首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of the proteins of Rauscher murine oncornavirus by immunoprecipitation showed that antiserum to the purified envelope glycoprotein of approximately 69,000 and 71,000 daltons (gp69/71) reacted as well with a number of other components of several murine oncornaviruses of approximately 45,000, 32,000, and 15,000 daltons. Polypeptides of similar size were also produced by limited proteolysis of purified gp69/71; these degradation fragments were shown to contain carbohydrate by the incorporation of (3)H from sodium boro[(3)H]hydride after neuraminidase and galactose oxidase treatment. Each of these glycoproteins was isolated by preparative polyacrylamide gel electrophoresis and was analyzed by tryptic peptide mapping. The major virion components of 69,000 and 71,000 daltons were nearly identical, as were the primary degradation fragments. Analysis of the immunological properties of the glycoproteins showed that the 71,000-, 69,000-, and 32,000-dalton glycoproteins behaved similarly with respect to type and group-specific antigenic determinants. In contrast, the 45,000-dalton glycoprotein lacked detectable interspecies and some of the group-specific reactivity. Components of about 45,000 and 32,000 daltons isolated directly from virions were also identified as constituents of the major envelope glycoprotein by immune precipitation and tryptic peptide mapping. These results indicate that all of the examined virion glycoproteins of approximately 71,000, 69,000, 45,000, and 32,000 daltons are derived from the same viral gene and that these lower-molecular-weight glycoproteins can readily be produced from the major envelope glycoprotein.  相似文献   

2.
The major envelope glycoprotein (gp71) purified from Rauscher leukemia virus (R-MuLV) binds efficiently to murine lymphoid cells but not to either murine nonlymphoid cells or lymphoid cells from other species. Binding of 125I-labeled R-MuLV gp71 was competitively inhibited by unlabeled glycoprotein, as well as by whole R-MuLV, but not by murine xenotropic viruses, R-MuLV p30, and several unrelated proteins. Polyacrylamide gel electrophoresis profiles of iodinated gp71 after binding to lymphoid cells were similar to prebound profiles. Antibody to R-MuLV gp71 prevented binding, whereas normal serum had no effect. Adsorption of the glycoprotein to murine lymphoid cells occurs rapidly and is time and temperature dependent. The procedure described is sensitive for detecting the binding activity of approximately 10(4) cells. Binding was proportional up to 2.5 X 10(5) cells per ml and plateaued above 10(7) cells per ml. In the presence of excess R-MuLV gp71, BALB/c thymocytes bound approximately 2.4 X 10(4) molecules per cell.  相似文献   

3.
Using hamster anti-Pichinde virus serum, we immunoprecipitated polypeptides from BHK-21 cells infected with Pichinde virus. Seven immunoprecipitable polypeptides exhibited a time- and multiplicity of infection-dependent appearance when the cultures were pulse-labeled with L-[35S]methionine for 1 h. The predominant polypeptide was a nucleoprotein (NP) of 64,000 daltons. Components of 48,000, 38,000, and 28,000 daltons, when analyzed by two-dimensional tryptic peptide mapping, were found to be derived from NP. After a 3-h chase period, polypeptides of 17,000, 16,500, and 14,000 daltons were evident, and peptide mapping revealed that these three polypeptides were also related to NP. During a series of pulse-chase experiments, a 79,000-dalton glycoprotein (GPC) was cleaved to glycoproteins of 52,000 and 36,000 daltons. Radiolabel in a polypeptide of approximately 200,000 daltons (L) did not chase into smaller cleavage products. L, GPC, and NP were found to be unique by two-dimensional tryptic peptide mapping. Comparison of polypeptides immunoprecipitated from infected cells with structural components of purified virus revealed that L protein was evident in both. This is the first report of a high-molecular-weight polypeptide in Pichinde virus particles and infected cells.  相似文献   

4.
We previously reported the initial characterization of a polymorphic major cell surface glycoprotein of about 80,000 daltons from mouse embryo 3T3 cells. This glycoprotein has now been purified 1800-fold to apparent homogeneity by monoclonal antibody affinity chromatography. The purified molecule retained the total antigenic activity of the cell, as determined by antibody binding assays. The quantity of the glycoprotein, 0.06% of the total protein of the crude cell extract, confirmed its presence as a major constituent of the cell plasma membrane. The monoclonal antibody was also used to detect related antigens in cells and tissues of C57BL/6J mice. The antigen was present in high concentration in macrophages and subpopulations of bone marrow and blood polymorphonuclear cells. Much lower concentrations of antigen were detected in spleen cells, thymocytes, and extracts of solid tissues. The apparent Mr of the target antigen of myeloid cells was 92,000. This molecule was a major surface constituent of myeloid cells with 10(6) antibody binding sites per cell containing 10% of total 125I incorporated by the lactoperoxidase procedure. The macrophage glycoprotein labeled on the cell surface with 125I was highly sensitive to trypsin, yielding an antigenically active soluble glycopolypeptide of about 65,000 daltons, that contained all of the incorporated 125I. A similar 65,000-dalton glycopeptide was released from 3T3 cells by trypsin cleavage. These data indicate that a major cell surface constituent of mouse myeloid cells is a 92,000-dalton glycoprotein closely related to the 80,000-dalton glycoprotein of mouse embryo 3T3 cells.  相似文献   

5.
Affinity chromatography of solubilized murine mammary tumor virus on concanavalin A-Sepharose was clearly affected by different mixtures of detergent present in the elution buffer: A complex consisting of a glycoprotein of 52,000 daltons (gp52), and a glycoprotein of 36,000 daltons (gp36), besides free gp52 were isolated. The gp36 could be purified by gel filtration of the complex in the presence of a high concentration of sodium deoxycholate. The elution of gp36 in the void volume of the Sephadex column and the results obtained with sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed strong hydrophobic interactions within the molecule. The glycoprotein was immunochemically characterized by competitive radioimmunoassay and immunoelectrophoresis. No cross-reactivity of gp36 with gp52 or two nonglycosylated viral polypeptides was observed.  相似文献   

6.
FeLV-FAIDS, an immunodeficiency-inducing isolate of feline leukemia virus, is composed of a pathogenic but replication-defective genome (molecular clone 61C) and a replication-competent but non-immunodeficiency-inducing variant genome (molecular clone 61E). The chimeric virus EECC, composed of the 5' gag-pol of 61E fused to the env-3' LTR of 61C, also induces immunodeficiency. The 61C (or EECC) gp80 can be distinguished from that of 61E on the basis of antigenic recognition, size, and rate of posttranslational processing. We found that the nascent precursor polypeptides of the two viruses were the same size; however, the 61E gp80 rapidly shifted to a smaller size and was subsequently cleaved to gp70, whereas EECC gp80 maintained its nascent size and was cleaved to gp70 only after a prolonged time. Endo-beta-N-acetyl glucosaminidase H and N-glycanase digestions of newly formed glycoproteins resulted in a similar banding pattern for both viruses, indicating that both contained the same number of oligosaccharide side chains and that all of these were high mannose sugars. The metabolic inhibitors of glycosylation, castanospermine or N-methyldeoxynojirimycin, prevented both the rapid trimming of 61E gp80 and its cleavage to gp70. Treatment with mannosidase inhibitors, however, did not affect 61E gp80 processing or size, suggesting that retention of glucose residues on EECC was responsible for these distinguishing properties of the glycoprotein. The pathological consequence of aberrant viral glycoprotein processing was evaluated in feline 3201 T lymphocytes, which are infectable by both 61E and EECC but are killed only by EECC. As in fibroblasts, the EECC glycoprotein produced in lymphocytes was larger, antigenically distinct, and processed more slowly than was the glycoprotein of 61E. Castanospermine treatment of 61E-infected 3201 T cells, however, not only abrogated the antigenic differences between the 61E and EECC glycoproteins but also resulted in a cytopathic effect. Our results suggest that (i) intracellular accumulation of EECC envelope glycoprotein may occur consequent to retention of glucose residues on carbohydrate side chains and (ii) a strong correlation exists between delayed glycoprotein processing and cytopathicity in FeLV-FAIDS-infected T lymphocytes.  相似文献   

7.
The processing pathway of the major envelope glycoprotein complex, gp55-116 (gB), of human cytomegalovirus was studied using inhibitors of glycosylation and endoglycosidases. The results of these studies indicated that the mature gp55-116 is synthesized by the addition of both simple and complex N-linked sugars to a nonglycosylated precursor of estimated Mr 105,000. In a rapid processing step, the Mr 105,000 precursor is glycosylated to a protein of Mr 150,000 (gp150) which contains only endoglycosidase H-sensitive sugar linkages. The gp150 is then processed relatively slowly to a Mr 165,000 to 170,000 species (gp165-170), which is then cleaved to yield the mature gp55-116. Monensin prevented the final processing steps of the gp150, including cleavage, suggesting that transport through the Golgi apparatus is required for complete processing. Digestion of the intracellular forms of this complex as well as the virion forms confirmed the above findings and indicated that the mature virion form of gp55 contains 8,000 daltons of N-linked sugars. The virion gp116 contains some 52,000 to 57,000 daltons of N-linked carbohydrates and approximately 5,000 daltons of O-linked sugars.  相似文献   

8.
We describe here a two-dimensional mapping procedure which is capable of resolving glycopeptides isolated by lectin affinity chromatography from radioiodinated tryptic digests of glycoproteins. Glycopeptide maps were successfully produced for the model proteins alpha 1-acid glycoprotein and fetuin, as well as for the two surface glycoproteins gp90 and gp45 from equine infectious anemia virus (EIAV). Differences were detected in the glycopeptide maps obtained for the gp90 and gp45 components from two antigenically distinct strains of EIAV, demonstrating the ability of this procedure to detect variations in glycosylation in closely related glycoproteins. Thus this glycopeptide mapping technique provides a simple, rapid method to study changes in glycopeptides requiring only micrograms of glycoprotein.  相似文献   

9.
The glycopeptides obtained by pronase digestion of two ecotropic strains of murine leukemia virus (MuLV) were compared by gel filtration. Four different glycopeptide size classes, designated G(1), G(2), G(3), and G(4), with molecular weights of approximately 5,100, 2,900, 2,200, and 1,500, respectively, were shown to be associated with Rauscher MuLV virions grown in JLS-V9 cells. Various sugar precursors, including glucosamine, galactose, fucose, and mannose were incorporated into G(1) and G(2), suggesting that these are complex (type I) glycopeptides. The two smaller glycopeptide size classes, G(3) and G(4), were shown to be mannoserich (type II) glycopeptides. G(4) was more sensitive to digestion with endo-beta-N-acetylglucosaminidase H than G(3), suggesting that the core of G(3) may contain fewer mannose residues. Glycopeptides of the same size class as G(1) and G(2) were associated with both Rauscher MuLV and AKR-MuLV grown in III6A (mouse embryo) cells. Previous studies have shown that gp52, a proteolytic cleavage product of gp70, possessed primarily G(1) glycopeptides and that gp52 was more highly sulfated than gp70. We observed that G(1) is approximately twofold more highly sulfated than G(2), explaining the observed difference in sulfation of gp52. The unusually large size of G(1) suggested that infection with MuLV may alter the host cell glycosylation pattern. To test this possibility, glycopeptides from Sindbis virions grown in uninfected and Rauscher MuLV-infected JLS-V9 cells were compared, and no differences were observed. G(1) was not detected in Sindbis virions, indicating that acquisition of G(1) depends on properties of the virus-coded polypeptide backbone of the gp70 molecule.  相似文献   

10.
11.
A scheme was developed for the subcellular fractionation of murine erythroleukemia cells transformed by Friend leukemia virus. The subcellular localization of the env-related glycoproteins was determined by immune precipitation with antiserum against gp70, the envelope glycoprotein of the helper virus, followed by gel electrophoresis. In cells labeled for 2 h with [35S]methionine, the glycoprotein encoded by the defective spleen focus-forming virus, gp55SFFV, was found primarily in the nuclear fraction and in fractions containing dense cytoplasmic membranes such as endoplasmic reticulum. A similar distribution was noted for gp85env, the precursor to gp70. The concentration of viral glycoproteins in the nuclear fraction could not be accounted for by contamination with endoplasmic reticulum. In pulse-chase experiments, neither glycoprotein underwent major redistribution. However, labeled gp85env disappeared from intracellular membranes with a half-time of 30 min to 1 h, whereas labeled gp55SFFV was stable during a 2-h chase. In plasma membrane preparations with very low levels of contamination with endoplasmic reticulum, gp70 was the major viral env-related glycoprotein detected; a minor amount of gp55SFFV and no gp85env could be detected. The unexpected result of these experiments is the amount of viral glycoproteins found in the nuclear fraction. Presence of viral proteins in the nucleus could be relevant to the mechanism of viral leukemogenesis.  相似文献   

12.
The major glycoprotein (gp70) of murine leukemia virus occurs free of virus in the serum and body fluids of certain strains of mice. These glycoproteins were isolated from New Zealand Black mouse (NZB) ascites fluid and from AKR and New Zealand White mouse (NZW) serum by immunoaffinity chromatography and were compared by immunological tests and peptide mapping. Glycoproteins gp70-NZB and gp70-NZW were indistinguishable by all criteria tested and were more closely related to gp70 from Moloney leukemia virus than was gp70-AKR.  相似文献   

13.
Mouse mammary tumor viruses (MMTVs) contain distinct membrane glycoproteins of 52,000 daltons (gp52) and 36,000 daltons (gp36). We report here the development of new radioimmunoassays for gp36, using gp36 purified by hydrophobic chromatography and gel filtration. These assays demonstrate that gp36 has both type-specific and group-specific antigenic determinants. The virus-coded nature of these determinants was shown by utilizing different MMTVs grown in the same feline cell line. Interspecies determinants on gp36 were demonstrated by the observations that (i) MC-MTV (a virus isolate from the Asian rodent Mus cervicolor, and morphologically identical to MMTVs) competed, with an altered slope, in the gp36 radioimmunoassay, and (ii) antisera raised against MC-MTV immunopreciptitated 125I-labeled gp36. The detection of gp36 in spontaneous mammary tumors of several strains of mice also facilitates further studies on the replication of MMTVs and the host's immune response to MMTV-mediated oncogenesis.  相似文献   

14.
The CP-1 antigen of herpes simplex virus type 1 (HSV-1) is a glycoprotein found in the soluble portion of infected cells, in detergent extracts of infected cell membranes, and in the envelope of purified virus. Antisera were prepared against a further purified form of CP-1 prepared from HSV soluble antigen mix; a glycoprotein, gp52, isolated from detergent-treated infected cells; and detergent extracts of purified virus. Each of the antisera reacted with CP-1 to give a single immunoprecipitin band of identity, and each antiserum neutralized the infectivity of HSV-1 and HSV-2. Our results suggested that the type-common determinants involved in the stimulation of neutralizing antibody resided on a 52,000-molecular-weight (52K) glycoprotein. The envelope of HSV contains several glycoproteins: one component at 59K and a complex of two or three components at 130K, none of which corresponds in molecular weight to gp52. Using the antisera as immunological probes, we performed pulse-chase experiments with [(35)S]methionine-labeled HSV-1-infected cells and followed the disposition of the glycoproteins during the infectious cycle. Each antiserum immunoprecipitated a (35)S-labeled 52K protein from lysates of cells pulse-labeled at 5 h after infection. By 10 h, the label was chased into a 59K protein also precipitable by each of the three antisera. The results suggest that gp52 is a precursor of gp59 and that the latter corresponds in molecular weight to one of the major glycoproteins of the virion envelope.  相似文献   

15.
Protein Kinase Activity in Hepatitis B Virus   总被引:22,自引:19,他引:3       下载免费PDF全文
Protein kinase activity was found in hepatitis B virions (Dane particles) purified from the plasma of hepatitis B virus-infected patients, in virion cores, and in hepatitis B core antigen particles purified from hepatitis B virus-infected hepatic tissue and was not found in purified hepatitis B surface antigen particle preparations free of Dane particles. Only a fraction of the major polypeptide (apparent size, 19,700 daltons) in Dane particle cores and hepatitis B core antigen particles from infected liver appeared to be phosphorylated, and phosphorylation changed the electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels to that expected for a polypeptide of 20,600 daltons. Five minor polypeptides with apparent sizes between 38,000 and 63,000 daltons were phosphorylated in Dane particles and Dane particle core preparations but were not detected in hepatitis B core antigen particles from infected liver. None of these had electrophoretic mobilities corresponding to those of known hepatitis B surface antigen polypeptides. Prolonged storage of purified hepatitis B core antigen particles or incubation with human immunoglobulin G preparations containing antibody to the hepatitis B core antigen with or without antibody to the hepatitis B e antigen resulted in the conversion of the polypeptide with an apparent size of 20,600 daltons to ones with apparent sizes of 14,700 and approximately 6,000 daltons, suggesting proteolytic cleavage of the 20,600-dalton polypeptide under these conditions.  相似文献   

16.
C Dickson  J P Puma    S Nandi 《Journal of virology》1975,16(2):250-258
Mouse mammary tumor virus polypeptides were detected in the cytoplasm of mouse mammary tumor cell cultures using immunological precipitation techniques. The anti-mouse mammary tumor virus serum precipitated the major virion glycoproteins gp49 and gp37.5/33.5 and a viral-related nonvirion glycoprotein of 76,000 daltons. Subcellular fractionation studies revelaed that the cell-associated virion glycoproteins were present in the membrane fraction. Pulsechase experiments indicated that a viral-related nonvirion glycoprotein of 76,000 daltons may be a precursor to one or more of the virion glycoproteins.  相似文献   

17.
A glycosylated protein of approximately 70,000 daltons (gp70) from the surface of human peripheral blood T cells was immunoprecipitated by antisera to the baboon endogenous retrovirus (BEV-M7) and the serologically related feline endogenous retrovirus (RD114) but not by antisera to other retroviruses. Whereas preliminary absorption experiments were consistent with a possible viral specificity for this reaction, detailed biochemical and serologic characterization of the purified cellular protein suggested that it was not related to the gp70 of either M7 or RD114 viruses. The specificity of the reaction was further analyzed by assays of cellular gp70 antigenicity after exposure to exo- and endoglycosidases or trypsin and carbohydrate hapten inhibition studies. The results of these experiments were consistent with the interpretation that the glycoprotein was being recognized by antibody binding to the carbohydrate moiety of the molecule. These results provide an example of an antibody activity that could lead to inappropriate conclusions when sensitive radioimmunoprecipitation techniques are used for the biochemical analysis of antigenic systems. They emphasize the necessity of purifying cellular antigens as a prerequisite to determining the exact basis for a serologic reaction.  相似文献   

18.
We have carried out detailed structural studies of the glycopeptides of glycoprotein gD of herpes simplex virus types 1 and 2. We first examined and compared the number of N-asparagine-linked oligosaccharides present in each glycoprotein. We found that treatment of either pgD-1 or pgD-2 with endo-β-N-acetylglucosaminidase H (Endo H) generated three polypeptides which migrated more rapidly than pgD on gradient sodium dodecyl sulfate-polyacrylamide gels. Two of the faster-migrating polypeptides were labeled with [3H]mannose, suggesting that both pgD-1 and pgD-2 contained three N-asparagine-linked oligosaccharides. Second, we characterized the [3H]mannose-labeled tryptic peptides of pgD-1 and pgD-2. We found that both glycoproteins contained three tryptic glycopeptides, termed glycopeptides 1, 2, and 3. Gel filtration studies indicated that the molecular weights of these three peptides were approximately 10,000, 3,900, and 1,800, respectively, for both pgD-1 and pgD-2. Three methods were employed to determine the size of the attached oligosaccharides. First, the [3H]mannose-labeled glycopeptides were treated with Endo H, and the released oligosaccharide was chromatographed on Bio-Gel P6. The size of this molecule was estimated to be approximately 1,200 daltons. Second, Endo H treatment of [35S]methionine-labeled glycopeptide 2 reduced the molecular size of this peptide from approximately 3,900 to approximately 2,400 daltons. Third, glycopeptide 2 isolated from the gD-like molecule formed in the presence of tunicamycin was approximately 2,200 daltons. From these experiments, the size of each N-asparagine-linked oligosaccharide was estimated to be approximately 1,400 to 1,600 daltons. Our experiments indicated that glycopeptides 2 and 3 each contained one N-asparagine-linked oligosaccharide chain. Although glycopeptide 1 was large enough to accommodate more than one oligosaccharide chain, the experiments with Endo H treatment of the glycoprotein indicated that there were only three N-asparagine-linked oligosaccharides present in pgD-1 and pgD-2. Further studies of the tryptic glycopeptides by reverse-phase high-performance liquid chromatography indicated that all of the glycopeptides were hydrophobic in nature. In the case of glycopeptide 2, we observed that when the carbohydrate was not present, the hydrophobicity of the peptide increased. The properties of the tryptic glycopeptides of pgD-1 were compared with the properties predicted from the deduced amino acid sequence of gD-1. The size and amino acid composition compared favorably for glycopeptides 1 and 2. Glycopeptide 3 appeared to be somewhat smaller than would be predicted from the deduced sequence of gD-1. It appears that all three potential glycosylation sites predicted by the amino acid sequence are utilized in gD-1 and that a similar number of glycosylation sites are present in gD-2.  相似文献   

19.
The major envelope glycoprotein (gp71) from AKR murine leukemia virus (MuLV) was purified and its serological reactivity with heterologous and autogenous immune mouse sera was examined. Homologous and interspecies competition radioimmunoassays using antisera to Rauscher-MulV gp69/71 or Friend-MuLV gp71 or antisera to feline leukemia virus to precipitate 125I-labeled gp71 from various MuLV showed that distinct differences exist between Rauscher- or Friend-MuLV and AKR-MuLV glycoproteins. Characteristically the AKR-MuLV gp71, in contrast to FLV or RLV gp71, does not compete fully in homologous or interspecies radioimmunoassays with iodinated Friend of Rauscher glycoproteins. Purified 125I-labeled AKR-MuLV gp71, in contrast to the Rauscher- or Friend-MuLV glycoproteins, reacts with normal (autogenous immune) mouse sera in direct radioimmune precipitation assays. Competition experiments further demonstrate that this is a predominant immunological reactivity of normal mouse sera which had previously been detected by radioimmune precipitation assay against intact virions.  相似文献   

20.
An antiserum prepared against purified surface membranes of transformed BHK21/C13 cells (C13/B4) reversibly rounded and detached hamster cells from plastic tissue culture plates but did not affect cells of other species. Antiserum treatment did not alter the growth rate of C13/B4 or BHK21/C13 cells; however, NIL-8 cells exposed to the antiserum detached from the substrate and stopped growing, but remained viable for up to 72 h in the presence of the antiserum. Rounding and detachment were not inhibited by DNP or cycloheximide. Antiserum-detached cells did not reattach in the presence of these inhibitors. F(ab)' fragments also induced rounding, thus ruling out the involvement of complement and ligand-induced rearrangement of surface antigens in rounding and detachment. Three different surface-reactive immunoglobulin preparations were used in indirect immunoprecipitation studies in an attempt to identify cell surface antigens involved in regulating adhesion and morphology. Antiserum against surface membranes (anti-M) and against material shed by the cells into serum-free medium (anti-SFM) caused rounding and detachment, but a third antiserum (anti-LIS) prepared against a partially purified glycoprotein did not. All three immunoglobulin preparations precipitated glycoproteins with an apparent mol wt of 120,000 daltons from a crude membrane preparation solubilized by Nonidet NP-40. The two immunoglobulin preparations that caused rounding precipitated an additional glycoprotein peak of 140,000 daltons. Extensive preabsorption of the extract with anti-LIS immunoglobulin enriched the anti-membrane and antiserum-free medium precipitates for the 140,000-dalton peak. Anti-M immunoglobulin eluted from intact cells and subsequently used to precipitate NP-40 solubilized membrane constituents also reacted with a group of glycoproteins of approximately 140,000 mol wt. Therefore, this group of glycoproteins was considered most likely to be the glycoproteins involved in substrate adhesion and maintenance of cellular morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号