首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Plasminogen activator inhibitor-1, adipose tissue and insulin resistance   总被引:4,自引:0,他引:4  
PURPOSE OF REVIEW: Plasminogen activator inhibitor (PAI)-1 is a physiological inhibitor of plasminogen activators (urokinase and tissue types) and vitronectin. It is synthesized by adipose tissue, and its levels in plasma are increased in obesity and reduced with weight loss. Circulating PAI-1 level predicts development of type 2 diabetes, suggesting that it may be causally related to development of obesity. A role for PAI-1 in development of obesity has only partially been established, however. This review summarizes current knowledge, gives context to developments thus far and discusses controversies. RECENT FINDINGS: In addition to its role in atherothrombosis, PAI-1 might be involved in adipose tissue development. PAI-1 is produced by ectopic fat depots under the influence of inducers. Among the most recently described inducers are inflammation, oxidative stress and circadian clock protein. PAI-1 may play several roles in contributing to obesity: through indirect effects on insulin signalling, by influencing adipocyte differentiation and by regulating recruitment of inflammatory cells within adipose tissue. SUMMARY: These recent findings emphasize the involvement of PAI-1 in controlling the biology of adipose tissue; PAI-1 is an attractive new therapeutic target to retard the metabolic complications that accompany obesity.  相似文献   

5.
Plasminogen activator inhibitor-1 (PAI-1) is produced by adipose tissue, and elevated PAI-1 levels in plasma are a risk factor in the metabolic syndrome. We investigated the regulatory effects of TNF-alpha and IL-6 on PAI-1 gene induction in human adipose tissue. Twenty healthy men underwent a 3-h infusion of either recombinant human TNF-alpha (n = 8), recombinant human IL-6 (n = 6), or vehicle (n = 6). Biopsies were obtained from the subcutaneous abdominal adipose tissue at preinfusion, at 1, 2, and 3 h during the infusion, and at 2 h after the infusion. The mRNA expression of PAI-1 in the adipose tissue was measured using real-time PCR. The plasma levels of TNF-alpha and IL-6 reached 18 and 99 pg/ml, respectively, during the infusions. During the TNF-alpha infusion, adipose PAI-1 mRNA expression increased 2.5-fold at 1 h, 6-fold at 2 h, 9-fold at 3 h, and declined to 2-fold 2 h after the infusion stopped but did not change during IL-6 infusion and vehicle. These data demonstrate that TNF-alpha rather than IL-6 stimulates an increase in PAI-1 mRNA in the subcutaneous adipose tissue, suggesting that TNF-alpha may be involved in the pathogenesis of related metabolic disorders.  相似文献   

6.
7.
8.
PPARγ and pRB play an important role in the development of adipose cells, and functional modification of these proteins may lead to beneficial changes in adipose cell physiology. In the present work, we show that over-expression of EID1 (E1A-like inhibitor of differentiation), an inhibitor of muscle cell differentiation, reduces PPARγ ligand-dependent transactivation and decreases triglyceride stores in pre-adipocytes (3T3-L1 cells). Additionally, we found that EID1 binds to pRB at the onset of adipocyte differentiation and may act to reduce pRB levels. Over-expression of EID1 in 3T3-L1 cells leads to increased expression of UCP1 and PGC-1α, both of which are involved in caloric dissipation and thermogenesis, in brown adipose tissue. These results indicate that EID1 is able to reduce fat accumulation in adipose cells and induce expression of brown fat genes in pre-adipocytes (3T3-L1 cells) normally destined to become white fat cells. The functional reduction of PPARγ and pRB mediated by EID1 in adipose cells may play an important role in insulin resistance and the metabolic syndrome.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
Lactoferrin is considered an epithelial protein present in different gland secretions. Administration of exogenous lactoferrin is also known to modulate adipogenesis and insulin action in human adipocytes. Here, we aimed to investigate lactoferrin gene expression (real-time polymerase chain reaction) and protein (enzyme-linked immunosorbent assay) levels in human (n=143) and mice adipose tissue samples, in adipose tissue fractions and during human preadipocyte and 3T3-L1 cell line differentiation, evaluating the effects of inducers (rosiglitazone) and disruptors (inflammatory factors) of adipocyte differentiation. Lactoferrin (LTF) gene and protein were detectable at relatively high levels in whole adipose tissue and isolated adipocytes in direct association with low-density lipoprotein-related protein 1 (LRP1, its putative receptor). Obese subjects with type 2 diabetes and increased triglycerides had the lowest levels of LTF gene expression in subcutaneous adipose tissue. Specifically, LTF gene expression was significantly increased in adipocytes, mainly from lean subjects, increasing during differentiation in parallel to adipogenic genes and gene markers of lipid droplets. The induction or disruption of adipogenesis led to concomitant changes (increase and decrease, respectively) of lactoferrin levels during adipocyte differentiation also in parallel to gene markers of adipogenesis and lipid droplet development. The administration of lactoferrin led to autopotentiated increased expression of the LTF gene. The decreased lactoferrin mRNA levels in association with obesity and diabetes were replicated in mice adipose tissue. In conclusion, this is the first observation, to our knowledge, of lactoferrin gene expression in whole adipose tissue and isolated adipocytes, increasing during adipogenesis and suggesting a possible contribution in adipose tissue physiology through LRP1.  相似文献   

17.
To investigate further the role of plasminogen activator inhibitor-1 (PAI-1) in human adipose tissue, the regulation of cytokines, cortisol (dexamethasone) as well as estrogen on PAI-1 were determined in human adipose tissue fragments. PAI-1 activity was increased in human adipose tissue fragments incubated for 48 h with interleukin-1beta (IL-1beta) (2.6-fold, p < 0.01) and tumor necrosis factor-alpha (2.3-fold, p < 0.01). Incubation with interleukin-6 revealed a non-significant decrease in PAI-1 activity. Parallel findings were obtained when studying the PAI-1 mRNA expression. Dexamethesone increased PAI-1 activity after incubation for 8 h (p < 0.05) and enhanced the stimulation of IL-1beta after 8 h incubation. However, after 24 and 48 h, dexamethasone significantly reduced the IL-1beta induced increase in PAI-1 activity by 24-52% (p < 0.05), accordingly, PAI-1 mRNA expression was reduced 60%. Finally, the induction of PAI-1 activity and PAI-1 mRNA expression by IL-1beta was attenuated by estrogen (17.8+/-4.9%, p < 0.05 and 20.9+/-5.8%, p < 0.05, respectively). These results indicate that multiple cytokines, estrogen and dexamethasone may be involved in the regulation of PAI-1 biosynthesis in human adipose tissue, and suggest that there are interactions between cytokines and these steroid hormones. The interplay between these hormones may be of importance for the levels of PAI-1 observed in obesity and associated states.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号