首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fas-mediated apoptosis plays an important role in normal tissue homeostasis, and disruption of this death pathway contributes to many human diseases. Induction of apoptosis via Fas activation has been associated with reactive oxygen species (ROS) generation and down-regulation of FLICE inhibitory protein (FLIP); however, the relationship between these two events and their role in Fas-mediated apoptosis are unclear. We show herein that ROS are required for FLIP down-regulation and apoptosis induction by Fas ligand (FasL) in primary lung epithelial cells. ROS mediate the down-regulation of FLIP by ubiquitination and subsequent degradation by proteasome. Inhibition of ROS by antioxidants or by ectopic expression of ROS-scavenging enzymes glutathione peroxidase and superoxide dismutase effectively inhibited FLIP down-regulation and apoptosis induction by FasL. Hydrogen peroxide is a primary oxidative species responsible for FLIP down-regulation, whereas superoxide serves as a source of peroxide and a scavenger of NO, which positively regulates FLIP via S-nitrosylation. NADPH oxidase is a key source of ROS generation induced by FasL, and its inhibition by dominant-negative Rac1 expression or by chemical inhibitor decreased the cell death response to FasL. Taken together, our results indicate a novel pathway of FLIP regulation by an interactive network of reactive oxygen and nitrogen species that provides a key mechanism of apoptosis regulation in Fas-induced cell death and related apoptosis disorders.  相似文献   

2.
Ceramide is a key mediator of apoptosis, yet its role in Fas-mediated apoptosis is controversial. Some reports have indicated that ceramide is either a primary signaling molecule in Fas-induced cell death, or that it functions upstream of Fas by increasing FasL expression. Other studies have suggested that ceramide is not relevant to Fas-induced cell death. We have approached this problem by studying ceramide-induced apoptosis in unique Jurkat cell clones selected for resistance to membrane-bound FasL-induced death. Resistance of the mutant Jurkat cells was specific for FasL killing, since the mutant clones were sensitive to other apoptotic stimuli such as cycloheximide and staurosporine. We tested the effects of serum withdrawal, one of the strongest inducers of ceramide, and of exogenous ceramide on apoptosis of both wild-type and FasL-resistant clones. Wild-type Jurkat cells were remarkably sensitive to serum withdrawal and to exogenous ceramide. In contrast all FasL-resistant mutant clones were resistant to these apoptosis-inducing conditions. In contrast to previous work, we did not detect an increase in FasL in either wild-type or mutant clones. Moreover activation of stress-activated protein kinases (JNK/SAPKs) after serum withdrawal and exogenous ceramide treatment was detected only in the wild-type and not in the resistant clones. Because of the parallel resistance of the mutant clones to Fas and to ceramide-induced apoptosis, our data support the notion that ceramide is a second messenger for the Fas/FasL pathway and that serum withdrawal, through production of ceramide, shares a common step with the Fas-mediated apoptotic pathway. Finally, our data suggest that activation of JNK/SAPKs is a common mediator of the three pathways tested.  相似文献   

3.
Chemotherapeutic drugs that damage DNA kill tumor cells, in part, by inducing the expression of a death receptor such as Fas or its ligand, FasL. Here, we demonstrate that epidermal growth factor (EGF) stimulation of T47D breast adenocarcinoma and embryonic kidney epithelial (HEK293) cells protects these cells from Fas-induced apoptosis. EGF stimulation of epithelial cells also inhibited Fas-induced caspase activation and the proteolysis of signaling proteins downstream of the EGF receptor, Cbl and Akt/protein kinase B (Akt). EGF stimulation of Akt kinase activity blocked Fas-induced apoptosis. Expression of activated Akt in MCF-7 breast adenocarcinoma cells was sufficient to block Fas-mediated apoptosis. Inhibition of EGF-stimulated extracellular signal-regulated kinase (ERK) activity did not affect EGF protection from Fas-mediated apoptosis. The findings indicate that EGF receptor stimulation of epithelial cells has a significant survival function against death receptor-induced apoptosis mediated by Akt.  相似文献   

4.
The chemical property of 6-formylpterin and its biological functions were examined. Polarographic studies revealed that 6-formylpterin reacted with NAD(P)H and consumed oxygen. In contrast, other conjugated pterins, such as biopterin and neopterin, showed no consumption of oxygen. The production analysis using high-performance liquid chromatography documented that 6-formylpterin catalyzes the conversion from NADH to NAD. Electroparamagnetic resonance spin trapping experiments demonstrated that this reaction is accompanied with the generation of reactive oxygen species (ROS), superoxide anion and hydrogen peroxide. When 6-formylpterin was administered to HL-60 cells, intracellular ROS generation was observed and apoptosis was induced. In contrast, other conjugated pterins induced neither intracellular ROS generation nor apoptosis in HL-60 cells. The intracellular ROS generation by 6-formylpterin was observed in other cells, such as PanC-1 cells and Jurkat cells. 6-formylpterin suppressed cell proliferation in PanC-1 cells and inhibited Fas-mediated apoptosis in Jurkat cells. These findings indicate that, among conjugated pterins, 6-formylpterin has the unique property to transfer electron from NAD(P)H to oxygen and that the property brings about intracellular ROS generation, which exerts various biological functions such as induction of apoptosis, suppression of cell proliferation, and inhibition of Fas-mediated apoptosis.  相似文献   

5.
IL-7 promotes survival of resting T lymphocytes and induces T cell proliferation in lymphopenic conditions. As elevated IL-7 levels occur in HIV-infected individuals in addition to high Fas expression on T cells and increased sensitivity to Fas-induced apoptosis, we analyzed whether IL-7 has a regulatory role in Fas-mediated T cell apoptosis. We show that IL-7 up-regulates Fas expression on naive and memory T cells through a mechanism that involves translocation of Fas molecules from intracellular compartments to the cell membrane. IL-7 induced the association of Fas with the cytoskeletal component ezrin and a polarized Fas expression on the cell surface. The potential role of IL-7 in Fas up-regulation in vivo was verified in IL-7-treated macaques and in HIV-infected or chemotherapy treated patients by the correlation between serum IL-7 levels and Fas expression on T cells. IL-7 treatment primed T cells for Fas-induced apoptosis in vitro and serum IL-7 levels correlated with the sensitivity of T cells to Fas-induced apoptosis in HIV-infected individuals. Our data suggest an important role for IL-7 in Fas-mediated regulation of T cell homeostasis. Elevated IL-7 levels associated with lymphopenic conditions, including HIV-infection, might participate in the increased sensitivity of T cells for activation-induced apoptosis.  相似文献   

6.
Cross-linking of cell surface Fas molecules by Fas ligand or by agonistic anti-Fas Abs induces cell death by apoptosis. We found that a serine protease inhibitor, N-tosyl-L-lysine chloromethyl ketone (TLCK), dramatically enhances Fas-mediated apoptosis in the human T cell line Jurkat and in various B cell lines resistant to Fas-mediated apoptosis. The enhancing effect of TLCK is specific to Fas-induced cell death, with no effect seen on TNF-alpha or TNF-related apoptosis-inducing ligand-induced apoptosis. TLCK treatment had no effect on Fas expression levels on the cell surface, and neither promoted death-inducing signaling complex formation nor decreased expression levels of cellular inhibitors of apoptosis (FLICE inhibitory protein, X chromosome-linked inhibitor of apoptosis, and Bcl-2). Activation of the Fas-mediated apoptotic pathway by anti-Fas Ab is accompanied by aggregation of Fas molecules to form oligomers that are stable to boiling in SDS and beta-ME. Fas aggregation is often considered to be required for Fas-mediated apoptosis. However, sensitization of cells to Fas-mediated apoptosis by TLCK or other agents (cycloheximide, protein kinase C inhibitors) causes less Fas aggregation during the apoptotic process compared with that in nonsensitized cells. These results show that Fas aggregation and Fas-mediated apoptosis are not directly correlated and may even be inversely correlated.  相似文献   

7.
Reactive oxygen species (ROS) are implicated in the regulation of apoptosis through a number of distinct mechanisms depending on cell type and stimulation conditions. Glyoxalase I (GI) metabolizes methylglyoxal (MG) and MG-derived advanced glycation end products (AGEs) known to cause apoptosis. This study examined the possible role of GI among the mechanisms of ROS-driven apoptosis in human bronchial epithelial BEAS-2B cells exposed to wood dust and signaling pathways by which these reactive species regulate GI expression. Our results showed that wood dust generated distinct ROS (superoxide anion, and hydrogen peroxide) by selectively inhibiting the enzymatic activity of superoxide dismutase or glutathione peroxidase and catalase enzymes. These ROS caused a dramatic inhibition of the antiglycation GI enzyme, leading to the intracellular accumulation of the pro-apoptotic AGE, argpyrimidine (AP) and programmed cell death via a mitochondrial pathway. Pre-treatment with N-acetyl-l-cysteine (NAC), a ROS scavenger, prevented these events. Hence, ROS-induced apoptosis in BEAS-2B cells occurred via a novel mechanism relying on GI inhibition and AP accumulation. We interestingly found that superoxide anion and hydrogen peroxide induced a diverse apoptosis level by differently inhibiting GI via NF-κB pathway. Since maintenance of an intact epithelium is a critically important determinant of normal respiratory function, the knowledge of the mechanisms underlying its disruption may provide insight into the genesis of a number of pathological conditions commonly occurring in wood dust occupational exposure. Our findings suggest that the antioxidant NAC may merit investigation as a potential preventive agent in wood dust exposure-induced respiratory diseases.  相似文献   

8.
Mast cells play a critical role in host immune responses and are implicated in the pathogenesis of allergic inflammation. Though mouse mast cell line MC/9 expresses cell surface Fas Ag and is sensitive to Fas-induced apoptosis, activated MC/9 cells are resistant to Fas-induced cell death by cross-linking of FcepsilonRI or FcgammaR. Fas-associated death domain-like IL-1-converting enzyme (FLICE)-inhibitory protein (FLIP), a caspase-8 inhibitor that lacks the cysteine domain, is one of the negative regulators of receptor-mediated apoptosis. In this report, we show that activation of mast cells by cross-linking of FcepsilonRI or FcgammaR can induce enhanced expression of FLIP and consequently a resistance to Fas-induced apoptosis, although the expression level of Fas Ag is not changed. Addition of antisense oligonucleotide for FLIP prevents resistance to Fas-induced apoptosis of activated mast cells, suggesting that endogenous FLIP inhibits Fas-mediated apoptosis in activated mast cells. Thus, the enhanced expression of FLIP in activated mast cells contributes to the resistance to Fas-induced apoptosis, which may result in the development and prolongation of allergic inflammation.  相似文献   

9.
Superoxide anion is a natural inhibitor of FAS-mediated cell death.   总被引:4,自引:0,他引:4       下载免费PDF全文
The cell surface receptor Fas is a major trigger of apoptosis. However, expression of the Fas receptor in many tumor cell types does not correlate with sensitivity to Fas-mediated cell death. Because a prooxidant state is a common feature of tumor cells, we examined the role of intracellular reactive oxygen intermediates in the regulation of Fas-mediated cytotoxicity. Our results show that an oxidative stress induced by increasing the intracellular superoxide anion (O2-) concentration can abrogate Fas-mediated apoptosis in cells which are constitutively sensitive to Fas. Conversely, an O2- concentration decrease is observed to sensitize cells which are naturally resistant to Fas signals. These observations suggest that intracellular O2- may play a key role in regulating cell sensitivity to a potentially lethal signal and provide tumor cells with a natural, inducible mechanism of resistance to Fas-mediated apoptosis.  相似文献   

10.
TNF family receptors can lead to the activation of NF-kappaB and this can be a prosurvival signal in some cells. Although activation of NF-kappaB by ligation of Fas (CD95/Apo-1), a member of the TNFR family, has been observed in a few studies, Fas-mediated NF-kappaB activation has not previously been shown to protect cells from apoptosis. We examined the Fas-induced NF-kappaB activation and its antiapoptotic effects in a leukemic eosinophil cell line, AML14.3D10, an AML14 subline resistant to Fas-mediated apoptosis. EMSA and supershift assays showed that agonist anti-Fas (CH11) induced nuclear translocation of NF-kappaB heterodimer p65(RelA)/p50 in these cells in both a time- and dose-dependent fashion. The influence of NF-kappaB on the induction of apoptosis was studied using pharmacological proteasome inhibitors and an inhibitor of IkappaBalpha phosphorylation to block IkappaBalpha dissociation and degradation. These inhibitors at least partially inhibited NF-kappaB activation and augmented CH11-induced cell death. Stable transfection and overexpression of IkappaBalpha in 3D10 cells inhibited CH11-induced NF-kappaB activation and completely abrogated Fas resistance. Increases in caspase-8 and caspase-3 cleavage induced by CH11 and in consequent apoptotic killing were observed in these cells. Furthermore, while Fas-stimulation of resistant control 3D10 cells led to increases in the antiapoptotic proteins cellular inhibitor of apoptosis protein-1 and X-linked inhibitor of apoptosis protein, Fas-induced apoptosis in IkappaBalpha-overexpressing cells led to the down-modulation of both of these proteins, as well as that of the Bcl-2 family protein, Bcl-x(L). These data suggest that the resistance of these leukemic eosinophils to Fas-mediated killing is due to induced NF-kappaB activation.  相似文献   

11.
12.
Activation-induced cell death of peripheral T cells results from the interaction between Fas and Fas ligand. Resting peripheral T cells are resistant to Fas-induced apoptosis and become susceptible only after their activation. We have investigated the molecular mechanism mediating the sensitization of resting peripheral T cells to Fas-mediated apoptosis following TCR stimulation. TCR activation decreases the steady state protein levels of FLIP (FLICE-like inhibitory protein), an inhibitor of the Fas signaling pathway. Reconstitution of intracellular FLIP levels by the addition of a soluble HIV transactivator protein-FLIP chimera completely restores resistance to Fas-mediated apoptosis in TCR primary T cells. Inhibition of IL-2 production by cyclosporin A, or inhibition of IL-2 signaling by rapamycin or anti-IL-2 neutralizing Abs prevents the decrease in FLIP levels and confers resistance to Fas-mediated apoptosis following T cell activation. Using cell cycle-blocking agents, we demonstrate that activated T cells arrested in G1 phase contain high levels of FLIP protein, whereas activated T cells arrested in S phase have decreased FLIP protein levels. These findings link regulation of FLIP protein levels with cell cycle progression and provide an explanation for the increase in TCR-induced apoptosis observed during the S phase of the cell cycle.  相似文献   

13.
We and others have demonstrated that Fas-mediated apoptosis is a potential therapeutic target for cholangiocarcinoma. Previously, we reported that CaM (calmodulin) antagonists induced apoptosis in cholangiocarcinoma cells through Fas-related mechanisms. Further, we identified a direct interaction between CaM and Fas with recruitment of CaM into the Fas-mediated DISC (death-inducing signalling complex), suggesting a novel role for CaM in Fas signalling. Therefore we characterized the interaction of CaM with proteins recruited into the Fas-mediated DISC, including FADD (Fas-associated death domain)-containing protein, caspase 8 and c-FLIP {cellular FLICE [FADD (Fas-associated death domain)-like interleukin 1beta-converting enzyme]-like inhibitory protein}. A Ca(2+)-dependent direct interaction between CaM and FLIP(L), but not FADD or caspase 8, was demonstrated. Furthermore, a 37.3+/-5.7% increase (n=6, P=0.001) in CaM-FLIP binding was observed at 30 min after Fas stimulation, which returned to the baseline after 60 min and correlated with a Fas-induced increase in intracellular Ca(2+) that reached a peak at 30 min and decreased gradually over 60 min in cholangiocarcinoma cells. A CaM antagonist, TFP (trifluoperazine), inhibited the Fas-induced increase in CaM-FLIP binding concurrent with inhibition of ERK (extracellular-signal-regulated kinase) phosphorylation, a downstream signal of FLIP. Direct binding between CaM and FLIP(L) was demonstrated using recombinant proteins, and a CaM-binding region was identified in amino acids 197-213 of FLIP(L). Compared with overexpression of wild-type FLIP(L) that resulted in decreased spontaneous as well as Fas-induced apoptosis, mutant FLIP(L) with deletion of the CaM-binding region resulted in increased spontaneous and Fas-induced apoptosis in cholangiocarcinoma cells. Understanding the biology of CaM-FLIP binding may provide new therapeutic targets for cholangiocarcinoma and possibly other cancers.  相似文献   

14.
FADD is required for multiple signaling events downstream of the receptor Fas.   总被引:13,自引:0,他引:13  
To identify essential components of the Fas-induced apoptotic signaling pathway, Jurkat T lymphocytes were chemically mutagenized and selected for clones that were resistant to Fas-induced apoptosis. We obtained five cell lines that contain mutations in the adaptor FADD. All five cell lines did not express FADD by immunoblot analysis and were completely resistant to Fas-induced death. Complementation of the FADD mutant cell lines with wild-type FADD restored Fas-mediated apoptosis. Fas activation of caspase-2, caspase-3, caspase-7, and caspase-8 and the proteolytic cleavage of substrates such as BID, protein kinase Cdelta, and poly(ADP-ribose) polymerase were completely defective in the FADD mutant cell lines. In addition, Fas activation of the stress kinases p38 and c-Jun NH2 kinase and the generation of ceramide in response to Fas ligation were blocked in the FADD mutant cell lines. These data indicate that FADD is essential for multiple signaling events downstream of Fas.  相似文献   

15.
Lewis lung carcinoma (3LL) cells were constitutively resistant to Fas-mediated apoptosis, but overexpression of Fas on 3LL cells allowed Fas-mediated apoptosis after crosslinking with agonist anti-Fas antibody (Jo2) in vitro. Surprisingly, Fas-overexpressing 3LL cells showed enhanced in vivo tumor progression, whereas no promotion of in vivo tumor growth was observed for dominant negative (DN) Fas-overexpressing 3LL transfectants in which the cytoplasmic death domain was deleted. In addition, the promotion of in vivo tumor growth by Fas-overexpression was reduced in gld (FasL-mutation) mice compared to normal mice. These data indicate that intact Fas/FasL cell signaling is required for the promotion of in vivo tumor growth by Fas overexpression in 3LL cells. In contrast to the efficient Fas-mediated killing induced in vitro by crosslinking with anti-Fas antibody, Fas-overexpressing 3LL cells were resistant in vitro to Fas-mediated apoptosis by activated T cells or transient FasL transfection. These data suggest that agonist anti-Fas antibody and natural FasL can transmit qualitatively different signals, and crosslinking of Fas with natural FasL on 3LL cells does not deliver the expected death signal. Thus, our results demonstrate that in some cases overexpression of Fas can result in a survival advantage for tumor cells in vivo.  相似文献   

16.
Programmed cell death (apoptosis) can be found in normal thyroid tissue and in various diseases affecting the thyroid gland. The Fas/Fas ligand (FasL) system is involved in the induction of apoptosis in human thyrocytes. Cross-linking the Fas receptor with its own ligand or with an antibody capable of oligomerizing with the receptor induces programmed cell death. We investigated the role of Fas-induced apoptosis in primary human thyrocytes in vitro. Cell cultures of normal human thyrocytes were prepared from specimens obtained during surgery for uninodular goiter. Apoptosis was induced by incubation of the cells with a monoclonal IgM anti-Fas antibody. The presence of apoptosis was determined by FACS analysis of FITC-labelled annexin V binding combined with dye exclusion of propidium iodide. We found a significant rate of Fas-induced apoptosis in normal thyrocytes after activation with a monoclonal anti-Fas antibody. TSH was able to inhibit Fas-mediated apoptosis in a dose-dependent manner. This effect was more pronounced when thyrocytes were incubated in the presence of interferon-gamma. Low concentrations of iodine were able to inhibit apoptosis, while high concentrations of iodine increased the rate of Fas-induced apoptosis. Our results show that Fas-mediated apoptosis is inducible in normal human thyrocytes in vitro and is influenced by TSH and iodine. The Fas/FasL system may play an important role in the regulation of cell number within the thyroid gland, and may be involved in the processes leading to goiter in iodine deficiency.  相似文献   

17.
Pancreatic β cells are very sensitive to reactive oxygen species (ROS) and this might play an important role in β cell death in diabetes. Dexamethasone is a synthetic diabetogenic glucocorticoid, which impairs pancreatic β cell function. Therefore we investigated the toxicity of dexamethasone in RINm5F insulin-producing cells and its dependence on the expression level of the antioxidant enzyme catalase, which inactivates hydrogen peroxide. This was correlated with oxidative stress and cell death. An increased generation of ROS was observed in dexamethasone-treated cells together with an increase in caspase-3 activity and apoptosis rate. Interestingly, exposure to dexamethasone increased the cytosolic superoxide dismutase Cu/ZnSOD protein expression and activity, whereas the mitochondrial MnSOD isoform was not affected by the glucocorticoid. Catalase overexpression in insulin-producing cells prevented all the cytotoxic effects of dexamethasone. In conclusion, dexamethasone-induced cell death in insulin-producing cells is ROS mediated. Increased levels of expression and activity of the Cu/ZnSOD might favor the generation of hydrogen peroxide in dexamethasone-treated cells. Increased ROS scavenging capacity in insulin-producing cells, through overexpression of catalase, prevents a deleterious increase in hydrogen peroxide generation and thus prevents dexamethasone-induced apoptosis.  相似文献   

18.
A functional immune system not only requires rapid expansion of antigenic specific T cells, but also requires efficient deletion of clonally expanded T cells to avoid accumulation of T cells. Fas/Fas ligand (FasL)-mediated apoptosis plays a critical role in the deletion of activated peripheral T cells, which is clearly demonstrated by superantigen-induced expansion and subsequent deletion of T cells. In this study, we show that in the absence of protein kinase C-theta (PKC-theta), superantigen (staphylococcal enterotoxin B)-induced deletion of Vbeta8(+) CD4(+) T cells was defective in PKC-theta(-/-) mice. In response to staphylococcal enterotoxin B challenge, up-regulation of FasL, but not Fas, was significantly reduced in PKC-theta(-/-) mice. PKC-theta is thus required for maximum up-regulation of FasL in vivo. We further show that stimulation of FasL expression depends on PKC-theta-mediated activation of NF-AT pathway. In addition, PKC-theta(-/-) T cells displayed resistance to Fas-mediated apoptosis as well as activation-induced cell death (AICD). In the absence of PKC-theta, Fas-induced activation of apoptotic molecules such as caspase-8, caspase-3, and Bid was not efficient. However, AICD as well as Fas-mediated apoptosis of PKC-theta(-/-) T cells were restored in the presence of high concentration of IL-2, a critical factor required for potentiating T cells for AICD. PKC-theta is thus required for promoting FasL expression and for potentiating Fas-mediated apoptosis.  相似文献   

19.
Ab binding to CD20 has been shown to induce apoptosis in B cells. In this study, we demonstrate that rituximab sensitizes lymphoma B cells to Fas-induced apoptosis in a caspase-8-dependent manner. To elucidate the mechanism by which Rituximab affects Fas-mediated cell death, we investigated rituximab-induced signaling and apoptosis pathways. Rituximab-induced apoptosis involved the death receptor pathway and proceeded in a caspase-8-dependent manner. Ectopic overexpression of FLIP (the physiological inhibitor of the death receptor pathway) or application of zIETD-fmk (specific inhibitor of caspase-8, the initiator-caspase of the death receptor pathway) both specifically reduced rituximab-induced apoptosis in Ramos B cells. Blocking the death receptor ligands Fas ligand or TRAIL, using neutralizing Abs, did not inhibit apoptosis, implying that a direct death receptor/ligand interaction is not involved in CD20-mediated cell death. Instead, we hypothesized that rituximab-induced apoptosis involves membrane clustering of Fas molecules that leads to formation of the death-inducing signaling complex (DISC) and downstream activation of the death receptor pathway. Indeed, Fas coimmune precipitation experiments showed that, upon CD20-cross-linking, Fas-associated death domain protein (FADD) and caspase-8 were recruited into the DISC. Additionally, rituximab induced CD20 and Fas translocation to raft-like domains on the cell surface. Further analysis revealed that, upon stimulation with rituximab, Fas, caspase-8, and FADD were found in sucrose-gradient raft fractions together with CD20. In conclusion, in this study, we present evidence for the involvement of the death receptor pathway in rituximab-induced apoptosis of Ramos B cells with concomitant sensitization of these cells to Fas-mediated apoptosis via Fas multimerization and recruitment of caspase-8 and FADD to the DISC.  相似文献   

20.
Although reactive oxygen species (ROS) have long been suspected to play a key role in Fas (CD95)-induced cell death, the identity of specific ROS involved in this process and the relationship between apoptotic and necrotic cell death induced by Fas are largely unknown. Using electron spin resonance (ESR) spectroscopy, we showed that activation of Fas receptor by its ligand (FasL) in macrophages resulted in a rapid and transient production of hydrogen peroxide (H2O2) and hydroxyl radicals (*OH). The response was visible as early as 5 min and peaked at approximately 45 min post-treatment. Morphological analysis of total death response (apoptosis vs. necrosis) showed dose and time dependency with apoptosis significantly increased at 6 h after the treatment, while necrosis remained at a baseline level. Only at a 35-fold increase in apoptosis did necrosis become significant. Inhibition of apoptosis by a pan-caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-(OMe) fluoromethyl ketone (zVAD-fmk), significantly inhibited cell necrosis, indicating the linkage between the two events. Catalase (H2O2 scavenger) and deferoxamine (*OH scavenger) effectively inhibited the total death response as well as the ESR signals, while superoxide dismutase (SOD) (O2*- scavenger) had minimal effects. These results established the role for H2O2 and *OH as key participants in Fas-induced cell death and indicated apoptosis as a primary mode of cell death preceding necrosis. Because the Fas death pathway is implicated in various inflammatory and immunologic disorders, utilization of antioxidants and apoptosis inhibitors as potential therapeutic agents may be advantageous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号