首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to characterize low affinity ATP-binding sites of renal (Na+,K+) ATPase and sarcoplasmic reticulum (Ca2+)ATPase, the effects of ATP on the splitting of the K+-sensitive phosphoenzymes were compared. ATP inactivated the dephosphorylation in the case of (Na+,K+)ATPase at relatively high concentrations, while activating it in the case of (Ca2+)ATPase. When various nucleotides were tested in place of ATP, inactivators of (Na+,K+)ATPase were found to be activators in (Ca2+)ATPase, with a few exceptions. In the absence of Mg2+, the half-maximum concentration of ATP for the inhibition or for the activation was about 0.35 mM or 0.25 mM, respectively. These values are comparable to the previously reported Km or the dissociation constant of the low affinity ATP site estimated from the steady-state kinetics of the stimulation of ATP hydrolysis or from binding measurements. By increasing the concentration of Mg2+, but not Na+, the effect of ATP on the phosphoenzyme of (Na+,K+)ATPase was reduced. On the other hand, Mg2+ did not modify the effect of ATP on the phosphoenzyme of (Ca2+)ATPase. During (Na+,K+)ATPase turnover, the low affinity ATP site appeared to be exposed in the phosphorylated form of the enzyme, but the magnesium-complexed ATP interacted poorly with the reactive K+-sensitive phosphoenzyme, which has a tightly bound magnesium, probably because of interaction between the divalent cations. In the presence of physiological levels of Mg2+ and K+, ATP appeared to bind to the (Na+,K+)ATPase only after the dephosphorylation, while it binds to the (Ca2+)-ATPase before the dephosphorylation to activate the turnover.  相似文献   

2.
During Ca(2+) transport by sarcoplasmic reticulum Ca(2+)-ATPase, the conformation change of ADP-sensitive phosphoenzyme (E1PCa(2)) to ADP-insensitive phosphoenzyme (E2PCa(2)) is followed by rapid Ca(2+) release into the lumen. Here, we find that in the absence of K(+), Ca(2+) release occurs considerably faster than E1PCa(2) to E2PCa(2) conformation change. Therefore, the lumenal Ca(2+) release pathway is open to some extent in the K(+)-free E1PCa(2) structure. The Ca(2+) affinity of this E1P is as high as that of the unphosphorylated ATPase (E1), indicating the Ca(2+) binding sites are not disrupted. Thus, bound K(+) stabilizes the E1PCa(2) structure with occluded Ca(2+), keeping the Ca(2+) pathway to the lumen closed. We found previously (Yamasaki, K., Wang, G., Daiho, T., Danko, S., and Suzuki, H. (2008) J. Biol. Chem. 283, 29144-29155) that the K(+) bound in E2P reduces the Ca(2+) affinity essential for achieving the high physiological Ca(2+) gradient and to fully open the lumenal Ca(2+) gate for rapid Ca(2+) release (E2PCa(2) → E2P + 2Ca(2+)). These findings show that bound K(+) is critical for stabilizing both E1PCa(2) and E2P structures, thereby contributing to the structural changes that efficiently couple phosphoenzyme processing and Ca(2+) handling.  相似文献   

3.
4.
5.
6.
Two highly purified sarcoplasmic reticulum membrane fractiones differing in their sensitivities to the uncoupling action of caffeine were isolated from white skeletal muscles of the rabbit. The main protein component of both fractions is a catalytical polypeptide of Ca2+-dependent ATPase. Treatment of the caffeine-sensitive reticular fraction by trypsin or DTNB completely removes the effect of caffeine. It was found that similar effects on the caffeine-sensitive reticular fraction are exerted by bemegride, camphor, ethymizole and cordiamine. Isolation of Ca2+-dependent ATPase from both reticular fractions and reconstruction of Ca2+-transporting vesicles were carried out. Ca2+ transport by the vesicles enriched by ATPase from the caffeine-sensitive reticular fraction is uncoupled under the effect of caffeine; however, caffeine has no effect on the vesicles enriched by caffeine-insensitive reticular ATPase. The molecular weight of caffeine-sensitive and caffeine-insensitive ATPases determined in the presence of sedium dodecyl sulfate are found to be identical. Electrophoresis in the presence of digitonin revealed different electrophoretic behaviour of the two forms of ATPase.  相似文献   

7.
The ratio between Ca2+ uptake and Ca(2+)-dependent ATP hydrolysis measured in sarcoplasmic reticulum vesicles of rabbit skeletal muscle was found to vary greatly depending on the concentrations of oxalate or Pi used. In the presence of 5 mM oxalate, 20 mM Pi, and 1 mM Pi, the ratios found were in the range of 1.4-2.3, 0.6-0.8, and 0.01-0.10, respectively. The rates of Ca2+ exchange and ATP synthesis were measured at the steady state by adding trace amounts of 45Ca and 32Pi, after the vesicles had been loaded with Ca2+. In the presence of 1 mM Pi, 10 mM MgCl2, and 0.2 mM CaCl2, the ratio between Ca2+ exchange and ATP synthesis varied from 9 to 14. This ratio approached two when Ca2+ in the medium was reduced to a very low level, or when in the presence of Ca2+, dimethyl sulfoxide was added to the assay medium, or when the Pi concentration was raised from 1 to 20 mM. A ratio of two was also measured when the steady state was attained using ITP instead of ATP. In all the conditions that led to a ratio close to two, there was an increase in the fraction of enzyme phosphorylated by Pi. It is proposed that the coupling between Ca2+ translocation and ATP hydrolysis or synthesis is modulated by the phosphorylation of the ATPase by Pi.  相似文献   

8.
9.
Rabbit antiserum was prepared against a partially purified Ca2+, Mg2+-dependent ATPase [EC 3.6.1.3] of the SR isolated from chicken skeletal muscle. The gamma-globulin fraction of antiserum contained antibodies which combined with the purified ATPase and the SR vesicles. Binding of the antibodies strongly inhibited active transport of Ca2+ ions into the SR, but not passive leakage of Ca2+ ions from the SR. The antibodies scarcely affected the ATPase activity.  相似文献   

10.
The amount of Ca2+ bound to the Ca2+,Mg2+-dependent ATPase of deoxycholic acid-treated sarcoplasmic reticulum was measured during ATP hydrolysis by the double-membrane filtration method [Yamaguchi, M. & Tonomura, Y. (1979), J. Biochem. 86, 509--523]. The maximal amount of phosphorylated intermediate (EP) was adopted as the amount of active site of the ATPase. In the absence of ATP, 2 mol of Ca2+ bound cooperatively to 1 mol of active site with high affinity and were removed rapidly by addition of EGTA. AMPPNP did not affect the Ca2+ binding to the ATPase in the presence of MgCl2. Under the conditions where most EP and ADP sensitive at steady state (58 microM Ca2+, 50 microM EGTA, and 20 mM MgCl2 at pH 7.0 and 0 degrees C), bound Ca2+ increased by 0.6--0.7 mol per mol active site upon addition of ATP. The time course of decrease in the amount of bound 45Ca2+ on addition of unlabeled Ca2+ + EGTA was biphasic, and 70% of bound 45Ca2+ was slowly displaced with a rate constant similar to that of EP decomposition. Similar results were obtained for the enzyme treated with N-ethylmaleimide, which inhibits the step of conversion of ADP-sensitive EP to the ADP-insensitive one. Under the conditions where most EP was ADP insensitive at steady state (58 microM Ca2+, 30 microM EGTA, and 20 mM MgCl2 at pH 8.8 and 0 degrees C), the amount of bound Ca2+ increased slightly, then decreased slowly by 1 mol per mol of EP formed after addition of ATP. Under the conditions where about a half of EP was ADP sensitive (58 microM Ca2+, 25 microM EGTA, and 1 mM MgCl2 at pH 8.8 and 0 degrees C), the amount of bound Ca2+ did not change upon addition of ATP. These findings suggest that the Ca2+ bound to the enzyme becomes unremovable by EGTA upon formation of ADP-sensitive EP and is released upon its conversion to ADP-insensitive EP.  相似文献   

11.
The phosphorylation of sarcoplasmic reticulum ATPase with Pi in the absence of Ca2+ was studied by equilibrium and kinetic experimentation. The combination of these measurements was then subjected to analysis without assumptions on the stoichiometry of the reactive sites. The analysis indicates that the species undergoing covalent interaction is the tertiary complex E X Pi X Mg formed by independent interaction of the two ligands with the enzyme. The binding constant of Pi or Mg2+ to either free or partially associated enzyme is approximately equal to 10(2) M-1, and no significant synergistic effect is produced by one ligand on the binding of the other; the equilibrium constant (Keq) for the covalent reaction E X Pi X Mg E-P X Mg is approximately equal to 16, with kphosph = 53 s-1, and khyd = 3-4 s-1 (25 degrees C, pH 6.0, no K+). The phosphorylation reaction of sarcoplasmic reticulum ATPase with Pi is highly H+ dependent. Such a pH dependence involves the affinity of enzyme for different ionization states of Pi, as well as protonation of two protein residues per enzyme unit in order to obtain optimal phosphorylation. The experimental data can then be fitted satisfactorily assuming pK values of 5.7 and 8.5 for the two residues in the nonphosphorylated enzyme (changing to 7.7 for one of the two residues, following phosphorylation) and values of 50.0 and 0.58 for the equilibrium constants of the H2(E X HPO4) in equilibrium with H(E-PO3) + H2O and H(E X HPO4) in equilibrium with E-PO3 + H2O reactions, respectively. In addition to the interdependence of H+ and phosphorylation sites, an interdependence of Ca2+ and phosphorylation sites is revealed by total inhibition of the Pi reaction when two high affinity calcium sites per enzyme unit are occupied by calcium. Conversely, occupancy of the phosphate site by vanadate (a stable transition state analogue of phosphate) inhibits high affinity calcium binding. The known binding competition between the two cations and their opposite effects on the phosphorylation reaction suggest that interdependence of phosphorylation site, H+ sites, and Ca2+ sites is a basic mechanistic feature of enzyme catalysis and cation transport.  相似文献   

12.
13.
Characterization of the putative Ca2+-gated Ca2+ channel of sarcoplasmic reticulum, which is thought to mediate Ca2+-induced Ca2+ release, was carried out in order to elucidate the mechanism of Ca2+-induced Ca2+ release. Heavy and light fractions of fragmented sarcoplasmic reticulum isolated from rabbit skeletal muscle were loaded passively with Ca2+, and then passive Ca2+ efflux was measured under various conditions. The fast phase of the Ca2+ efflux depended on the extravesicular free Ca2+ concentration and was assigned to the Ca2+ efflux through the Ca2+-gated Ca2+ channel. Vesicles with the Ca2+-gated Ca2+ channels comprised about 85% of the heavy fraction and about 40% of the light fraction. The amount of Ca2+ loaded in FSR was found to be much larger than that estimated on the basis of vesicle inner volume and the equilibration of intravesicular with extravesicular Ca2+, indicating Ca2+ binding inside FSR. Taking this fact into account, the Ca2+ efflux curve was quantitatively analyzed and the dependence of the Ca2+ efflux rate constant on the extravesicular free Ca2+ concentration was determined. The Ca2+ efflux was maximal, with the rate constant of 0.75 s-1, when the extravesicular free Ca2+ was at 3 microM. Caffeine increased the affinity for Ca2+ of Ca2+-binding sites for opening the channel with only a slight change in the maximum rate of Ca2+ efflux. Mg2+ inhibited the Ca2+ binding to the sites for opening the channel while procaine seemed to inhibit the Ca2+ efflux by blocking the ionophore moiety of the channel.  相似文献   

14.
15.
The interaction between free fatty acids and Ca2+-dependent ATPase, an intrinsic protein of sarcoplasmic reticulum membranes, was studied with relevance to the changes in membrane permeability induced by free fatty acids. It was found that only unsaturated fatty acids increase the permeability of reticulum membranes for Ca2+, this effect being completely reversible. The increase in the membrane permeability by fatty acids is coupled to a generation of a channel for Ca2+ efflux under effect of Ca2+-dependent ATPase. The interaction between fatty acids and Ca2+-dependent ATPase was demonstrated by the protein fluorescence and electron paramagnetic resonance methods, using spin-labelled fatty acid derivatives. A model demonstrating the increase of sarcoplasmic reticulum membrane permeability for Ca2+ in the presence of the fatty acid-Ca2+-dependent ATPase complex is proposed.  相似文献   

16.
白细胞介素-2对大鼠心肌Ca2+ATPase和Na+ /K+ATPase的影响   总被引:3,自引:0,他引:3  
Cao CM  Xia Q  Fu C  Jiang HD  Ye ZG  Shan YL  Chan JZ 《生理学报》2003,55(1):83-90
为了探讨IL-2对心肌细胞内钙影响的可能机制,用光学法检测心肌肌浆网Ca^2 ATPase的活性,以及细胞膜Ca^2 ATPase和Na^ /K^ ATPase的活性。结果:(1)用IL-2(10、40、200、800U/ml)灌流心脏后,其肌浆网Ca^2 ATPase的活性随IL-2浓度的升高而增强;(2)在ATP浓度为0.1-4mmol/L时,Ca^2 ATPase的活性随ATP浓度的升庙则增强,由IL-2(200U/ml)灌流后的心脏获得肌浆网(SR),其Ca^2 ATPase的活性对ATP的反应强于对照组;(3)在[Ca^2 ]为1-40μmol/L时,心脏SR Ca^2 ATPase的活性随[Ca^2 ]增加而增强,而IL-2灌流心脏后分离的SR,其Ca^2 ATPase活性在[Ca^2 ]升高时没有明显改变;(4)用nor-BNI(10nmol/L)预处理5min后,IL-2(200U/ml)灌流后不再使SR Ca^2 ATPase的活性增强;(5)用PTX(5mg/L)预处理后,IL-2对SR Ca^2 ATPase的影响减弱;(6)用磷脂酶C(PLC)抑制剂U73122(5μmol/L)处理后,IL-2不再使SR Ca^2 ATPase活性增高;(7)用IL-2直接处理从正常大鼠分离的SR后,对SR Ca^2 ATPase活性无明显影响;(8)IL-2灌流后,对心肌细胞膜Ca^2 ATPase和Na^ /K^ ATPase活性没有显著。上述结果表明,IL-2灌流心脏后使心肌肌浆网Ca^2 ATPase的活性增加,心肌细胞膜上的κ-阿片受体及其下游的G蛋白和PLC介导了IL-2的作用。尽管IL-2提高SR Ca^2 ATPase对ATP的反应性,但却抑制SR Ca^2 ATPase对钙离子的敏感性。IL-2对心肌细胞膜Ca^2 ATPase和Na^ /K^ ATPase的活性无明显影响。  相似文献   

17.
18.
Heavy metal-induced Ca2+ release from sarcoplasmic reticulum   总被引:1,自引:0,他引:1  
Two distinct forms of Ca2+ release from isolated sarcoplasmic reticulum vesicles in response to additions of heavy metals (silver and mercurials) are described. One form of heavy metal-induced Ca2+ release involves the ruthenium red-sensitive Ca2+ release channel localized in terminal cisternae. The other form of heavy metal-induced Ca2+ release appears to involve all portions of the sarcoplasmic reticulum and is insensitive to ruthenium red. This latter form of Ca2+ release occurs over a similar range of heavy metal concentrations as inhibition of the sarcoplasmic reticulum Ca2+ pump but does not appear to be a result solely of such pump inhibition. Both forms of Ca2+ release are inhibited by glutathione, an endogenous constituent of muscle fibers, and by dithiothreitol, agents which prevent sulfhydryl oxidation. To assess the role of any sulfhydryl oxidation in sarcoplasmic reticulum Ca2+ release physiologically, dithiothreitol and glutathione were introduced inside muscle fibers and effects on excitation-contraction coupling examined. The results strongly suggest that sulfhydryl oxidation plays no essential role in skeletal muscle excitation-contraction coupling.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号