首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail)   总被引:3,自引:0,他引:3  
Protein phosphatase 2A (PP2A), a major phospho-serine/threonine phosphatase, is conserved throughout eukaryotes. It dephosphorylates a plethora of cellular proteins, including kinases and other signaling molecules involved in cell division, gene regulation, protein synthesis and cytoskeleton organization. PP2A enzymes typically exist as heterotrimers comprising catalytic C-, structural A- and regulatory B-type subunits. The B-type subunits function as targeting and substrate-specificity factors; hence, holoenzyme assembly with the appropriate B-type subunit is crucial for PP2A specificity and regulation. Recently, several biochemical and structural determinants have been described that affect PP2A holoenzyme assembly. Moreover, the effects of specific post-translational modifications of the C-terminal tail of the catalytic subunit indicate that a 'code' might regulate dynamic exchange of regulatory B-type subunits, thus affecting the specificity of PP2A.  相似文献   

2.
3.
4.

Background

Protein phosphatase 4 (PP4) has been known to have critical functions in DNA double strand break (DSB) repair and cell cycle by the regulation of phosphorylation of its target proteins, such as H2AX, RPA2, KAP-1, 53BP1. However, it is largely unknown how PP4 itself is regulated.

Methods

We examined the PP4C methylation on L307 at C-terminal by using methylated-leucine specific antibody. Then with PP4C L307A mutant, we explored that how nonmethylated form of PP4C affects its known cellular functions by immunoprecipitation, immunofluorescence, and DNA DSB repair assays.

Results

Here we show that PP4C is methylated on its C-terminal leucine residue in vivo and this methylation is important for cellular functions mediated by PP4. In the cells PP4C L307A mutant has significantly low activity of dephosphorylation against its known target proteins, and the loss of interaction between L307A PP4 mutant and regulatory subunits, R1, R2, or R3α/β causes the dissociation from its target proteins. Moreover, PP4C L307A mutant loses its role in both DSB repair pathways, HR (homologous recombination) and NHEJ (non-homologous end joining), which phenocopies PP4C depletion.

Conclusion

Our results demonstrate the key site of PP4C methylation and establish the physiological importance of this regulation.  相似文献   

5.
The protein phosphatases PP2A and PP1 are major regulators of a variety of cellular processes in yeast and other eukaryotes. Here, we reveal that both enzymes are direct targets of glucose sensing. Addition of glucose to glucose-deprived yeast cells triggered rapid posttranslational activation of both PP2A and PP1. Glucose activation of PP2A is controlled by regulatory subunits Rts1, Cdc55, Rrd1 and Rrd2. It is associated with rapid carboxymethylation of the catalytic subunits, which is necessary but not sufficient for activation. Glucose activation of PP1 was fully dependent on regulatory subunits Reg1 and Shp1. Absence of Gac1, Glc8, Reg2 or Red1 partially reduced activation while Pig1 and Pig2 inhibited activation. Full activation of PP2A and PP1 was also dependent on subunits classically considered to belong to the other phosphatase. PP2A activation was dependent on PP1 subunits Reg1 and Shp1 while PP1 activation was dependent on PP2A subunit Rts1. Rts1 interacted with both Pph21 and Glc7 under different conditions and these interactions were Reg1 dependent. Reg1-Glc7 interaction is responsible for PP1 involvement in the main glucose repression pathway and we show that deletion of Shp1 also causes strong derepression of the invertase gene SUC2. Deletion of the PP2A subunits Pph21 and Pph22, Rrd1 and Rrd2, specifically enhanced the derepression level of SUC2, indicating that PP2A counteracts SUC2 derepression. Interestingly, the effect of the regulatory subunit Rts1 was consistent with its role as a subunit of both PP2A and PP1, affecting derepression and repression of SUC2, respectively. We also show that abolished phosphatase activation, except by reg1Δ, does not completely block Snf1 dephosphorylation after addition of glucose. Finally, we show that glucose activation of the cAMP-PKA (protein kinase A) pathway is required for glucose activation of both PP2A and PP1. Our results provide novel insight into the complex regulatory role of these two major protein phosphatases in glucose regulation.  相似文献   

6.
7.
Cellular functions of protein phosphatase-1 (PP1), a major eukaryotic serine/threonine phosphatase, are defined by the association of PP1 catalytic subunits with endogenous protein inhibitors and regulatory subunits. Many PP1 regulators share a consensus RVXF motif, which docks within a hydrophobic pocket on the surface of the PP1 catalytic subunit. Although these regulatory proteins also possess additional PP1-binding sites, mutations of the RVXF sequence established a key role of this PP1-binding sequence in the function of PP1 regulators. WT PP1alpha, the C-terminal truncated PP1alpha-(1-306), a chimeric PP1alpha containing C-terminal sequences from PP2A, another phosphatase, PP1alpha-(1-306) with the RVXF-binding pocket substitutions L289R, M290K, and C291R, and PP2A were analyzed for their regulation by several mammalian proteins. These studies established that modifications of the RVXF-binding pocket had modest effects on the catalytic activity of PP1, as judged by recognition of substrates and sensitivity to toxins. However, the selected modifications impaired the sensitivity of PP1 to the inhibitor proteins, inhibitor-1 and inhibitor-2. In addition, they impaired the ability of PP1 to bind neurabin-I, the neuronal regulatory subunit, and G(M), the skeletal muscle glycogen-targeting subunit. These data suggested that differences in RVXF interactions with the hydrophobic pocket dictate the affinity of PP1 for cellular regulators. Substitution of a distinct RVXF sequence in inhibitor-1 that enhanced its binding and potency as a PP1 inhibitor emphasized the importance of the RVXF sequence in defining the function of this and other PP1 regulators. Our studies suggest that the diversity of RVXF sequences provides for dynamic physiological regulation of PP1 functions in eukaryotic cells.  相似文献   

8.
Protein phosphatase 2A (PP2A) is an essential eukaryotic serine/threonine phosphatase known to play important roles in cell cycle regulation. Association of different B-type targeting subunits with the heterodimeric core (A/C) enzyme is known to be an important mechanism of regulating PP2A activity, substrate specificity, and localization. However, how the binding of these targeting subunits to the A/C heterodimer might be regulated is unknown. We have used the budding yeast Saccharomyces cerevisiae as a model system to investigate the hypothesis that covalent modification of the C subunit (Pph21p/Pph22p) carboxyl terminus modulates PP2A complex formation. Two approaches were taken. First, S. cerevisiae cells were generated whose survival depended on the expression of different carboxyl-terminal Pph21p mutants. Second, the major S. cerevisiae methyltransferase (Ppm1p) that catalyzes the methylation of the PP2A C subunit carboxyl-terminal leucine was identified, and cells deleted for this methyltransferase were utilized for our studies. Our results demonstrate that binding of the yeast B subunit, Cdc55p, to Pph21p was disrupted by either acidic substitution of potential carboxyl-terminal phosphorylation sites on Pph21p or by deletion of the gene for Ppm1p. Loss of Cdc55p association was accompanied in each case by a large reduction in binding of the yeast A subunit, Tpd3p, to Pph21p. Moreover, decreased Cdc55p and Tpd3p binding invariably resulted in nocodazole sensitivity, a known phenotype of CDC55 or TPD3 deletion. Furthermore, loss of methylation also greatly reduced the association of another yeast B-type subunit, Rts1p. Thus, methylation of Pph21p is important for formation of PP2A trimeric and dimeric complexes, and consequently, for PP2A function. Taken together, our results indicate that methylation and phosphorylation may be mechanisms by which the cell dynamically regulates PP2A complex formation and function.  相似文献   

9.
The heterotrimeric protein phosphatase 2A (PP2A) complex comprises a catalytic subunit and regulatory A and B subunits that modulate enzyme activity and mediate interactions with other proteins. We report here the results of a systematic analysis of the Arabidopsis (Arabidopsis thaliana) regulatory A subunit gene family, which includes the ROOTS CURL IN NAPHTHYLPHTHALAMIC ACID1 (RCN1), PP2AA2, and PP2AA3 genes. All three A subunit isoforms accumulate in the organs of seedlings and adult plants, suggesting extensive overlap in expression domains. We have isolated pp2aa2 and pp2aa3 mutants and found that their phenotypes are largely normal and do not resemble that of rcn1. Whereas rcn1 pp2aa2 and rcn1 pp2aa3 double mutants exhibit striking abnormalities in all stages of development, the pp2aa2 pp2aa3 double mutant shows only modest defects. Together, these data suggest that RCN1 performs a cardinal role in regulation of phosphatase activity and that PP2AA2 and PP2AA3 functions are unmasked only when RCN1 is absent.  相似文献   

10.
11.
12.
Multiple ferritin subunit genes are reported in mollusks, but they have not been systematically classified. Based on the recently published whole genome sequence, we screened out the four ferritin subunit genes (cgi-fer1–cgi-fer4) from the Pacific oyster Crassostrea gigas. The four genes were predicted to encode two non-secretory and two secretory peptides. Further phylogenetic analyses revealed two groups of non-secretory and secretory ferritin subunits in mollusks. This differs dramatically from the situation in mammals or insects, which contain only non-secretory or secretory ferritin subunits. These results emphasize the evolution of molluscan ferritin subunit genes. The expression patterns of the four genes during early development exhibited dramatic differences, indicating the functional diversity of these genes. Among them, cgi-fer2 was the only gene expressed prevalently and is thus suggested to be the major house-keeping ferritin subunit gene. The expression of the other three genes was tissue-specific beginning in the D-veliger stage. Based on their expression patterns, we inferred important functions of cgi-fer2 in ciliated tissues and of the other three genes in the digestive system. Moreover, our results indicated potentially different roles of ferritin subunit genes during larval shell formation in gastropods and bivalves, which may be helpful in understanding the molecular mechanisms that cause the different shells of gastropods and bivalves. In addition, we conducted a further semi-quantitative analysis of the four genes in four major developmental stages and five adult tissues. The results also revealed dramatically different expression patterns of the genes, which brought additional functional indications. This work may promote studies on molluscan ferritins and shed light on the evolution of ferritin subunit genes among different animal groups.  相似文献   

13.
14.
Protein dephosphorylation by the serine/threonine protein phosphatase 2A (PP2A) modulates a broad array of cellular functions. PP2A normally acts as a heterotrimeric holoenzyme complex comprising a catalytic subunit bound by regulatory A and B subunits. Characterization of the regulatory A subunit isoforms (ROOTS CURL IN NAPHTHYLPHTHALAMIC ACID1 [RCN1], PP2AA2, and PP2AA3) of Arabidopsis thaliana PP2A has shown that RCN1 plays a primary role in controlling root and hypocotyl PP2A activity in seedlings. Here we show that hypocotyl and root growth exhibit different requirements for RCN1-mediated regulation of PP2A activity. Roots of rcn1 mutant seedlings exhibit characteristic abnormalities in cell division patterns at the root apical meristem, as well as reduced growth under ionic, osmotic, and oxidative stress conditions. We constructed chimeric A subunit genes and found that restoration of normal root tip development in rcn1 plants requires both regulatory and coding sequences of RCN1, whereas the hypocotyl elongation defect of rcn1 plants can be complemented by either RCN1 or PP2AA3 transgenes. Furthermore, the RCN1 and PP2AA3 proteins exhibit ubiquitous subcellular localization patterns in seedlings and both associate with membrane compartments. Together, these results show that RCN1-containing PP2A has unique functions that cannot be attributed to isoform-specific expression and localization patterns. Postembryonic RCN1 function is required to maintain normal auxin distribution and stem cell function at the root apex. Our data show that RCN1-regulated phosphatase activity plays a unique role in regulating postembryonic root development and stress response.  相似文献   

15.

Background

Phosphoprotein phosphatase 2A (PP2A), a major serine-threonine protein phosphatase in eukaryotes, is an oligomeric protein comprised of structural (A) and catalytic (C) subunits to which a variable regulatory subunit (B) can associate. The C subunit contains a methyl ester post-translational modification on its C-terminal leucine residue, which is removed by a specific methylesterase (PME-1). Methylesterification is thought to control the binding of different B subunits to AC dimers, but little is known about its physiological significance in vivo.

Methodology/Principal Findings

Here, we show that targeted disruption of the PME-1 gene causes perinatal lethality in mice, a phenotype that correlates with a virtually complete loss of the demethylated form of PP2A in the nervous system and peripheral tissues. Interestingly, PP2A catalytic activity over a peptide substrate was dramatically reduced in PME-1(−/−) tissues, which also displayed alterations in phosphoproteome content.

Conclusions

These findings suggest a role for the demethylated form of PP2A in maintenance of enzyme function and phosphorylation networks in vivo.  相似文献   

16.
Reversible protein phosphorylation catalyzed by kinases and phosphatases is a major form of posttranslational regulation that plays a central role in regulating many signaling pathways. While large families of both protein kinases and protein phosphatases have been identified in plants, kinases outnumber phosphatases. This raises the question of how a relatively limited number of protein phosphatases can maintain protein phosphorylation homeostasis in a cell. Recent studies have shown that Arabidopsis FyPP1 (Phytochrome-associated serine/threonine protein phosphatase 1) and FyPP3 encode the catalytic subunits of protein phosphatase 6 (PP6), and that they directly binds to the A subunits of protein phosphatase 2A (PP2AA proteins), and SAL (SAPS domain-like) proteins to form the heterotrimeric PP6 holoenzyme complex. Emerging evidence is suggesting that PP6, acts in opposition with multiple classes of kinases, to regulate the phosphorylation status of diverse substrates and subsequently numerous developmental processes and responses to environmental stimuli.  相似文献   

17.
Protein serine/threonine phosphatase (PP) 2A is a ubiquitous enzyme with pleiotropic functions. Trimeric PP2A consists of a structural A subunit, a catalytic C subunit, and a variable regulatory subunit. Variable subunits (B, B', and B" families) dictate PP2A substrate specificity and subcellular localization. B-family subunits contain seven WD repeats predicted to fold into a beta-propeller structure. We carried out mutagenesis of Bgamma to identify domains important for association with A and C subunits in vivo. Several internal deletions in Bgamma abolished coimmunoprecipitation of A and C subunits expressed in COS-M6 cells. In contrast, small N- and C-terminal Bgamma deletions had no effect on incorporation into the PP2A heterotrimer. Thus, holoenzyme association of B-family subunits requires multiple, precisely aligned contacts within a core beta-propeller domain. Charge-reversal mutagenesis of Bgamma identified a cluster of conserved critical residues in Bgamma WD repeats 3 and 4. Acidic substitution of paired basic residues in Bgamma (RR165EE) abolished association with wild-type A and C subunits, while fostering incorporation of Bgamma into a PP2A heterotrimer containing an A subunit with an opposite charge-reversal mutation (EE100RR). Thus, binding of A and B subunits requires electrostatic interactions between conserved pairs of glutamates and arginines. By expressing complementary charge-reversal mutants in neuronal PC6-3 cells, we further show that holoenzyme incorporation protects Bgamma from rapid degradation by the ubiquitin/proteasome pathway.  相似文献   

18.
The MEK and extracellular signal-regulated kinase/mitogen-activated protein kinase proteins are established regulators of multicellular development and cell movement. By combining traditional genetic and biochemical assays with a statistical analysis of global gene expression profiles, we discerned a genetic interaction between Dictyostelium discoideum mek1, smkA (named for its role in the suppression of the mek1 mutation), and pppC (the protein phosphatase 4 catalytic subunit gene). We found that during development and chemotaxis, both mek1 and smkA regulate pppC function. In other organisms, the protein phosphatase 4 catalytic subunit, PP4C, functions in a complex with the regulatory subunits PP4R2 and PP4R3 to control recovery from DNA damage. Here, we show that catalytically active PP4C is also required for development, chemotaxis, and the expression of numerous genes. The product of smkA (SMEK) functions as the Dictyostelium PP4R3 homolog and positively regulates a subset of PP4C's functions: PP4C-mediated developmental progression, chemotaxis, and the expression of genes specifically involved in cell stress responses and cell movement. We also demonstrate that SMEK does not control the absolute level of PP4C activity and suggest that SMEK regulates PP4C by controlling its localization to the nucleus. These data define a novel genetic pathway in which mek1 functions upstream of pppC-smkA to control multicellular development and chemotaxis.  相似文献   

19.
The central importance of protein phosphorylation in plant defense responses has been demonstrated by the isolation of several disease-resistance genes that encode protein kinases. In addition, there are many reports of changes in protein phosphorylation accompanying plant responses to pathogens. In contrast, little is known about the role of protein dephosphorylation in regulating plant defenses. We report that expression of the LePP2Ac1 gene, which encodes a catalytic subunit of the heterotrimeric protein phosphatase 2A (PP2Ac), is rapidly induced in resistant tomato leaves upon inoculation with an avirulent strain of Pseudomonas syringae pv. tomato. By analysis of PP2Ac gene sequences from several plant species, we found that PP2Ac genes cluster into two subfamilies, with LePP2Ac1 belonging to subfamily I. Virus-induced gene silencing (VIGS) in Nicotiana benthamiana was used to suppress expression of genes from subfamily I and not from subfamily II. The PP2Ac-silenced plants had greatly decreased PP2A activity, constitutively expressed pathogenesis-related (PR) genes, and developed localized cell death in stems and leaves. In addition, the plants were more resistant to a virulent strain of P. syringae pv. tabaci and showed an accelerated hypersensitive response (HR) to effector proteins from both P. syringae and the fungal pathogen, Cladosporium fulvum. Thus, catalytic subunits of PP2Ac subfamily I act as negative regulators of plant defense responses likely by de-sensitizing protein phosphorylation cascades.  相似文献   

20.
Protein phosphatase 2A (PP2A) is a family of heterotrimeric enzymes with diverse functions under physiologic and pathologic conditions such as Alzheimer's disease. All PP2A holoenzymes have in common a catalytic subunit C and a structural scaffolding subunit A. These core subunits assemble with various regulatory B subunits to form heterotrimers with distinct functions in the cell. Substrate specificity of PP2A in vitro is determined by regulatory subunits with leucine 309 of the catalytic subunit C playing a crucial role in the recruitment of regulatory subunits into the complex. Here we expressed a mutant form of Calpha, L309A, in brain and Harderian (lacrimal) gland of transgenic mice. We found an altered recruitment of regulatory subunits into the complex, demonstrating a role for the carboxyterminal leucine of Calpha in regulating holoenzyme assembly in vivo. This was associated with an increased phosphorylation of tau in brain and an impaired dephosphorylation of vimentin demonstrating that both cytoskeletal proteins are in vivo substrates of distinct PP2A holoenzyme complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号