首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
Summary Ca2+-dependent protein kinase (CDPK) has been proposed to mediate inhibition by Ca2+ of cytoplasmic streaming in the green algaChara. We have identified the in vivo substrate(s) of CDPK inChara by using vacuolar perfusion of individual internodal cells with [-32P]ATP. Phosphorylation of several polypeptides is enhanced when perfusions are performed at 10–4M free Ca2+ compared to <10–9M free Ca2+. The Ca2+-stimulated phosphorylation of these proteins is inhibited by the presence of a monoclonal antibody to soybean CDPK. One of these proteins is 16 to 18kDa and is recognized by an antibody against gizzard myosin light chains. These results demonstrate that inChara, several polypeptides are phophorylated by CDPK and one of these proteins has been tentatively identified as a myosin light chain. These observations support the hypothesis that Ca2+-regulated phosphorylation of myosin is involved in the regulation of cytoplasmic streaming.Abbreviations CDPK calcium-dependent protein kinase - mAb monoclonal antibody  相似文献   

2.
A method is described for rapidly surveying the effects of modifying individual amino acid residues of a protein on its ability to interact specifically with another macromolecule. The procedure has been used to examine the individual roles of the seven lysyl residues of calmodulin in its ability to bind to smooth muscle myosin light chain kinase; previous studies by Jackson et al. (J. Biol. Chem. 261:1226-12232, 1986) have suggested that certain lysines may be located close to the interaction site. Trace [3H]-acetylated calmodulin, consisting predominantly of molecules acetylated at single sites together with unmodified protein, was incubated in excess (five- to 20-fold) with smooth muscle MLC kinase to allow the modified and unmodified molecules to compete for binding to the enzyme. Subsequently, the calmodulin-enzyme complex was separated from unbound calmodulin, and the level of acetylation of each of the seven lysines of the bound fraction of calmodulin was determined and compared to that of each corresponding group of the starting preparation. Significant changes were found at only two of the lysines, 21 and 75, where the extent of acetylation in the bound fraction was three- and fivefold lower, respectively, than that in the original preparation. These results were reproducible in three separate selection experiments employing both chicken and turkey gizzard MLC kinase. It is concluded that acetylation of calmodulin at either lysine 21 or 75 markedly reduces its affinity for MLC kinase, but acetylation at any of the other lysines (13, 30, 77, 94, or 148) has only minor effects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
El-Toukhy A  Given AM  Ogut O  Brozovich FV 《FEBS letters》2006,580(24):5779-5784
In avian smooth muscles, GTPgammaS produces a Rho kinase mediated increase in PHI-1 phosphorylation and force, but whether this correlation is causal is unknown. We examined the effect of phosphorylated PHI-1 (P-PHI-1) on force and myosin light chain (MLC(20)) phosphorylation at a constant [Ca(2+)]. P-PHI-1, but not PHI-1, increased MLC(20) phosphorylation and force, and phosphorylation of PHI-1 increased the interaction of PHI-1 with PP1c. Microcystin induced a dose-dependent reduction in the binding of PHI-1 to PP1c. These results suggest PHI-1 inhibits myosin light chain phosphatase by interacting with the active site of PP1c to produce a Ca(2+) independent increase in MLC(20) phosphorylation and force.  相似文献   

4.
Backbone dynamics of uniformly 15N-labeled free barnase and its complex with unlabelled barstar have been studied at 40°C, pH 6.6, using 15N relaxation data obtained from proton-detected 2D {1H}-15N NMR spectroscopy. 15N spin-lattice relaxation rate constants (R1), spin-spin relaxation rate constants (R2), and steady-state heteronuclear {1H}-15N NOEs have been measured at a magnetic field strength of 14.1 Tesla for 91 residues of free barnase and for 90 residues out of a total of 106 in the complex (excluding three prolines and the N-terminal residue) backbone amide 15N sites of barnase. The primary relaxation data for both the cases have been analyzed in the framework of the model-free formalism using both isotropic and axially symmetric models of the rotational diffusion tensor. As per the latter, the overall rotational correlation times (m) are 5.0 and 9.5 ns for the free and complexed barnase, respectively. The average order parameter is found to be 0.80 for free barnase and 0.86 for the complex. However, the changes are not uniform along the backbone and for about 5 residues near the binding interface there is actually a significant decrease in the order parameters on complex formation. These residues are not involved in the actual binding. For the residues where the order parameter increases, the magnitudes vary significantly. It is observed that the complex has much less internal mobility, compared to free barnase. From the changes in the order parameters, the entropic contribution of NH bond vector motion to the free energy of complex formation has been calculated. It is apparent that these motions cause significant unfavorable contributions and therefore must be compensated by many other favorable contributions to effect tight complex formation. The observed variations in the motion and their different locations with regard to the binding interface may have important implications for remote effects and regulation of the enzyme action.  相似文献   

5.
Nitric oxide induces vasodilation by elevating the production of cGMP, an activator of cGMP-dependent protein kinase (PKG). PKG subsequently causes smooth muscle relaxation in part via activation of myosin light chain phosphatase (MLCP). To date, the interaction between PKG and the targeting subunit of MLCP (MYPT1) is not fully understood. Earlier studies by one group of workers showed that the binding of PKG to MYPT1 is mediated by the leucine-zipper motifs at the N and C termini, respectively, of the two proteins. Another group, however, reported that binding of PKG to MYPT1 did not require the leucine-zipper motif of MYPT1. In this work we fully characterized the interaction between PKG and MYPT1 using biophysical techniques. For this purpose we constructed a recombinant PKG peptide corresponding to a predicted coiled coil region that contains the leucine-zipper motif. We further constructed various C-terminal MYPT1 peptides bearing various combinations of a predicted coiled coil region, extensions preceding this coiled coil region, and the leucine-zipper motif. Our results show, firstly, that while the leucine-zipper motif at the N terminus of PKG forms a homodimeric coiled coil, the one at the C terminus of MYPT1 is monomeric and non-helical. Secondly, the leucine-zipper motif of PKG binds to that of MYPT1 to form a heterodimer. Thirdly, when the leucine-zipper motif of MYPT1 is absent, the PKG leucine-zipper motif binds to the coiled coil region and upstream segments of MYPT1 via formation of a heterotetramer. These results provide rationalization of some of the findings by others using alternative binding analyses.  相似文献   

6.
Direct uptake of organic nitrogen (ON) compounds, rather than inorganic N, by plant roots has been hypothesized to constitute a significant pathway for plant nutrition. The aim of this study was to test whether tomatoes (Solanum lycopersicum cv. Huying932) can take up ON directly from the soil by using 15NH4Cl, K15NO3, 1, 2-13C215N-glycine labeling techniques. The 13C and 15N in the plants increased significantly indicating that a portion of the glycine-N was taken up in the form of intact amino acids by the tomatoes within 48 h after injection into the soil. Regression analysis of excess 13C against excess 15N showed that approximately 21% of the supplied glycine-N was taken up intact by the tomatoes. Atom% excesses of 15N and 13C in the roots were higher than in any shoots. Results also indicated rapid turnover of amino acids (e.g., glycine) by soil microorganisms, and the poor competitive ability of tomatoes in absorbing amino acids from the soil solution. This implies that tomatoes can take up ON in an intact form from the soil despite the rapid turnover of organic N usually found under such conditions. Given the influence of climatic change and N pollution, further studies investigating the functional ecological implications of ON in horticultural ecosystems are warranted.  相似文献   

7.
An 15N off-resonance R 1 spin relaxation study of an L99A point mutant of T4 lysozyme is presented. Previous CPMG-based relaxation dispersion studies of exchange in this protein have established that the molecule interconverts between a populated ground state and an excited state (3.4%) with an exchange rate constant of 1450 s–1 at 25°C. It is shown that for the majority of residues in this protein the offset dependence of the R 1 relaxation rates cannot be well fit using models which are only valid in the fast exchange regime. In contrast, a recently derived expression by Trott and Palmer (J. Magn. Reson., 154, 157–160, 2002) which is valid over a wider window of exchange than other relations, is shown to fit the data well. Values of (signed) chemical shift differences between exchanging sites have been extracted and are in reasonable agreement with shift differences measured using CPMG methods. A set of simulations is presented which help establish the exchange regimes that are best suited to analysis by off-resonance R 1 techniques.  相似文献   

8.
A modified HNHB experiment is presented that allows thedetermination of J(NH) coupling constants directly from the ratio ofcross-peak to diagonal-peak intensities. The experiment was applied to thephotoactive yellow protein (PYP) and yielded the magnitude of 1173J(NH) coupling constants. In addition, 293J(NH(i–1)) coupling constantscould be measured, providing information about the backbone angle .These data, in conjunction with the magnitudes of the3J(HNH) coupling constantsobtained from the HNHA spectrum, effectively discriminate the twopossibilities for the stereospecific assignment of theH resonances in glycine residues. For all eight glycineresidues in PYP that were not subject to conformational averaging and hadnon-degenerate H resonance frequencies, the J-couplingdata, together with limited NOE data, yielded the stereospecific assignmentof the H resonances for these residues. In addition,reliable and precise , dihedral constraints were also derived forthese residues from the J-coupling data.  相似文献   

9.
Lipopeptides derived from protein kinase C (PKC) pseudosubstrates have the ability to cross the plasma membrane in cells and modulate the activity of PKC in the cytoplasm. Myristoylation or palmitoylation appears to promote translocation across membranes, as the non-acylated peptides are membrane impermeant. We have investigated, by fluorescence spectroscopy, how myristoylation modulates the interaction of the PKC pseudosubstrate peptide KSIYRRGARRWRKL with lipid vesicles and translocation across the lipid bilayer. Our results indicate that myristoylated peptides are intimately associated with lipid vesicles and are not peripherally bound. When visualized under a microscope, myristoylation does appear to facilitate translocation across the lipid bilayer in multilamellar lipid vesicles. Translocation does not involve large-scale destabilization of the bilayer structure. Myristoylation promotes translocation into the hydrophobic interior of the lipid bilayer even when the non-acylated peptide has only weak affinity for membranes and is also only peripherally associated with lipid vesicles.  相似文献   

10.
Plant defensins are cysteine-rich cationic peptides, components of the innate immune system. The antifungal sensitivity of certain exemplars was correlated to the level of complex glycosphingolipids in the membrane of fungi strains. Psd1 is a 46 amino acid residue defensin isolated from pea seeds which exhibit antifungal activity. Its structure is characterized by the so-called cysteine-stabilized α/β motif linked by three loops as determined by two-dimensional NMR. In the present work we explored the measurement of heteronuclear Nuclear Overhauser Effects, R1 and R2 15N relaxation ratios, and chemical shift to probe the backbone dynamics of Psd1 and its interaction with membrane mimetic systems with phosphatidylcholine (PC) or dodecylphosphocholine (DPC) with glucosylceramide (CMH) isolated from Fusarium solani. The calculated R2 values predicted a slow motion around the highly conserved among Gly12 residue and also in the region of the Turn3 His36-Trp38. The results showed that Psd1 interacts with vesicles of PC or PC:CMH in slightly different forms. The interaction was monitored by chemical shift perturbation and relaxation properties. Using this approach we could map the loops as the binding site of Psd1 with the membrane. The major binding epitope showed conformation exchange properties in the μs-ms timescale supporting the conformation selection as the binding mechanism. Moreover, the peptide corresponding to part of Loop1 (pepLoop1: Gly12 to Ser19) is also able to interact with DPC micelles acquiring a stable structure and in the presence of DPC:CMH the peptide changes to an extended conformation, exhibiting NOE mainly with the carbohydrate and ceramide parts of CMH.  相似文献   

11.
12.
The epithelial and endothelial barriers of the human body are major obstacles for drug delivery to the systemic circulation and to organs with unique environment and homeostasis, like the central nervous system. Several transport routes exist in these barriers, which potentially can be exploited for enhancing drug permeability. Beside the transcellular pathways via transporters, adsorptive and receptor-mediated transcytosis, the paracellular flux for cells and molecules is very limited. While lipophilic molecules can diffuse across the cellular plasma membranes, the junctional complexes restrict or completely block the free passage of hydrophilic molecules through the paracellular clefts. Absorption or permeability enhancers developed in the last 40 years for modifying intercellular junctions and paracellular permeability have unspecific mode of action and the effective and toxic doses are very close. Recent advances in barrier research led to the discovery of an increasing number of integral membrane, adaptor, regulator and signalling proteins in tight and adherens junctions. New tight junction modulators are under development, which can directly target tight or adherens junction proteins, the signalling pathways regulating junctional function, or tight junction associated lipid raft microdomains. Modulators acting directly on tight junctions include peptides derived from zonula occludens toxin, or Clostridium perfringens enterotoxin, peptides selected by phage display that bind to integral membrane tight junction proteins, and lipid modulators. They can reversibly increase paracellular transport and drug delivery with less toxicity than previous absorption enhancers, and have a potential to be used as pharmaceutical excipients to improve drug delivery across epithelial barriers and the blood-brain barrier.  相似文献   

13.
Tight junctions (TJs) regulate the passage of ions and molecules through the paracellular pathway in epithelial and endothelial cells. TJs are highly dynamic structures whose degree of sealing varies according to external stimuli, physiological and pathological conditions. In this review we analyze how the crosstalk of protein kinase C, protein kinase A, myosin light chain kinase, mitogen-activated protein kinases, phosphoinositide 3-kinase and Rho signaling pathways is involved in TJ regulation triggered by diverse stimuli. We also report how the phosphorylation of the main TJ components, claudins, occludin and ZO proteins, impacts epithelial and endothelial cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号