首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Plastid DNA, like bacterial and mitochondrial DNA, is organized into protein–DNA complexes called nucleoids. Plastid nucleoids are believed to be associated with the inner envelope in developing plastids and the thylakoid membranes in mature chloroplasts, but the mechanism for this re-localization is unknown. Here, we present the further characterization of the coiled-coil DNA-binding protein MFP1 as a protein associated with nucleoids and with the thylakoid membranes in mature chloroplasts. MFP1 is located in plastids in both suspension culture cells and leaves and is attached to the thylakoid membranes with its C-terminal DNA-binding domain oriented towards the stroma. It has a major DNA-binding activity in mature Arabidopsis chloroplasts and binds to all tested chloroplast DNA fragments without detectable sequence specificity. Its expression is tightly correlated with the accumulation of thylakoid membranes. Importantly, it is associated in vivo with nucleoids, suggesting a function for MFP1 at the interface between chloroplast nucleoids and the developing thylakoid membrane system.  相似文献   

2.
Plastid DNA is a circular molecule of 120-150 kbp, which is organized into a protein-DNA complex called a nucleoid. Although various plastids other than chloroplasts exist, such as etioplasts, amyloplasts and chromoplasts, it is not easy to observe plastid nucleoids within the cells of many non-green tissues. The PEND (plastid envelope DNA-binding) protein is a DNA-binding protein in the inner envelope membrane of developing chloroplasts, and a DNA-binding domain called cbZIP is present at its N-terminus. We made various PEND-green fluorescent protein (GFP) fusion proteins using the cbZIP domains from various plants, and found that they were localized in the chloroplast nucleoids in transient expression in leaf protoplasts. In stable transformants of Arabidopsis thaliana, PEND-GFP fusion proteins were also localized in the nucleoids of various plastids. We have succeeded in visualizing plastid nucleoids in various intact tissues using this stable transformant. This technique is useful in root, flower and pollen, in which it had been difficult to observe plastid nucleoids. The relative arrangement of nucleoids within a chloroplast was kept unchanged when the chloroplast moved within a cell. During the division of plastid, nucleoids formed a network structure, which made possible equal partition of nucleoids.  相似文献   

3.
Samaniego R  Jeong SY  Meier I  de la Espina SM 《Planta》2006,223(6):1201-1206
Matrix attachment region-binding filament-like protein 1 (MFP1) is a plant-specific long coiled-coil protein that binds double-stranded DNA. While originally identified as a component of the tobacco nuclear matrix, it was subsequently shown that the majority of MFP1 resides in mature chloroplast where it is located at the stroma side of the thylakoids and is able to bind to nucleoids. On the other hand, a 90 kDa MFP1-like protein from onion has been convincingly shown to be an intrinsic component of the onion meristematic nuclear matrix. Here, we have expanded the analysis of the subcellular location of MFP1 by using high-resolution confocal immunofluorescence microscopy and immunogold electron microscopy. Two different antisera raised against MFP1 from two species were used on isolated nuclei and chloroplasts from tomato, tobacco, and Arabidopsis. Our data show that both antibodies detect a signal in both compartments in all three species. An Arabidopsis MFP1 T-DNA insertional mutation abolishes both nuclear and chloroplast signals, indicating that the nuclear and plastidic antigens are derived from the same gene. We therefore suggest that MFP1 is a protein with a dual location, in both nuclei and chloroplasts, consistent with prior findings in onion and the dicot species investigated here.  相似文献   

4.
5.
Sato N  Ohta N 《Nucleic acids research》2001,29(11):2244-2250
The PEND protein is a DNA-binding protein in the inner envelope membrane of a developing chloroplast, which may anchor chloroplast nucleoids. Here we report the DNA-binding characteristics of the N-terminal basic region plus leucine zipper (bZIP)-like domain of the PEND protein that we call cbZIP domain. The basic region of the cbZIP domain diverges significantly from the basic region of known bZIP proteins that contain a bipartite nuclear localization signal. However, the cbZIP domain has the ability to dimerize in vitro. Selection of binding sites from a random sequence pool indicated that the cbZIP domain preferentially binds to a canonical sequence, TAAGAAGT. The binding site was also confirmed by gel mobility shift analysis using a representative binding site within the chloroplast DNA. These results suggest that the cbZIP domain is a unique DNA-binding domain of the chloroplast protein.  相似文献   

6.
In the desiccation-tolerant resurrection plant Craterostigma plantagineum Hochst. the chloroplasts undergo major ultrastructural changes during dehydration, which are reversible upon rehydration. Such alterations argue the need for efficient protective/stabilising mechanisms to exist. Here we describe a novel gene family that is rapidly and transiently expressed in response to both dehydration and exogenously applied abscisic acid, mostly in the chloroplast-rich palisade layer on the adaxial side of the leaf. Analysis of the putative coding region suggests that the resulting protein is plastid-targeted. This was confirmed using a chimeric green fluorescent protein (GFP) reporter construct in transgenic tobacco plants - hence the gene family is termed Plastid Targeted Protein ( CpPTP). Fluorescence microscopy also revealed that CpPTP was localised in structures similar to proplastid nucleoids in transgenic tobacco ( Nicotiana tabacum L.) BY-2 cells. The ability of CpPTP to interact with DNA was demonstrated through a DNaseI protection assay. A structure-prediction programme suggests that the mature CpPTP is composed almost entirely of a pattern of hydrophobic and hydrophilic residues that form heptad repeats, which are the hallmarks of a coiled-coil domain. Given the localisation and DNA-binding property of the protein, we propose that CpPTP plays a role during the early stages of dehydration-induced chloroplast remodelling.  相似文献   

7.
K Ko  A R Cashmore 《The EMBO journal》1989,8(11):3187-3194
Various chimeric precursors and deletions of the 33 kd oxygen-evolving protein (OEE1) were constructed to study the mechanism by which chloroplast proteins are imported and targeted to the thylakoid lumen. The native OEE1 precursor was imported into isolated chloroplasts, processed and localized in the thylakoid lumen. Replacement of the OEE1 transit peptide with the transit peptide of the small subunit of ribulose-1,5-bisphosphate carboxylase, a stromal protein, resulted in redirection of mature OEE1 into the stromal compartment of the chloroplast. Utilizing chimeric transit peptides and block deletions we demonstrated that the 85 residue OEE1 transit peptide contains separate signal domains for importing and targeting the thylakoid lumen. The importing domain, which mediates translocation across the two membranes of the chloroplast envelope, is present in the N-terminal 58 amino acids. The thylakoid lumen targeting domain, which mediates translocation across the thylakoid membrane, is located within the C-terminal 27 residues of the OEE1 transit peptide. Chimeric precursors were constructed and used in in vitro import experiments to demonstrate that the OEE1 transit peptide is capable of importing and targeting foreign proteins to the thylakoid lumen.  相似文献   

8.
9.
Summary The location of DNA containing nucleoids has been studied in greening bean (Phaseolus vulgaris L.) etioplasts using electron microscopy of thin sections and the staining of whole leaf cells with the fluorochrome DAPI. At 0 hours illumination a diffuse sphere of cpDNA surrounds most of the prolamellar body. It appears to be made up of a number of smaller nucleoids and can be asymmetric in location. The DNA appears to be attached to the outside of the prolamellar body and to prothylakoids on its periphery. With illumination the nucleoid takes on a clear ring-like shape around the prolamellar body. The maximum development of the ring-like nucleoid at 5 hours illumination is associated with the outward expansion of the prolamellar body and the outward growth of the prothylakoids. At 5 hours the electron transparent areas lie in between the prothylakoids radiating out from the prolamellar body. Between 5 hours and 15 hours observations are consistent with the growing thylakoids separating the nucleoids as the prolamellar body disappears and the chloroplast becomes more elongate. At 15 hours the fully differentiated chloroplast has discrete nucleoids distributed throughout the chloroplast with evidence of thylakoid attachment. This is the SN (scattered nucleoid) distribution ofKuroiwa et al. (1981) and is also evident in 24 hours and 48 hours chloroplasts which have more thylakoids per granum. The changes in nucleoid location occur without significant changes in DNA levels per plastid, and there is no evidence of DNA or plastid replication.The observations indicate that cpDNA partitioning in dividing SN-type chloroplasts could be achieved by thylakoid growth and effectively accomplish DNA segregation, contrasting with envelope growth segregating nucleoids in PS-type (peripheral scattered nucleoids) chloroplasts. The influence of plastid development on nucleoid location is discussed.  相似文献   

10.
The precursor to the nuclear-coded 22-kDa heat-shock protein of chloroplasts (HSP 22) has been transported into isolated intact chloroplasts from heat-shocked plants. The localization of the mature protein in the chloroplast membrane was investigated. We have shown that the processed HSP 22 of pea was not bound to envelopes and found predominantly in thylakoid membranes. The binding of HSP 22 was stable in the presence of high salt concentrations. Solubilization of thylakoid membranes with Triton X-100 and phase partitioning with Triton X-114 indicate an intrinsic localization of HSP 22 or, alternatively, a non-covalent association with integral membrane protein(s). After fractionation into grana and stroma lamellae, HSP 22 was found mostly in the grana-membrane subfraction.  相似文献   

11.
Thylakoid rhodanase‐like protein (TROL) is a nuclear‐encoded protein of thylakoid membranes required for tethering of ferredoxin:nicotinamide adenine dinucleotide phosphate (NADPH) oxydoreductase (FNR). It has been proposed that the dynamic interaction of TROL with flavoenzyme FNR, influenced by environmental light conditions, regulates the fate of photosynthetic electrons, directing them either to NADPH synthesis or to other acceptors, including reactive oxygen species detoxification pathways. Inside the chloroplasts, TROL has a dual localization: an inner membrane precursor form and a thylakoid membrane mature form, which has been confirmed by several large‐scale chloroplast proteomics studies, as well as protein import experiments. Unlike the localization, the topology of TROL in the membranes, which is a prerequisite for further studies of its properties and function, has not been experimentally confirmed yet. Thermolysin was proven to be a valuable protease to probe the surface of chloroplasts and membranes in general. By treating the total chloroplast membranes using increasing protease concentration, sequential degradation of TROL was observed, indicating protected polypeptides of TROL and possible domain orientation. To further substantiate the obtained results, TROL‐overexpressing Arabidopsis line (OX) and line in which the central rhodanase‐like domain (RHO) has been partially deleted (ΔRHO), were used as well. While OX line showed the same degradation pattern of TROL as the wild‐type, surprisingly, TROL from ΔRHO membranes was not detectable even at the lowest protease concentration applied, indicating the importance of this domain to the integrity of TROL. In conclusion, TROL is a polytopic protein with a stroma‐exposed C‐terminal FNR‐binding region, and the thylakoid lumen‐located RHO domain.  相似文献   

12.
13.
MFP1 (matrix attachment region-binding filament-like protein 1) is a conserved nuclear and chloroplast DNA-binding protein encoded by a nuclear gene, well characterized in dicot species. In monocots, only a 90 kDa MFP1-related protein had been characterized in the nucleus and nuclear matrix of Allium cepa proliferating cells. We report here a novel MFP1-related nuclear protein of 80 kDa in A. cepa roots, with M(r) and pI values similar to those of MFP1 proteins in dicot species, and which also displays a dual location, in the nucleus and chloroplasts of leaf cells. However, this novel protein is not a nuclear matrix component. It shows a spotted intranuclear distribution in small foci differing from the nuclear bodies containing the 90 kDa protein. In electron microscopy analysis, the intranuclear foci containing the 80 kDa MFP1 appeared as small loose structures at the periphery of condensed chromatin patches. This protein was also located in the nucleolus. It was abundant in meristematic cells, but its level fell when proliferation stopped. This different expression and distribution, and its preferential location at the boundaries between heterochromatin and euchromatin, suggest that the novel 80 kDa protein might be associated with decondensed DNA and could play a role in chromatin organization.  相似文献   

14.
15.
16.
Many of the thylakoid membrane proteins of plant and algal chloroplasts are synthesized in the cytosol as soluble, higher molecular weight precursors. These precursors are post-translationally imported into chloroplasts, incorporated into the thylakoids, and proteolytically processed to mature size. In the present study, the process by which precursors are incorporated into thylakoids was reconstituted in chloroplast lysates using the precursor to the light-harvesting chlorophyll a/b protein (preLHCP) as a model. PreLHCP inserted into thylakoid membranes, but not envelope membranes, if ATP was present in the reaction mixture. Correct integration into the bilayer was verified by previously documented criteria. Integration could also be reconstituted with purified thylakoid membranes if reaction mixtures were supplemented with a soluble extract of chloroplasts. Several other thylakoid precursor proteins in addition to preLHCP, but no stromal precursor proteins, were incorporated into thylakoids under the described assay conditions. These results suggest that the observed in vitro activity represents in vivo events during the biogenesis of thylakoid proteins.  相似文献   

17.
The role of protein phosphorylation for adjusting chloroplast functions to changing environmental needs is well established, whereas calcium signalling in the chloroplast is only recently becoming appreciated. The work presented here explores the potential cross-talk between calcium signalling and protein phosphorylation in chloroplasts and provides the first evidence for targets of calcium-dependent protein phosphorylation at the thylakoid membrane. Thylakoid proteins were screened for calcium-dependent phosphorylation by 2D gel electrophoresis combined with phospho-specific labelling and PsaN, CAS, and VAR1, among other proteins, were identified repeatedly by mass spectrometry. Subsequently their calcium-dependent phosphorylation was confirmed in kinase assays using the purified proteins and chloroplast extracts. This is the first report on the protein targets of calcium-dependent phosphorylation of thylakoid proteins and provides ground for further studies in this direction.  相似文献   

18.
Nucleoids were purified from chloroplasts of dividing soybean cells and their polypeptide composition analyzed by SDS-polyacrylamide gel electrophoresis. Of the 15–20 nucleoid-associated polypeptides, several demonstrated DNA binding activity. Upon disruption of the nucleoids with high concentrations of NaCl, a subset of these proteins and the majority of chloroplast DNA were recovered in the supernatant after centrifugation. Removal of the salt by dialysis resulted in formation of nucleoprotein complexes resembling genuine nucleoids. Purification of these structures revealed three major proteins of 68, 35 and 18 kDa. After purification of the 68 kDa protein to homogeneity, this protein was able to compact purified chloroplast DNA into a nucleoid-like structure in a protein concentration-dependent fashion. Addition of the 68 kDa protein to an in vitro chloroplast DNA replication system resulted in complete inhibition of nucleotide incorporation at concentrations above 300 ng of 68 kDa protein per g of template DNA. These results led to in situ immunofluorescence studies of chloroplasts replicating DNA which suggested that newly synthesized DNA is not co-localized with nucleoids. Presumably, either the plastid replication machinery has means of removing nucleoid proteins prior to replication or the concentration of nucleoid proteins is tightly regulated and the proteins turned over in order to allow replication to proceed.  相似文献   

19.
Phosphorylation of the light-harvesting chlorophyll a/b complex II (LHC II) proteins is induced in light via activation of the LHC II kinase by reduction of cytochrome b6f complex in thylakoid membranes. We have recently shown that, besides this activation, the LHC II kinase can be regulated in vitro by a thioredoxin-like component, and H2O2 that inserts an inhibitory loop in the regulation of LHC II protein phosphorylation in the chloroplast. In order to disclose the complex network for LHC II protein phosphorylation in vivo, we studied phosphorylation of LHC II proteins in the leaves of npq1-2 and npq4-1 mutants of Arabidopis thaliana. In comparison to wild-type, these mutants showed reduced non-photochemical quenching and increased excitation pressure of Photosystem II (PS II) under physiological light intensities. Peculiar regulation of LHC II protein phosphorylation was observed in mutant leaves under illumination. The npq4-1 mutant was able to maintain a high amount of phosphorylated LHC II proteins in thylakoid membranes at light intensities that induced inhibition of phosphorylation in wild-type leaves. Light intensity-dependent changes in the level of LHC II protein phosphorylation were smaller in the npq1-2 mutant compared to the wild-type. No significant differences in leaf thickness, dry weight, chlorophyll content, or the amount of LHC II proteins were observed between the two mutant and wild-type lines. We propose that the reduced capacity of the mutant lines to dissipate excess excitation energy induces changes in the production of reactive oxygen species in chloroplasts, which consequently affects the regulation of LHC II protein phosphorylation.  相似文献   

20.
Thermotolerance of photosynthetic light reactions in vivo is correlated with a decrease in the ratio of monogalactosyl diacylglycerol to digalactosyl diacylglycerol and an increased incorporation into thylakoid membranes of saturated digalactosyl diacylglycerol species. Although electron transport remains virtually intact in thermotolerant chloroplasts, thylakoid protein phosphorylation is strongly inhibited. The opposite is shown for thermosensitive chloroplasts in vivo. Heat stress causes reversible and irreversible inactivation of chloroplast protein synthesis in heat-adapted and nonadapted plants, respectively, but doe not greatly affect formation of rapidly turned-over 32 kilodalton proteins of photosystem II. The formation on cytoplasmic ribosomes and import by chloroplasts of thylakoid and stroma proteins remain preserved, although decreased in rate, at supraoptimal temperatures. Thermotolerant chloroplasts accumulate heat shock proteins in the stroma among which 22 kilodalton polypeptides predominate. We suggest that interactions of heat shock proteins with the outer chloroplast envelope membrane might enhance formation of digalactosyl diacylglycerol species. Furthermore, a heat-induced recompartmentalization of the chloroplast matrix that ensures effective transport of ATP from thylakoid membranes towards those sites inside the chloroplast and the cytoplasm where photosynthetically indispensable components and heat shock proteins are being formed is proposed as a metabolic strategy of plant cells to survive and recover from heat stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号