首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
In the early stage of atherosclerosis, macrophages take up chemically modified low density lipoproteins (LDL) through the scavenger receptors, leading to foam cell formation in atherosclerotic lesions. To get insight into a role of the scavenger receptors in diabetes-enhanced atherosclerotic complications, the effects on class A scavenger receptor (SR-A) of high glucose exposure in vitro as well as the diabetic conditions in vivo were determined in the present study. The in vitro experiments demonstrated that high glucose exposure to human monocyte-derived macrophages led to an increased SR-A expression with a concomitant increase in the endocytic uptake of acetylated LDL and oxidized LDL. The endocytic process was significantly suppressed by an anti-SR-A neutralizing antibody. Stability analyses revealed a significant increased stability of SR-A at a mRNA level but not a protein level, indicating that high glucose-induced up-regulation of SR-A is due largely to increased stability of SR-A mRNA. High glucose-enhanced SR-A expression was prevented by protein kinase C and NAD(P)H oxidase inhibitors as well as antioxidants. High glucose-enhanced production of intracellular peroxides was visualized in these cells, which was attenuated by an antioxidant. The in vivo experiments demonstrated that peritoneal macrophages from streptozotocin-induced diabetic mice increased SR-A expression when compared with those from nondiabetic mice. Endocytic degradation of acetylated LDL and oxidized LDL were also increased with these macrophages but not with the corresponding macrophages from diabetic SR-A knock-out mice. These in vitro and in vivo results probably suggest that reactive oxygen species generated from a protein kinase C-dependent NAD(P)H oxidase pathway plays a role in the high glucose-induced up-regulation of SR-A, leading to the increased endocytic degradation of modified LDL for foam cell formation. This could be one mechanism for an increased rate of atherosclerosis in patients with diabetes.  相似文献   

2.
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors expressed in macrophages where they control cholesterol homeostasis and inflammation. In an attempt to identify new PPARalpha and PPARgamma target genes in macrophages, a DNA array-based global gene expression profiling experiment was performed on human primary macrophages treated with specific PPARalpha and PPARgamma agonists. Surprisingly, AdipoR2, one of the two recently identified receptors for adiponectin, an adipocyte-specific secreted hormone with anti-diabetic and anti-atherogenic activities, was found to be induced by both PPARalpha and PPARgamma. AdipoR2 induction by PPARalpha and PPARgamma in primary and THP-1 macrophages was confirmed by Q-PCR analysis. Interestingly, treatment with a synthetic LXR agonist induced the expression of both AdipoR1 and AdipoR2. Furthermore, co-incubation with a PPARalpha ligand and adiponectin resulted in an additive effect on the reduction of macrophage cholesteryl ester content. Finally, AdipoR1 and AdipoR2 are both present in human atherosclerotic lesions. Moreover, AdipoR1 is more abundant than AdipoR2 in monocytes and its expression decreases upon differentiation into macrophages, whereas AdipoR2 remains constant. In conclusion, AdipoR1 and AdipoR2 are expressed in human atherosclerotic lesions and macrophages and can be modulated by PPAR and LXR ligands, thus identifying a mechanism of crosstalk between adiponectin and these nuclear receptor signaling pathways.  相似文献   

3.
Atherosclerosis is an inflammatory disorder of the vasculature that is orchestrated by the action of cytokines. Macrophages play a prominent role in all stages of this disease, including foam cell formation, production of reactive oxygen species, modulation of the inflammatory response and the regulation of the stability of atherosclerotic plaques. The role of the matrix metalloproteinase family in the control of plaque stability is well established. A disintegrin and metalloproteinase with thrombospondin motif (ADAMTS) family has been implicated in several diseases and the expression of ADAMTS-4 in macrophages of atherosclerotic lesions has suggested a potential role for this protease in atherosclerosis. However, the action of cytokines on the expression of ADAMTS-4 in macrophages is poorly understood. We have investigated here the effect of transforming growth factor-β (TGF-β) on ADAMTS-4 expression in macrophages along with the regulatory mechanisms underlying its actions. Consistent with the anti-atherogenic role of TGF-β, this cytokine decreased the expression of ADAMTS-4 mRNA and protein in human macrophages. Transient transfection assays showed that the -100 to +10 promoter region contained the minimal TGF-β response elements. Small-interfering RNA-mediated knockdown revealed a critical role for Smads, p38 mitogen-activated protein kinase and c-Jun in the action of TGF-β on ADAMTS-4 mRNA expression. These studies show for the first time that TGF-β inhibits the expression of ADAMTS-4 in human macrophages and identifies the signalling pathways underlying this response. The inhibition of macrophage ADAMTS-4 expression is likely to contribute to the anti-atherogenic, plaque stabilisation action of TGF-β.  相似文献   

4.
5.
6.
7.
8.
Chronic renal failure (CRF) is associated with profound abnormalities of lipid metabolism and accelerated arteriosclerotic cardiovascular disease. In a recent study, we found marked downregulation of hepatic lecithin-cholesterol acyltransferase, or LCAT, expression, which can account for impaired HDL maturation and depressed HDL cholesterol concentration in CRF. Here, we report on the effect of CRF on acyl-CoA:cholesterol acyltransferase (ACAT) expression. ACAT is an intracellular enzyme that catalyzes esterification of free cholesterol to cholesterol ester for storage or secretion. ACAT plays a major role in hepatic production and release of VLDL, intestinal absorption of cholesterol, foam cell formation, and atherogenesis. We examined hepatic expression of ACAT-1 and ACAT-2 mRNA (Northern blot) and protein (Western blot) abundance and total ACAT activity in male CRF rats (6 wk after 5/6 nephrectomy) and sham-operated controls. The CRF animals showed a significant reduction in creatinine clearance, marked hypertriglyceridemia, modest hypercholesterolemia, and significant upregulation of hepatic tissue ACAT-2 protein and mRNA abundance. In contrast, hepatic ACAT-1 mRNA and protein abundance were unaffected by CRF. Upregulation of ACAT-2 expression was accompanied by a significant increase in hepatic ACAT activity and a significant decrease in hepatic microsomal and whole liver free cholesterol concentration. Thus CRF results in significant upregulation of hepatic ACAT-2 (but not ACAT-1) expression and ACAT activity, which may, in part, contribute to the associated lipid disorders.  相似文献   

9.
4-Hydroxynonenal (HNE) is known to be atherogenic, but its mechanism of action in atherogenesis is not clear. Therefore, this study investigated the role of HNE in macrophage foam cell formation and the underlying mechanism involved in HNE-induced expression of scavenger receptors (SRs). In the aortic sinus of ApoE-deficient mice fed a high-fat diet, multiple plaque lesions were accompanied by increased accumulation of HNE adducts in the enhanced Mac-2 stained area. In an in vitro study, HNE exposure to J774A.1 macrophages led to increased expression of class A SR (SR-A) and CD36 at the protein level with a concomitant increase in endocytic uptake of oxLDL. In contrast to CD36 protein expression, which was associated with an increase in mRNA expression, the HNE-enhanced SR-A protein expression was neither accompanied by its mRNA expression nor affected by actinomycin D. HNE enhanced the incorporation rates of 35S-Met/Cys into SR-A, and HNE-induced SR-A protein expression was effectively attenuated by translation inhibitors such as cycloheximide and rapamycin. Taken together, these data suggest that HNE contributes to macrophage foam cell formation through increased synthesis of SR-A at the level of mRNA translation, consequently leading to the progression of atherosclerosis.  相似文献   

10.
Macrophages are essential in atherosclerosis progression, but regulation of the M1 versus M2 phenotype and their role in cholesterol deposition are unclear. We demonstrate that endoplasmic reticulum (ER) stress is a key regulator of macrophage differentiation and cholesterol deposition. Macrophages from diabetic patients were classically or alternatively stimulated and then exposed to oxidized LDL. Alternative stimulation into M2 macrophages lead to increased foam cell formation by inducing scavenger receptor CD36 and SR-A1 expression. ER stress induced by alternative stimulation was necessary to generate the M2 phenotype through JNK activation and increased PPARγ expression. The absence of CD36 or SR-A1 signaling independently of modified cholesterol uptake decreased ER stress and prevented the M2 differentiation typically induced by alternative stimulation. Moreover, suppression of ER stress shifted differentiated M2 macrophages toward an M1 phenotype and subsequently suppressed foam cell formation by increasing HDL- and apoA-1-induced cholesterol efflux indicating suppression of macrophage ER stress as a potential therapy for atherosclerosis.  相似文献   

11.
12.
Breitfeld J  Stumvoll M  Kovacs P 《Biochimie》2012,94(10):2157-2163
Anti-inflammatory, anti-atherogenic and anti-diabetic properties of adiponectin make this adipokine an attractive target in the metabolism research. Given its biological role, genetic variation in adiponectin affecting its function might consequently play a role in the pathophysiology of various metabolic disorders. In this light, genetic aspects of adiponectin including its gene structure, heritability of serum concentrations and the role of genetic variation have been addressed in multiple genetic studies. Here, we provide a brief summary of adiponectin genetics with focus on gene structure and genetic variation controlling circulating adiponectin levels. We summarize the main findings from genome-wide linkage and association studies that have revealed the major genetic determinants of serum adiponectin. Beside genetic variants in the adiponectin gene, several other genes/loci (ARL15, CDH13, KNG1, FER, ETV5) contributing to the variability in circulating adiponectin have been identified. The majority of these variants are significantly associated with metabolic phenotypes relevant to metabolic diseases (e.g. obesity or type 2 diabetes (T2D)). Considering the protective properties of adiponectin in diseases such as T2D, comprehensive analyses of genetic variants including rare as well as frequent polymorphisms might provide insights on the specific role of adiponectin in the pathophysiology of metabolic diseases.  相似文献   

13.
Obesity has been associated with an increased risk of osteoarthritis (OA). However, the mechanism by which obesity contributes to OA remains uncertain. Adiponectin, an adipocyte-derived hormone, has shown anti-diabetic and anti-atherogenic properties. In the present study, we aimed to investigate the potential role of adiponectin in OA disease. We demonstrated that adiponectin was present in OA synovial fluid (SF) and its expression level was almost 100-fold decrease compared with that in OA plasma. FPLC and ELISA studies revealed the distribution and abundance of the adiponectin complexes in plasma and SF from patients with OA. The percentage of high molecular weight (HMW) per total adiponectin in OA SF was lower than in OA plasma, while that of the hexamer form was similar and the trimer form was higher. The expression levels of adiponectin receptors AdipoR1 and AdipoR2 were examined in human OA tissues by RT-PCR. AdipoR1 was abundantly expressed in cartilage, bone and synovial tissues, whereas AdipoR2 was rarely detected. Finally, the effects of adiponectin on primary chondrocyte functions were studied by using antibody-based protein array and RT-PCR. The patterns of mRNA expression and protein production strongly indicate that adiponectin is involved in the modulation of cartilage destruction in chondrocytes by up-regulating TIMP-2 and down-regulating IL-1beta-induced MMP-13. Together these findings clearly indicate that the adiponectin may act as a protective role in the progression of OA, and this also provide new thinking on the relationship between obesity and OA.  相似文献   

14.
Scavenger receptor expressed by endothelial cells I (SREC-I) is a novel endocytic receptor for acetylated low density lipoprotein (LDL). Here we show that SREC-I is expressed in a wide variety of tissues, including macrophages and aortas. Lipopolysaccharide (LPS) robustly stimulated the expression of SREC-I in macrophages. In an initial attempt to clarify the role of SREC-I in the uptake of modified lipoproteins as well as in the development of atherosclerosis, we generated mice with a targeted disruption of the SREC-I gene by homologous recombination in embryonic stem cells. To exclude the overwhelming effect of the type A scavenger receptor (SR-A) on the uptake of Ac-LDL, we further generated mice lacking both SR-A and SREC-I (SR-A(-/-);SREC-I(-/-)) by cross-breeding and compared the uptake and degradation of Ac-LDL in the isolated macrophages. The contribution of SR-A and SREC-I to the overall degradation of Ac-LDL was 85 and 5%, respectively, in a non-stimulated condition. LPS increased the uptake and degradation of Ac-LDL by 1.8-fold. In this condition, the contribution of SR-A and SREC-I to the overall degradation of Ac-LDL was 90 and 6%, respectively. LPS increased the absolute contribution of SR-A and SREC-I by 1.9- and 2.3-fold, respectively. On the other hand, LPS decreased the absolute contribution of other pathways by 31%. Consistently, LPS did not increase the expression of other members of the scavenger receptor family such as CD36. In conclusion, SREC-I serves as a major endocytic receptor for Ac-LDL in LPS-stimulated macrophages lacking SR-A, suggesting that it has a key role in the development of atherosclerosis in concert with SR-A.  相似文献   

15.
Cholesterol-metabolism-associated molecules, including scavenger receptor class A (SR-A), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), CD36, ACAT1, ABCA1, ABCG1, and scavenger receptor class B type I, can modulate cholesterol metabolism in the transformation from macrophages to foam cells. Voltage-gated potassium channel Kv1.3 has increasingly been demonstrated to play an important role in the modulation of macrophage function. Here, we investigate the role of Kv1.3 in modulating cholesterol-metabolism-associated molecules in human acute monocytic leukemia cell-derived macrophages (THP-1 macrophages) and human monocyte-derived macrophages exposed to oxidized LDL (ox-LDL). Human Kv1.3 and Kv1.5 channels (hKv1.3 and hKv1.5) are expressed in macrophages and form a heteromultimeric channel. The hKv1.3-E314 antibody that we had generated as a specific hKv1.3 blocker inhibited outward delayed rectifier potassium currents, whereas the hKv1.5-E313 antibody that we had generated as a specific hKv1.5 blocker failed. Accordingly, the hKv1.3-E314 antibody reduced percentage of cholesterol ester and enhanced apoA-I-mediated cholesterol efflux in THP-1 macrophages and human monocyte-derived macrophages exposed to ox-LDL. The hKv1.3-E314 antibody downregulated SR-A, LOX-1, and ACAT1 expression and upregulated ABCA1 expression in THP-1 macrophages and human monocyte-derived macrophages. Our results reveal that specific Kv1.3 blockade represents a novel strategy modulating cholesterol metabolism in macrophages, which benefits the treatment of atherosclerotic lesions.  相似文献   

16.
Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype   总被引:12,自引:0,他引:12  
Tumor-associated macrophages (TAM) may have tumor-promoting activity, but it is not clear how their phenotype is achieved. In this study, we demonstrate that ovarian cancer cells switch cocultured macrophages to a phenotype similar to that found in ovarian tumors. Tumor cells caused dynamic changes in macrophage cytokine, chemokine, and matrix metalloprotease mRNA, and protein-inducing mediators that are found in human cancer. Macrophage mannose, mannose receptor, and scavenger receptors (SR-As) were also up-regulated by coculture, but not by conditioned medium. To further validate the model, we studied SR-A regulation on TAM in vitro and in vivo. Coculture of murine macrophages from mice deficient in TNF-alpha or its receptors revealed that TNF-alpha was key to SR-A induction via its p75 receptor. SR-A expression was also reduced in TAM from ovarian cancers treated with anti-TNF-alpha Abs or grown in TNF-alpha(-/-) mice. Chemical communication between tumor cells and macrophages may be important in regulating the cancer cytokine microenvironment.  相似文献   

17.
CD36 is a scavenger receptor known to play a critical role in the development of atherosclerosis by mediating the uptake of oxidized low-density lipoproteins (oxLDL) by macrophages, thus leading to foam cell formation. It is now generally recognized that the immune system has a pivotal role in the pathogenesis of atherosclerosis, whose progression is determined by ongoing inflammatory reactions. Recently, several studies pointed out that opioid peptides exert anti-inflammatory activities. Therefore the aim of the present study was to evaluate a possible endomorphin-1 (EM-1) immunomodulatory activity on human foam cells. Our results showed that EM-1 reduced Nile Red-stained lipid droplets content, decreased the expression of CD36 receptor and modulated tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) release from lipid-laden macrophages. Furthermore, Naloxone, an opioid receptors antagonist, reverted the anti-atherogenic and anti-inflammatory observed effects of EM-1. These data demonstrated, for the first time, an unprecedented ability of EM-1 to act as a novel modulator for macrophage-to-foam cell transformation, and for inflammatory cytokines profile, suggesting possible novel endomorphin-based anti-atherosclerotic approaches for the prevention and treatment of atherosclerosis.  相似文献   

18.
The macrophage scavenger receptor class A (SR-A) participates in the innate immune and inflammatory responses. This study examined the role of macrophage SR-A in myocardial ischemia/reperfusion (I/R) injury and hypoxia/reoxygenation (H/R)-induced cell damage. SR-A?/? and WT mice were subjected to ischemia (45 min) followed by reperfusion for up to 7 days. SR-A?/? mice showed smaller myocardial infarct size and better cardiac function than did WT I/R mice. SR-A deficiency attenuated I/R-induced myocardial apoptosis by preventing p53-mediated Bak-1 apoptotic signaling. The levels of microRNA-125b in SR-A?/? heart were significantly greater than in WT myocardium. SR-A is predominantly expressed on macrophages. To investigate the role of SR-A macrophages in H/R-induced injury, we isolated peritoneal macrophages from SR-A deficient (SR-A?/?) and wild type (WT) mice. Macrophages were subjected to hypoxia followed by reoxygenation. H/R markedly increased NF-κB binding activity as well as KC and MCP-1 production in WT macrophages but not in SR-A?/? macrophages. H/R induced caspase-3/7 and -8 activities and cell death in WT macrophages, but not in SR-A?/? macrophages. The levels of miR-125b in SR-A?/? macrophages were significantly higher than in WT macrophages. Transfection of WT macrophages with miR-125b mimics attenuated H/R-induced caspase-3/7 and -8 activities and H/R-decreased viability, and prevented H/R-increased p-53, Bak-1 and Bax expression. The data suggest that SR-A deficiency attenuates myocardial I/R injury by targeting p53-mediated apoptotic signaling. SR-A?/? macrophages contain high levels of miR-125b which may play a role in the protective effect of SR-A deficiency on myocardial I/R injury and H/R-induced cell damage.  相似文献   

19.
Acyl-CoA:cholesterol acyltransferase (ACAT) catalyzes esterification of cellular cholesterol. To investigate the role of ACAT-1 in atherosclerosis, we have generated ACAT-1 null (ACAT-1-/-) mice. ACAT activities were present in the liver and intestine but were completely absent in adrenal, testes, ovaries, and peritoneal macrophages in our ACAT-1-/- mice. The ACAT-1-/- mice had decreased openings of the eyes because of atrophy of the meibomian glands, a modified form of sebaceous glands normally expressing high ACAT activities. This phenotype is similar to dry eye syndrome in humans. To determine the role of ACAT-1 in atherogenesis, we crossed the ACAT-1-/- mice with mice lacking apolipoprotein (apo) E or the low density lipoprotein receptor (LDLR), hyperlipidemic models susceptible to atherosclerosis. High fat feeding resulted in extensive cutaneous xanthomatosis with loss of hair in both ACAT-1-/-:apo E-/- and ACAT-1-/-:LDLR-/- mice. Free cholesterol content was significantly increased in their skin. Aortic fatty streak lesion size as well as cholesteryl ester content were moderately reduced in both double mutant mice compared with their respective controls. These results indicate that the local inhibition of ACAT activity in tissue macrophages is protective against cholesteryl ester accumulation but causes cutaneous xanthomatosis in mice that lack apo E or LDLR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号