S.J. and Sugumaran, M. (1989) FEBS Lett. 249, 155-158]. During our studies on o-quinone/p-quinone methide tautomerase, we observed that quinone methides are also produced nonenzymatically slowly, under physiological conditions. The quinone methide derived from N-acetyldopamine was hydrated to yield N-acetylnorepinephrine as the stable product as originally shown by Senoh and Witkop [(1959) J. Am. Chem. Soc. 81, 6222-6231], while the isomeric quinone methide from dihydrocaffeiyl methylamide exhibited a new reaction to form caffeiyl amide as the stable product. The identity of this product was established by UV and IR spectral studies and by chemical synthesis. We could not find any evidence of intramolecular cyclization of N-acetyldopamine quinone to iminochrome-type compound(s). The importance of quinone methides in these reactions is discussed.  相似文献   

13.
Formation (affinity) constants for 1:1 complexes of N-(2-acetamido)iminodiacetic acid (ADAH2) with Ca(II), Mg(II), Mn(II), Zn(II), Co(II), Ni(II), and Cu(II) have been determined. Probable structures of the various metal chelates existing in solution are discussed. Values for the deprotonation of the amide group in [Cu(ADA)] and subsequent hydroxo complex formation are also reported. The use of ADA as a buffer is considered in terms of metal buffers complexes which can be formed at physiological pH, i.e., at pH 7.0 there is essentially no free metal ion in 1:1 M2+ to ADA solutions.  相似文献   

14.
Cu(II), Ni(II), Co(II), and Zn(II) chelates with two heterocyclic imines derived from 2-furylglyoxal-2(1)-aminothiophenol (FGATP) and 2-thiophenylglyoxal-anthranilicacid (TGAA) were synthesized. Elemental analysis, molar conductance, magnetic measurements and IR and electronic spectral data were explored to elucidate their probable structures. Different crystal field parameters were also calculated to ascertain the geometry of the resulting chelates. All the ligands and their metal chelates were screened, in vitro, for their antimicrobial activity against two bacteria: S. aureus and E. coli and two fungi, viz: A. niger and C. albicans. The in vitro cytotoxic activity of all the compounds was also assessed.  相似文献   

15.
A simple method for the synthesis of 1-amino-3-aza-4-methylhept-4-ene-6-one is presented. The dominant tautomeric form of the compound in CDCl3 has been established. Using this compound eight (five new) unsymmetrical tetradentate Schiff bases and their nickel(II), palladium(II) and copper(II) complexes have been prepared and characterized by various physical techniques. Data for the complexes indicate that they are all of square-planar geometry. High resolution 1H nmr studies, including lanthanide shift reagents on nickel and palladium chelates, allowed us to assign almost all proton resonances. Data for nickel(II) and palladium(II) chelates with 1-(2′-hydroxyphenyl)-1-phenyl-2,5-diaza-6-methylnona-1,6-diene-8-one are consistent with the ketoenamine structure of both the acetylacetone and hydroxybenzophenone portions of the molecules. Good resolved nitrogen hyperfine splitting was observed in the esr spectrum of the copper complex with the aforementioned ligand.  相似文献   

16.
The purpose of this research was to characterize by X-ray crystallography the ternary dimethylformamide (DMF) Cu(II) complex of acetylsalicylic acid (aspirin), in an effort to compare the structure-activity relationships for the anticonvulsant activity of this and other Cu(II)aspirinate chelates. The ternary DMF Cu(II) complex of aspirin was synthesized and crystals grown from a DMF solution were characterized by single crystal X-ray diffraction. This crystalline material was analyzed for anticonvulsant activity in the Maximal Electroshock (MES) Grand Mal and subcutaneous Metrazol (scMET) Petit Mal models of seizure used to detect anticonvulsant activity. The ternary DMF complex was found to be a monomolecular binuclear complex, tetrakis-mu-(acetylsalicylato)bis(dimethylformamido)dicopper(II) [Cu(II)(2)(aspirinate)(4)(DMF)(2)] with the following parameters: monoclinic, space group P2(1)/n, a=12.259 (1), b=10.228 (1), c=16.987 (1) A, beta=92.07 (1) degrees; V=2128.5 (3) A(3); Z=2. The structure was determined at 180 K from 2903 unique reflections (I>1sigma(I)) to the final values of R=0.030 and wR=0.033 using F. This binuclear complex contains four acetylsalicylate bridging ligands which are related to each other in a two by two symmetry center. The four nearest O atoms around each Cu atom form a closely square planar arrangement with the square pyramidal coordination completed by the dimethylformamide oxygen atom occupying an apical position at a distance of 2.154 (1) A. Each Cu atom is displaced towards the DMF ligand by 0.187 A from the plane of the four O atoms. Electron paramagnetic resonance (EPR) spectra of [Cu(II)(2)(aspirinate)(4)(DMF)(2)] crystals show a strong antiferromagnetic coupling of the copper atoms, similar to that observed with other binuclear copper(II)salicylate compounds. Studies used to detect anticonvulsant activity revealed that [Cu(II)(2)(aspirinate)(4)(DMF)(2)] was an effective anticonvulsant in the MES model of seizure but ineffective against scMET-induced seizures. The monomolecular ternary binuclear [Cu(II)(2)(aspirinate)(4)(DMF)(2)] complex is more effective in inhibiting MES-induced seizures than other binuclear or mononuclear Cu(II) chelates of aspirin including: binuclear polymeric [Cu(II)(2)(aspirinate)(4)], [Cu(II)(2)(aspirinate)(4)(H(2)O)], which is anticipated to be less polymeric, and monomolecular ternary [Cu(II)(2)(aspirinate)(4)(DMSO)(2)] and [Cu(II)(aspirinate)(2)(Pyr)(2)]. These and other chelates appear to be more effective in the scMET model of seizure than [Cu(II)(2)(aspirinate)(4)(DMF)(2)]. These structure-activity relationships support the potential efficacy of Cu chelates of aspirin in treating epilepsies.  相似文献   

17.
《Inorganica chimica acta》1988,144(2):265-268
A new ligand, 1,1′-diacetylferrocene benzoylhydrazone and its 15 rare earth(III) chelates have been synthesized. The IR, UV, TG—DTA and electrolytic conductivity of the ligand and its chelates are discussed. The data show that the ligand coordinates with metal ions in the keto form rather than in the enol form. The chelates are more thermostable than the ligand and are 1:2 electrolytes in dimethyl formamide.  相似文献   

18.
Under secondary metabolic conditions the white rot basidiomycete Phanerochaete chrysosporium mineralizes 2,4-dichlorophenol (I). The pathway for the degradation of 2,4-dichlorophenol (I) was elucidated by the characterization of fungal metabolites and of oxidation products generated by purified lignin peroxidase and manganese peroxidase. The multistep pathway involves the oxidative dechlorination of 2,4-dichlorophenol (I) to yield 1,2,4,5-tetrahydroxybenzene (VIII). The intermediate 1,2,4,5-tetrahydroxybenzene (VIII) is ring cleaved to produce, after subsequent oxidation, malonic acid. In the first step of the pathway, 2,4-dichlorophenol (I) is oxidized to 2-chloro-1,4-benzoquinone (II) by either manganese peroxidase or lignin peroxidase. 2-Chloro-1,4-benzoquinone (II) is then reduced to 2-chloro-1,4-hydroquinone (III), and the latter is methylated to form the lignin peroxidase substrate 2-chloro-1,4-dimethoxybenzene (IV). 2-Chloro-1,4-dimethoxybenzene (IV) is oxidized by lignin peroxidase to generate 2,5-dimethoxy-1,4-benzoquinone (V), which is reduced to 2,5-dimethoxy-1,4-hydroquinone (VI). 2,5-Dimethoxy-1,4-hydroquinone (VI) is oxidized by either peroxidase to generate 2,5-dihydroxy-1,4-benzoquinone (VII) which is reduced to form the tetrahydroxy intermediate 1,2,4,5-tetrahydroxybenzene (VIII). In this pathway, the substrate is oxidatively dechlorinated by lignin peroxidase or manganese peroxidase in a reaction which produces a p-quinone. The p-quinone intermediate is then recycled by reduction and methylation reactions to regenerate an intermediate which is again a substrate for peroxidase-catalyzed oxidative dechlorination. This unique pathway apparently results in the removal of both chlorine atoms before ring cleavage occurs.  相似文献   

19.
A kinetic study of acetaminophen oxidation by tyrosinase in the presence of a physiological nucleophilic agent such as the amino acid L-proline is performed in the present paper. The o-quinone product of the catalytic activity, 4-acetamido-o-benzoquinone, becomes unstable through the chemical addition of L-proline, in competition with the nucleophilic addition of hydroxide ion from water. In both cases, the catechol intermediate, 3(')-hydroxyacetaminophen, is generated, as can be demonstrated by liquid chromatography. When the effect of the presence of the nucleophilic agent on the time course of the enzymatic reaction was kinetically analyzed, it was seen to decrease the duration of the lag period and increase the steady-state rate. Rate constants for the reaction of 4-acetamido-o-benzoquinone with water and L-proline were also determined. The results obtained in this paper open a new possibility to acetaminophen toxicity, that has been attributed hitherto to its corresponding p-quinone, N-acetyl-p-benzoquinone imine.  相似文献   

20.
The pathways of the reaction of 2,2-diphenyl picrylhydrazyl radicals (DPPH·) with (+)-catechin were studied in alcoholic solvents. The reaction mixtures were analysed by using reversed-phase liquid chromatography (HPLC) and electrospray ionization mass spectrometry (ESI-MS). The intermediate o-quinone of catechin, yellow dimers, trimers and, interestingly, an adduct of the oxidized form of catechin with DPPH radicals were identified. The mass of this adduct was 681 Da, suggesting that one molecule of the DPPH radical complexes with the oxidized form of catechin. It is concluded that once the intermediate o-quinone is formed, the reaction proceeds in two pathways, either the o-quinone reacts with catechin to form a hydrophilic dimer (type B), which is further oxidized to hydrophobic dimers (type A) and consequently to oligomers of higher molecular weights; or the A-ring of the o-quinone is further oxidized by a DPPH radical and that this oxidized intermediate then reacts with another DPPH radical to form the observed adduct. The identification of the latter mechanism could explain the contradictory results reported in the literature for the reaction of polyphenols with DPPH radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号