首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Along the west coast of the Antarctic Peninsula springtime ozone depletion events can lead to a two-fold increase in biologically effective UV-B radiation (UV-BBE) and summer air temperatures have risen ≈1.5°C during the past 50 years. We manipulated levels of UV radiation and temperature around Colobanthus quitensis (a cushion-forming plant, Caryophyllaceae) and Deschampsia antarctica (a tussock grass) along the Peninsula near Palmer Station for two field seasons. Ambient levels of UV were manipulated by placing filters that either transmitted UV (filter control), absorbed UV-B (reducing diurnal levels of UV-BBE by about 82%), or absorbed both UV-B and UV-A (reducing UV-BBE and UV-ABE by about 88 and 78%, respectively) on frames over naturally growing plants from November to March. Half the filters of each material completely surrounded the frames and raised diurnal and diel air temperatures around plants by an average of 2.3°C and 1.3°C, respectively. Reducing UV or warming had no effect on leaf concentrations of soluble UV-B absorbing compounds, UV-B absorbing surface waxes or chlorophylls. Warming had few effects on growth of either species over the first season. However, over the second field season warming improved growth of C. quitensis, leading to a 50% increase in leaf production (P < 0.10), a 26% increase in shoot production, and a 6% increase in foliar cover. In contrast, warming reduced growth of D. antarctica, leading to a 20% decline in leaf length, a 17% decline in leaf production (P < 0.10), and a 5% decline in foliar cover. Warming improved sexual reproduction in both species, primarily through faster development of reproductive structures and greater production of heavier seeds. Over the second field season, the percentage of reproductive structures that had reached the most developed (seed) stage in C. quitensis and D. antarctica was 20% and 15% higher, respectively, under warming. Capsules of C. quitensis produced 45% more seeds under warming and these seeds were 11% heavier. Growth of D. antarctica was improved when UV was reduced and these effects appeared to be cumulative over field seasons. Over the second season, tillers produced 55% more leaves and these leaves were 32% longer when UV-B was reduced. Tillers produced 137% more leaves that were 67% longer when both UV-B and UV-A were reduced. The effects of UV reduction were not as pronounced on C. quitensis, although over the second season cushions tended to be 17% larger and produce 21% more branches when UV-B was reduced, and tended to be 27% larger and produce 38% more branches when both UV-B and UV-A were reduced (P < 0.10). Few interactions were found between UV reduction and warming, although in the absence of warming, reducing UV led to slower development of reproductive structures in both species. The effects of warming and UV reduction were species specific and were often cumulative over the two field seasons, emphasizing the importance of long-term field manipulations in predicting the impacts of climate change. Received: 4 August 1998 / Accepted: 1 December 1998  相似文献   

2.
We examined the influence of warming and supplemental precipitation on plant production and abundance of the dominant microarthropod, the springtail Cryptopygus antarcticus (Collembola), in tundra dominated by the vascular plants Colobanthus quitensis and Deschampsia antarctica along the Antarctic Peninsula. Tundra cores were placed in plots near Palmer Station where they were warmed with infrared heaters in combination with receiving supplemental precipitation. Diel canopy air and soil temperatures and air vapor pressure deficits in warmed plots were elevated 0.8 °C, 2.2 °C and 0.13 kPa, respectively. After two growing seasons, total aboveground plant production was greater under warming as a result of enhanced production by C. quitensis, which more than offset declines in moss biomass. Total aboveground plant production was also greater under supplemental precipitation primarily as a result of enhanced moss production. Total aboveground plant production was greatest under the combination of warming and supplemental precipitation, primarily as a result of enhanced C. quitensis production. C. antarcticus were more abundant in cores receiving supplemental precipitation and there was a strong treatment interaction; these springtails were most abundant in warmed cores receiving supplemental precipitation. Over 50% of the variability in the abundance of C. antarcticus could be explained by differences in aboveground plant biomass. However, plant production did not appear directly responsible for differences in C. antarcticus abundance; when we examined C. antarcticus abundance per unit of aboveground plant biomass, differences in its abundance among treatments were still apparent implying these differences were not the direct result of plant biomass. The responses of C. antarcticus were consistent with its known moisture and thermal preferences, suggesting that abiotic factors played a dominant role in controlling its abundance. Precipitation regime had large impacts on warming responses and these were species specific, illustrating the importance of future precipitation regimes in predicting system responses to warming.  相似文献   

3.
Changes in the higher plant populations of the Argentine Islands over the last four to five decades have been central to developing an understanding of the likely biological responses to the globally exceptional rates of regional climate change, in particular warming, experienced along the western Antarctic Peninsula over the same period. In this study, we reassessed local populations and distribution of the two indigenous flowering plants on two islands in this archipelago, the grass Deschampsia antarctica and the pearlwort Colobanthus quitensis , in order to compare with previous partial and detailed surveys carried out by the British Antarctic Survey between 1963 and 1990. Our major finding was that the strong trend of recent increase in population size documented in 1990 has not continued, with current population sizes of both higher plants now being slightly lower than but still comparable with those recorded in the last survey in 1990. We discuss reasons underlying this, including possible limits imposed by the suitability of available habitat, and a recent plateauing of the local climate warming trend in comparison with that seen before the 1990 survey, with no significant short-term warming apparent in annual or seasonal meteorological data since 1990.  相似文献   

4.
Bryophyte biomass and diversity in tropical moist forests decrease dramatically from higher altitudes towards the lowlands. High respiratory carbon losses at high temperatures may partly explain this pattern, if montane species are unable to acclimatise their metabolic rates to lowland temperatures. We transplanted ten bryophyte species from two altitudes (1200 and 500 m a.s.l.) to lower (warmer) altitudes (500 m and sea level) in Panama. We studied short‐term temperature acclimation of CO2 exchange for 2.5 months, and survival and growth for 21 months following transplantation. Short‐term acclimation did not occur, and on a longer time scale mortality was highest and growth lowest in the transplanted samples. A few transplanted samples of most species, however, survived the whole experiment and finished with growth rates similar to controls. This recovery of growth rate suggests temperature acclimation, in spite of no measurable metabolic changes in smaller random samples. This acclimation even compensated for shorter periods of CO2 uptake due to more rapid drying. Nevertheless, these species are not abundant in lowland forests, perhaps due to dispersal or establishment limitation. The apparent heterogeneity of the acclimation potential within species may allow populations to adapt locally and avoid being forced uphill under climatic warming.  相似文献   

5.
We examined the influence of solar ultraviolet‐B radiation (UV‐B; 280–315 nm) on the growth of Colobanthus quitensis plants by placing them under contrasting UV‐B filters at Palmer Station, along the Antarctic Peninsula. The filters reduced diurnal biologically effective UV‐B (UV‐BBE) either by 83% (‘reduced UV‐B’) or by 12% (‘near‐ambient UV‐B’) over the 63 day experiment (7 November 1998–8 January 1999). Ozone column depletion averaged 17% during the experiment. Relative growth and net assimilation rates of plants exposed to near‐ambient UV‐B were 30 and 20% lower, respectively, than those of plants exposed to reduced UV‐B. The former plants produced 29% less total biomass, as a result of containing 54% less aboveground biomass. These reductions in aboveground biomass were mainly the result of a 45% reduction in shoot biomass, and a 31% reduction in reproductive biomass. Reductions in shoot biomass were owing to an 18% reduction in branch production by main shoots, while reductions in reproductive biomass were the result of a 19% reduction in individual capsule mass. Total plant leaf area was reduced by 19% under near‐ambient UV‐B, although total leaf biomass was unaffected because leaves had a greater specific leaf mass. The reduction in plant leaf area under near‐ambient UV‐B was attributable to: (1) production of 11% fewer leaves per main shoot system and plant, which resulted from an 18% reduction in branch production by main shoots. Leaf production per individual main shoot or branch was not affected; (2) shorter leaf longevity—main shoots contained 14% fewer green leaves at a given time; and (3) smaller individual leaves—leaf elongation rates were 14% slower and mature leaves were 13% shorter.  相似文献   

6.
We passively warmed tundra on the Antarctic Peninsula over four growing seasons and assessed its effect on dry mass and C and N stocks associated with the vascular plants Colobanthus quitensis (a cushion‐forming forb) and Deschampsia antarctica (a tussock grass), and mosses. Temperature treatments involved a warmed treatment that raised diurnal and diel canopy air temperatures by 2.3 and 1.3 °C, respectively, and a near‐ambient temperature treatment that raised diurnal and diel temperatures by 0.2 °C. These two different temperature regimes were achieved by wrapping filters around the frames to different extents and were nested within three UV treatments that filtered different solar UV wavebands. The experiment also included an ambient control treatment (unfiltered frames), and supplemental water and fertilizer treatments (applied to unfiltered frames). After four growing seasons, we collected cores of each vascular plant species and assessed the mass and C and N content of the aboveground current‐year biomass, the litter layer (which included nongreen live stems), and the organic soil horizon (which included roots). The thin nature of the organic soil horizon allowed us to sample this complete horizon and estimate near‐total ecosystem C and N stocks. A comparison of the warmed and near‐ambient temperature treatments found that warming led to greater aboveground biomass of C. quitensis, and more C in the aboveground biomass of both vascular plant species. Warming resulted in lower N concentrations of the aboveground biomass of both species. The water use efficiency of both species was greater under warming, based on their higher δ13C values. The mass of the litter layer under C. quitensis was greater under warming, and this layer contained more C and N and had a higher C : N ratio. The mass of the organic soil horizon under both species was greater under warming, and this horizon also contained more C and N. Warming also changed the species composition of the plant community – cover of C. quitensis increased while that of mosses declined. Warming resulted in the input of biomass into the system that had greater C : N ratios (and was likely more recalcitrant to decomposition) because (1) warming increased the C : N ratio of the biomass produced by both vascular plant species, (2) these inputs increased with warming because of greater biomass production, and (3) increases in C. quitensis cover led to greater biomass inputs by this species and its biomass had a greater C : N ratio than D. antarctica. Water or fertilizer supplements had few effects on aboveground biomass or C and N concentrations or pools, consistent with the relatively wet maritime climate and high soil nutrient levels of this system. Total C pools in the aboveground biomass, litter, and organic soil horizon were greater under warming. Warmed plots contained from 272 to 319 g m−2 more C than plots under near‐ambient temperatures, corresponding to a 23–34% increase in ecosystem C.  相似文献   

7.
8.
In a current article in the Journal of Vegetation Science, Casanova‐Katny et al. addressed a comment about an article by Molina‐Montenegro et al., which demonstrated the climate modification induced by the macrolichen Usnea antarctica and its role as facilitator. They provided useful corrections concerning species identification and pointed out several issues that, in their view, weakened our study. They indicated that the role of U. antarctica as a facilitative species in the maritime Antarctica is merely philosophical and has no ecological relevance. In this commentary, we argue why these critiques are unsubstantial, and provide evidence that the macrolichen can modify the microclimate, ameliorating the harsh conditions prevailing in Antarctica, establishing positive interactions and eventually facilitating vascular species. Thus, the macrolichen U. antarctica would act as a ‘nurse species’, playing a key role in structuring the maritime Antarctic plant community.  相似文献   

9.
The photosynthetic temperature response of the Antarctic vascular plants Colobanthus quitensis and Deschampsia antarctica was examined by measuring whole-canopy CO2 gas exchange and chlorophyll (Chl) a fluorescence of plants growing near Palmer Station along the Antarctic Peninsula. Both species had negligible midday net photosynthetic rates (Pn) on warm, usually sunny, days (canopy air temperature [Tc]> 20°C), but had relatively high Pn on cool days (Tc<10°C). Laboratory measurements of light and temperature responses of Pn showed that high temperature, not visible irradiance, was responsible for depressions in Pn on warm sunny days. The optimal leaf temperatures (Tl) for Pn in C. quitensis and D. antarctica were 14 and 10°C, respectively. Both species had substantial positive Pn at 0°C Tl, which were 28 (C. quitensis) and 32% (D. antarctica) of their maximal Pn, and we estimate that their low-temperature compensation points occurred at ?2°C Tl (C. quitensis) and ?3°C (D. antarctica). Because of the strong warming trend along the peninsula over recent decades and predictions that this will continue, we were particularly interested in the mechanisms responsible for their negligible rates of Pn on warm days and their unusually low high-temperature compensation points (i.e., 26°C in C. quitensis and 22°C in D. antarctica). Low Pn at supraoptimal temperature (25°C) appeared to be largely due to high rates of temperature-enhanced respiration. However, there was also evidence for direct impairment of the photosynthetic apparatus at supraoptimal temperature, based on Chl fluorescence and Pn/intercellular CO2 concentration (ci) response curve analyses. The breakpoint or critical temperature (Tcr) of minimal fluorescence (Fo) was ≈42°C in both species, which was well above the temperatures where reductions in Pn were evident, indicating that thylakoid membranes were structurally intact at supraoptimal temperatures for Pn. The optimal Tl for photochemical quenching (qp) and the quantum yield of photosystem II (PSII) electron transfer (φPSII) were 9 and 7°C in C. quitensis and D. antarctica, respectively. Supraoptimal temperatures resulted in lower qp and greater non-photochemical quenching (qNP), but had little effect on Fo, maximal fluorescence (Fm) or the ratio of variable to maximal fluorescence (Fv/Fm) in both species. In addition, carboxylation efficiencies or initial slopes of their Pn/ci response were lower at supraoptimal temperatures, suggesting reduced activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Although continued warming along the peninsula will increase the frequency of supraoptimal temperatures, Tc at our field site averaged 4.3°C and was below the temperature optima for Pn in these species for the majority of diurnal periods (86%) during the growing season, suggesting that continued warming will usually improve their rates of Pn.  相似文献   

10.
We studied cadmium effect on the respiratory pathways ratio in the organs of barley (Hordeum distichum L., cv. Novichok) plants grown in water culture at two temperature regimes. Mineral nutrients were supplied daily in exponentially increasing amounts in order to provide for steady-state growth. CdSO4 (30, 60, or 100 μmol/l) was added to nutrient solution at a single time in the beginning of the exponential growth period (19 days after germination). In further 6 days, the relative growth rate and biomass accumulation declined stronger with the increase in the cadmium concentration in plants grown at 13/8°C (day/night) than at 21/17°C (day/night). Cadmium suppressed root respiration (down to 60% of control) stronger than leaf respiration, and the roots manifested a higher sensitivity to the inhibitor of alternative oxidase, salicylhydroxamic acid. The respiratory pathways ratio in the roots occurred against the background of activated lipid peroxidation (POL). The highest POL activity and the highest proportion of alternative respiration pathway (AP) (up to 46% of total respiration) were observed in the roots in the presence of the highest cadmium concentration (100 μM) under lower temperature (13/8°C). Thus, high cadmium concentrations affected strongly the total rate of respiration and respiratory pathways ratio. Growth temperature modulated Cd effects on respiration. AP activation is one of the mechanisms for maintenance of root cell homeostasis under cadmium-induced stress.  相似文献   

11.
Vascular plants as bioindicators of regional warming in Antarctica   总被引:11,自引:0,他引:11  
R. I. Lewis Smith 《Oecologia》1994,99(3-4):322-328
Monitoring selected populations of the only two native Antarctic vascular plant species (Colobanthus quitensis andDeschampsia antarctica) over a 27-year period has revealed a significant and relatively rapid increase in numbers of individuals and populations at two widely separated localities in the maritime Antarctic. There is strong evidence that this increase is a response to a warming trend in summer air temperatures, which has been evident throughout the region since the late 1940s, enhancing seed maturation, germination and seedling survival. This study provides the only known long-term monitoring data for any terrestrial organisms in Antarc-tica. Because their response to ameliorating conditions is more rapid than that of the dominant cryptogamic groups, Antarctic phanerogams may be useful bioindicators of climate change in West Antarctica.  相似文献   

12.
13.
1. To investigate the influence of elevated temperatures and nutrients on photosynthesis, respiration and growth of natural phytoplankton assemblages, water was collected from a eutrophic lake in spring, summer, autumn, winter and the following spring and exposed to ambient temperature and ambient +2, +4 and +6 °C for 2 weeks with and without addition of extra inorganic nutrients. 2. Rates of photosynthesis, respiration and growth generally increased with temperature, but this effect was strongly enhanced by high nutrient availability, and therefore was most evident for nutrient amended cultures in seasons of low ambient nutrient availability. 3. Temperature stimulation of growth and metabolism was higher at low than high ambient temperature showing that long‐term temperature acclimation of the phytoplankton community before the experiments was of great importance for the measured rates. 4. Although we found distinct responses to relatively small temperature increases, the interaction between nutrient availability, time of the year and, thus, ambient temperature was responsible for most of the observed variability in phytoplankton growth, photosynthesis and respiration. 5. Although an increase in global temperature will influence production and degradation of organic material in lakes, the documented importance of ambient temperatures and nutrient conditions suggests that effects will be most pronounced during winter and early spring, while the remaining part of the growth season will be practically unaffected by increasing temperatures.  相似文献   

14.
Photosynthetic response of Eragrostis tef to temperature   总被引:1,自引:0,他引:1  
Photosynthetic characteristics of leaves of tef, Eragrostis tef (Zucc.) Trotter, plants, grown at 25/15°C (day/night), were measured at temperatures from 18 to 48°C. The highest carbon exchange rates (CER) occurred between 36 and 42°C. and averaged 27 μmol m−2 s−1. At lower or higher temperatures, CER was reduced, but the availability of CO2 to the mesophyll, measured as internal CO2 concentration, was highest when temperatures were above or below the optimum for CER. In addition, CER and stomatal conductance were not correlated, but residual conductance was highly correlated with CER (r = 0.98). In additional experiments, relative 13C composition for leaf tissue grown at 25, 35 and 45°C averaged -14.4 per mille, confirming that tef is a C4 grass species. Dry matter accumulation was higher at 35 than at 25, and lowest at 45°C. Leaf CER rates increased hyperbolically with increased light when measured from 0 to 2000 μmol m−2 s−1 PPFD. The highest CER, 31.8 μ-mol m-2 s−1, occurred at 35°C and 2000 μmol m−2 s−1 PPFR. At high light, CER at 25 and 35°C were nearly equal because of higher stomatal conductance at 25°C. Residual conductance was, however, clearly highest at 35°C compared to 25 and 45°C treatments. Stomatal conductance and residual conductance were not correlated in either set of experiments, yet residual conductance was always highest when temperatures were between 35 and 42°C across experiments, suggesting that internal leaf photosynthetic potential was highest across that temperature range.  相似文献   

15.
Photophysiological characteristics of the Southern Ocean phytoplankton species Phaeocystis antarctica, Geminigera cryophila, and Chaetoceros simplex were assessed during 7 weeks of darkness and subsequent recovery after darkness at 4 and 7°C. Chlorophyll a fluorescence and maximum quantum efficiency of PSII decreased during long darkness in a species-specific manner, whereas chlorophyll a concentration remained mostly unchanged. Phaeocystis antarctica showed the strongest decline in photosynthetic fitness during darkness, which coincided with a reduced capacity to recover after darkness, suggesting a loss of functional photosystem II (PSII) reaction centers. The diatom C. simplex at 4°C showed the strongest capacity to resume photosynthesis and active growth during 7 weeks of darkness. In all species, the maintenance of photosynthetic fitness during darkness was clearly temperature dependent as shown by the stronger decline of photosynthetic fitness at 7°C compared to 4°C. Although we lack direct evidence for this, we suggest that temperature-enhanced respiration rates cause stronger depletion of energy reserves that subsequently interferes with the maintenance of photosynthetic fitness during long darkness. Therefore, the current low temperatures in the coastal Southern Ocean may aid the maintenance of photosynthetic fitness during the austral winter. Further experiments should examine to what extent the species-specific differences in dark survival are relevant for future temperature scenarios for the coastal Southern Ocean.  相似文献   

16.
Imposition of low, but above freezing, temperatures resulted in a gradual increase in the cold hardiness of western red cedar seedlings. This was associated with a decrease in the maximum rates of photosynthetic CO2 fixation and O2 evolution, and changes in chlorophyll a fluorescence transients which indicated that photoinhibition had occurred. Maximum photosynthetic rates declined approximately 40% during cold hardening. The leaves changed colour from green to red-brown during the hardening process. The colour change was due to the synthesis of large amounts of the carotenoid rhodoxanthin. Lutein levels doubled, while chlorophyll declined slightly. Dehardening resulted in the rapid recovery of photosynthesis to control levels, the rapid disappearance of rhodoxanthin, and the return of lutein levels to control. It is suggested that rhodoxanthin accumulation at low temperature functions to decrease the light intensity reaching the photosynthetic apparatus. The combination of photoinhibition and rhodoxanthin synthesis probably serves to protect the photosynthetic capacity of the seedlings at low temperature.  相似文献   

17.
Photosynthesis is the limiting factor in crop growth models, but metabolism may also limit growth. We hypothesize that, over a wide range of temperature, growth is the minimum of the supply of carbohydrate from photosynthesis, and the demand of carbohydrate to synthesize new tissue. Biosynthetic demand limits growth at cool temperatures and increases exponentially with temperature. Photosynthesis limits growth at warm temperatures and decreases with temperature. Observations of tomato seedlings were used to calibrate a model based on this hypothesis. Model predictions were tested with published data for growth and carbohydrate content of sunflower and wheat. The model qualitatively fitted the response of growth of tomato and sunflower to both cool and warm temperatures. The transition between demand and supply limitation occurred at warmer temperatures under higher light and faster photosynthesis. Modifications were required to predict the observed non-structural carbohydrate (NSC). Some NSC was observed at warm temperatures, where demand should exceed supply. It was defined as a required reserve. Less NSC was found at cool temperatures than predicted from the difference between supply and demand. This was explained for tomato and sunflower, by feedback inhibition of NSC on photosynthesis. This inhibition was much less in winter wheat.  相似文献   

18.
Tradescantia albiflora (Kunth), a trailing ground species naturally occurring in deep shade in rainforests, has an unusual photosynthetic acclimation profile for growth irradiance. Although capable of increasing its capacity for electron transport, photophosphorylation and carbon fixation when grown in full sunlight, Tradescantia has constant chlorophyll alb ratios, photosystem reaction centre stoichiometry and pigment-protein composition at all growth irradiances (Chow et al. 1991. Physiol. Plant. 81: 175–182). To gain an insight into the compensatory strategies which allow Tradescantia to grow in both high and low lights, plants were grown under shade cloth (100 to 1.4% relative growth irradiance) and leaf and chloroplast attributes were compared. While shade Tradescantia chloroplasts had three times more chlorophyll per chloroplast and twice the length of thylakoid membranes compared to plants grown in full sunlight, the ratios of appressed to nonappressed thylakoid membranes were constant. The average net surface charge density of destacked thylakoids was the same for plants grown at moderate and low-irradiance, consistent with their similar stacking profiles. Tradescantia plants grown in direct sunlight had 10-times more fresh and dry weight per plant compared to plants grown in shade, despite a lower photosynthetic capacity on a leaf area basis with partial photoinhibition. We conclude that having a light-harvesting apparatus permanently locked into the "shade-plant mode " does not necessarily prevent a plant from thriving in high light. Analyses of leaf growth at different irradiances provide a partial explanation of the manner in which Tradescantia compensates for very low photosynthetic capacity per unit leaf in sunlight.  相似文献   

19.
Photosynthetic acclimation of phytoplankton to lower irradiation can be met by several strategies such as increasing the affinity for light or increasing antenna size and stacking of the thylakoids. The latter is reflected by a higher proportion of polyunsaturated fatty acids (PUFAs). Additionally, photosynthetic capacity (Pmax), respiratory losses, and proton leakage can be reduced under low light. Here we consider the effect of light intensity and phosphorus availability simultaneously on the photosynthetic acclimation and fatty acid composition of four phytoplankters. We studied representatives of the Chlorophyceae, Cryptophyceae and Mediophyceae, all of which are important components of plankton communities in temperate lakes. In our analysis, excluding fatty acid composition, we found different acclimation strategies in the chlorophytes Scenedesmus quadricauda, Chlamydomonas globosa, cryptophyte Cryptomonas ovata and ochrophyte Cyclotella meneghiniana. We observed interactive effects of light and phosphorus conditions on photosynthetic capacity in S. quadricauda and Cry. ovata. Cry. ovata can be characterized as a low light-acclimated species, whereas S. quadricauda and Cyc. meneghiniana can cope best with a combination of high light intensities and low phosphorus supply. Principal component analyses (PCA), including fatty acid composition, showed further species-specific patterns in their regulation of Pmax with PUFAs and light. In S. quadricauda and Cyc. meneghiniana, PUFAs negatively affected the relationship between Pmax and light. In Chl. globosa, lower light coincided with higher PUFAs and lower Pmax, but PCA also indicated that PUFAs had no direct influence on Pmax. PUFAs and Pmax were unaffected by light in Cry. ovata. We did not observe a general trend in the four species tested and concluded that, in particular, the interactive effects highlight the importance of taking into account more than one environmental factor when assessing photosynthetic acclimation to lower irradiation.  相似文献   

20.
Abstract. Factors underlying the process of photosynthetic acclimation to temperature were investigated for the shrub Nerium oleander L. Ramets of a single clone were grown under day/night temperature regimes of 20°C/15°C or 45°C/32°C. Plants grown at the lower temperature regime possessed rates of photosynthesis twice that of the high-temperature grown plants when CO2 fixation was measured at 20°C. In contrast, the plants grown at the high-temperature regime had twice the rate of CO2 fixation of the 20°C/l 5°C-grown plants at a measurement temperature of 45° C. It was determined that the ability to acclimate to changes in temperature regime was present in fully mature leaves. A reciprocal transfer of plants between the two growth regimes resulted in the appearance of the CO2 fixation characteristics appropriate to the new growth temperature after 12–14d. The response of CO2 fixation to light, temperature, and CO2 partial pressure and the temperature responses of soluble and membrane-bound photosynthetic enzyme systems were analysed to determine which components might be responsible for the superior photosynthetic performance of the 20°C/I5°C-grown plants at 20°C, and the enhanced high-temperature stability of the 45°C/32°C plants. The measured photosynthetic capacity of the 20°C/15°C plants could not be attributed to gross morphological, stomatal, or other physical changes, or to a general increase in the concentration of components of the photosynthetic process. Only a single enzyme, Fru-P2 phosphatase, was affected to an extent similar to that of photosynthesis. The enhanced thermal stability of the 45°C/32°C plants may be attributed primarily to an enhanced stability of the chloroplast membrane-bound enzymatic activities and the stability of the photosynthetic carbon metabolism enzymes which require lighl for activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号