首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells of Müller glia and microglia react to neuronal injury in glaucoma. The change to a reactive phenotype initiates signaling cascades that may serve a neuroprotective role, but may also proceed to promote damaging effects on retinal neurons. Both effects appear to occur most likely in parallel in glaucoma, but the underlying mechanisms and signaling pathways that specifically promote protective versus destructive roles of reactive glial cells are mostly unclear. More research is needed to understand the homeostatic signaling network in which retinal glia cells are embedded to maintain or restore neuronal function after injury.  相似文献   

2.
Glial cells are thought to protect neurons from various neurological insults. When there is injury to retina, Müller cells, which are the predominant glial element in the retina, undergo significant morphological, cellular and molecular changes. Some of these changes reflect Müller cell involvement in protecting the retina from further damage. Müller cells express growth factors, neurotransmitter transporters and antioxidant agents that could have an important role in preventing excitotoxic damage to retinal neurons. Moreover, Müller cells contact to endothelial cells to facilitate the neovascularization process during hypoxic conditions. Finally, recent studies have pointed to a role of Müller cells in retina regeneration after damage, dedifferentiating to progenitor cells and then giving rise to different neuronal cell types. In this article we will review the role of Müller glia in neuroprotection and regeneration after damage in the retina.  相似文献   

3.
ATP can be released from neurons and act as a neuromodulator in the nervous system. Besides neurons, cortical astrocytes also are capable of releasing ATP from acidic vesicles in a Ca(2+)-dependent way. In the present work, we investigated the release of ATP from Müller glia cells of the chick embryo retina by examining quinacrine staining and by measuring the extracellular levels of ATP in purified Müller glia cultures. Our data revealed that glial cells could be labeled with quinacrine, a reaction that was prevented by incubation of the cells with 1μM bafilomycin A1 or 2μM Evans blue, potent inhibitors of vacuolar ATPases and of the vesicular nucleotide transporter, respectively. Either 50mM KCl or 1mM glutamate was able to decrease quinacrine staining of the cells, as well as to increase the levels of ATP in the extracellular medium by 77% and 89.5%, respectively, after a 5min incubation of the cells. Glutamate-induced rise in extracellular ATP could be mimicked by 100μM kainate (81.5%) but not by 100μM NMDA in medium without MgCl(2) but with 2mM glycine. However, both glutamate- and kainate-induced increase in extracellular ATP levels were blocked by 50μM of the glutamatergic antagonists DNQX and MK-801, suggesting the involvement of both NMDA and non-NMDA receptors. Extracellular ATP accumulation induced by glutamate was also blocked by incubation of the cells with 30μM BAPTA-AM or 1μM bafilomycin A1. These results suggest that glutamate, through activation of both NMDA and non-NMDA receptors, induces the release of ATP from retinal Müller cells through a calcium-dependent exocytotic mechanism.  相似文献   

4.
Müller glia (MG) dedifferentiation into a cycling population of multipotent progenitors is crucial to zebrafish retina regeneration. The mechanisms underlying MG dedifferentiation are unknown. Here we report that heparin-binding epidermal-like growth factor (HB-EGF) is rapidly induced in MG residing at the injury site and that pro-HB-EGF ectodomain shedding is necessary for retina regeneration. Remarkably, HB-EGF stimulates the formation of multipotent MG-derived progenitors in the uninjured retina. We show that HB-EGF mediates its effects via an EGFR/MAPK signal transduction cascade that regulates the expression of regeneration-associated genes, like ascl1a and pax6(b). We also uncover an HB-EGF/Ascl1a/Notch/hb-egf(a)-signaling loop that helps define the zone of injury-responsive MG. Finally, we show that HB-EGF acts upstream of the Wnt/β-catenin-signaling cascade that controls progenitor proliferation. These data provide a link between extracellular signaling and regeneration-associated gene expression in the injured retina and suggest strategies for stimulating retina regeneration in mammals.  相似文献   

5.
6.
7.
To generate monoclonal antibodies, immunogen fractions were purified from embryonic chick retinae by temperature-induced detergent-phase separation employing Triton X-114. Under reducing conditions, the monoclonal antibody (mAb) 2M6 identifies a protein doublet at 40 and 46 x 10(3) Mr, which appears to form disulfide-coupled multimers. The 2M6 antigen is regulated developmentally during retinal histogenesis and its expression correlates with Müller glial cell differentiation. Isolated glial endfeet and retinal glial cells in vitro were found to be 2M6-positive, identified with the aid of the general glia marker mAb R5. mAb 2M6 does not bind to any other glial cell type in the CNS as judged from immunohistochemical data. Cell-type specificity was further substantiated by employing retinal explant and single cell cultures on laminin in conjunction with two novel neuron-specific monoclonal antibodies. MAb 2M6 does not bind either to neurites or to neuronal cell bodies. Incubation of retinal cells in vitro with bromodeoxyuridine (BrdU) and subsequent immunodouble labelling with mAb 2M6 and anti-BrdU reveal that mitotic Müller cells can also express the 2M6 antigen. To investigate whether Müller cell differentiation depends on interactions with earlier differentiating ganglion cells, transections of early embryonic optic nerves in vivo were performed. This operation eliminates ganglion cells. Müller cell development and 2M6 antigen expression were not affected, suggesting a ganglion-cell-independent differentiation process. If, however, the optic nerve of juvenile chicken was crushed to induce a transient degeneration/regeneration process in the retina, a significant increase of 2M6 immunoreactivity became evident. These data are in line with the hypothesis that Müller glial cells, in contrast to other distinct glial cell types, might facilitate neural regeneration.  相似文献   

8.
Müller glia have been demonstrated to display stem-cell properties after retinal damage. Here, we report this potential can be regulated by Sonic hedgehog (Shh) signaling. Shh can stimulate proliferation of Müller glia through its receptor and target gene expressed on them, furthermore, Shh-treated Müller glia are induced to dedifferentiate by expressing progenitor-specific markers, and then adopt cell fate of rod photoreceptor. Inhibition of signaling by cyclopamine inhibits proliferation and dedifferentiation. Intraocular injection of Shh promotes Müller glia activation in the photoreceptor-damaged retina, Shh also enhances neurogenic potential by producing more rhodopsin-positive photoreceptors from Müller glia-derived cells. Together, these results provide evidences that Müller glia act as potential stem cells in mammalian retina, Shh may have therapeutic effects on these cells for promoting the regeneration of retinal neurons.  相似文献   

9.
Glycine (Gly) is considered an obligatory co-agonist at NMDA receptors. Müller glia from the retina harbor functional NMDA receptors, as well as low and high affinity Gly transporters, the later identified as GLYT1. We here studied the regulation of Gly transport in primary cultures of Müller glia, as this process could contribute to the modulation of NMDA receptor activity at glutamatergic synapses in the retina. We demonstrate that neither glutamate stimulation nor the activation or inhibition of protein kinases A or C modify transport. In order to assess a function for Ca2+ and calmodulin (CaM)-dependent processes in the regulation of Gly transport, we explored the participation of Ca2+ concentration, CaM and Ca2+/CaM-dependent enzymes on Gly transporter activity. ATP and carbachol, known to induce Ca2+ waves in Müller cells, as well as caffeine-induced Ca2+ release from intracellular stores stimulated transport, whereas Ca2+ chelation by BAPTA-AM markedly reduced transport. CaM inhibitors W-7, ophiobolin A, R-24571 and trifluoperazine, induced a specific dose-dependent inhibition of transport. The inhibition of CaMKII by the autocamtide-2-related inhibitory peptide or by KN62 caused a decrease in transport which, in the case of KN62, was due to the abolition of the high affinity component, ascribed to GLYT1. Our results further suggest that Gly transport is under cytoskeletal control, as activation of calpain by major increases in [Ca2+]i induced by ionophores, as well as actin destabilization clearly inhibit uptake. We here demonstrate for the first time the participation of CaM, CaMKII and the actin cytoskeleton in the regulation of Gly transport in glia. Ca2+ waves are induced in Müller cells by distinct neuroactive compounds released by neurons and glia, hence the regulation of [Gly] by this system may be of physiological relevance in the control of retinal excitability.  相似文献   

10.
To investigate the cellular basis of tissue integrity in a vertebrate central nervous system (CNS) tissue, we eliminated Müller glial cells (MG) from the zebrafish retina. For well over a century, glial cells have been ascribed a mechanical role in the support of neural tissues, yet this idea has not been specifically tested in vivo. We report here that retinas devoid of MG rip apart, a defect known as retinoschisis. Using atomic force microscopy, we show that retinas without MG have decreased resistance to tensile stress and are softer than controls. Laser ablation of MG processes showed that these cells are under tension in the tissue. Thus, we propose that MG act like springs that hold the neural retina together, finally confirming an active mechanical role of glial cells in the CNS.  相似文献   

11.
In the retina, both neurons and glia differentiate from a common progenitor population. CD44 cell surface antigen is a hyaluronic acid receptor expressed on mature Müller glial cells. We found that in the developing mouse retina, expression of CD44 was transiently observed at or around birth in a subpopulation of c-kit-positive retinal progenitor cells. During in vitro culture, purified CD44/c-kit-positive retinal progenitor cells exclusively differentiated into Müller glial cells and not into neurons, suggesting that CD44 marks a subpopulation of retinal progenitor cells that are fated to become glia. Over-expression of CD44 inhibited the extension of processes by Müller glial cells and neurons. Notch signaling is known to be involved in the specification of retinal progenitors into a glial fate. Activation of Notch signaling increased the number of CD44-positive cells, and treatment with the Notch signal inhibitor, DAPT, at early, but not later, stages of retinal development abolished both CD44-positive cells and Müller glial cells. Together, CD44 was identified as an early cell surface marker of the Müller glia lineage, and Notch signalling was involved in commitment of retinal progenitor cells to CD44 positive Müller glial precursor cells.  相似文献   

12.
The number of proliferating cells in the rodent retina declines dramatically after birth. To determine if extrinsic factors in the retinal micro-environment are responsible for this decline in proliferation, we established cultures of retinal progenitors or Muller glia, and added dissociated retinal neurons from older retinas. The older cells inhibited proliferation of progenitor cells and Muller glia. When these experiments were performed in the presence of TGF(beta)RII-Fc fusion protein, an inhibitor of TGF(beta) signaling, proliferation was restored. This suggests a retina-derived TGF(beta) signal is responsible for the developmental decline in retinal proliferation. TGFbeta receptors I and II are expressed in the retina and are located in nestin-positive progenitors early in development and glast-positive Muller glia later in development. RT-PCR and immunofluorescence data show TGF(beta)2 is the most highly expressed TGF(beta)ligand in the postnatal retina, and it is expressed by inner retinal neurons. Addition of either TGF(beta)1 or TGF(beta)2 to postnatal day 4 retinas significantly inhibited progenitor proliferation, while treatment of explanted postnatal day 6 retinas with TGF(beta) signaling inhibitors resulted in increased proliferation. Last, we tested the effects of TGF(beta) in vivo by injections of TGF(beta) signaling inhibitors: when TGF(beta) signaling is inhibited at postnatal day 5.5, proliferation is increased in the central retina; and when co-injected with EGF at postnatal day 10, TGF(beta)inhibitors stimulate Muller glial proliferation. In sum, these results show that retinal neurons produce a cytostatic TGF(beta) signal that maintains mitotic quiescence in the postnatal rat retina.  相似文献   

13.
The retina in adult mammals, unlike those in lower vertebrates such as fish and amphibians, is not known to support neurogenesis. However, when injured, the adult mammalian retina displays neurogenic changes, raising the possibility that neurogenic potential may be evolutionarily conserved and could be exploited for regenerative therapy. Here, we show that Müller cells, when retrospectively enriched from the normal retina, like their radial glial counterparts in the central nervous system (CNS), display cardinal features of neural stem cells (NSCs), i.e., they self-renew and generate all three basic cell types of the CNS. In addition, they possess the potential to generate retinal neurons, both in vitro and in vivo. We also provide direct evidence, by transplanting prospectively enriched injury-activated Müller cells into normal eye, that Müller cells have neurogenic potential and can generate retinal neurons, confirming a hypothesis, first proposed in lower vertebrates. This potential is likely due to the NSC nature of Müller cells that remains dormant under the constraint of non-neurogenic environment of the adult normal retina. Additionally, we demonstrate that the mechanism of activating the dormant stem cell properties in Müller cells involves Wnt and Notch pathways. Together, these results identify Müller cells as latent NSCs in the mammalian retina and hence, may serve as a potential target for cellular manipulation for treating retinal degeneration.  相似文献   

14.
Notch-Delta signaling has been implicated in several alternative modes of function in the vertebrate retina. To further investigate these functions, we examined retinas from zebrafish embryos in which bidirectional Notch-Delta signaling was inactivated either by the mind bomb (mib) mutation, which disrupts E3 ubiquitin ligase activity, or by treatment with gamma-secretase inhibitors, which prevent intramembrane proteolysis of Notch and Delta. We found that inactivating Notch-Delta signaling did not prevent differentiation of retinal neurons, but it did disrupt spatial patterning in both the apical-basal and planar dimensions of the retinal epithelium. Retinal neurons differentiated, but their laminar arrangement was disrupted. Photoreceptor differentiation was initiated normally, but its progression was slowed. Although confined to the apical retinal surface as in normal retinas, the planar organization of cone photoreceptors was disrupted: cones of the same spectral subtype were clumped rather than regularly spaced. In contrast to neurons, Müller glia failed to differentiate suggesting an instructive role for Notch-Delta signaling in gliogenesis.  相似文献   

15.
  1. Download : Download high-res image (141KB)
  2. Download : Download full-size image
  相似文献   

16.
17.
18.
Inwardly rectifying potassium (Kir) channels in Müller glia play a critical role in the spatial buffering of potassium ions that accumulate during retinal activity. To this end, Kir channels show a polarized subcellular distribution with the predominant channel subunit in Müller glia, Kir4.1, clustered in the endfeet of these cells at the inner limiting membrane. However, the molecular mechanisms underlying their distribution have yet to be identified. Here, we show that laminin, agrin and alpha-dystroglycan (DG) codistribute with Kir4.1 at the inner limiting membrane in the retina and that laminin-1 induces the clustering of alpha-DG, syntrophin and Kir4.1 in Müller cell cultures. In addition, we found that alpha-DG clusters were enriched for agrin and sought to investigate the role of agrin in their formation using recombinant C-agrins. Both C-agrin 4,8 and C-agrin 0,0 failed to induce alpha-DG clustering and neither of them potentiated the alpha-DG clustering induced by laminin-1. Finally, our data reveal that deletion of the PDZ-ligand domain of Kir4.1 prevents their laminin-induced clustering. These findings indicate that both laminin-1 and alpha-DG are involved in the distribution of Kir4.1 to specific Müller cell membrane domains and that this process occurs via a PDZ-domain-mediated interaction. Thus, in the basal lamina laminin is an essential regulator involved in clearing excess potassium released during neuronal activity, thereby contributing to the maintenance of normal synaptic transmission in the retina.  相似文献   

19.
The polarized morphology of radial glia allows them to functionally interconnect different layers of CNS tissues including the retina, cerebellum, and cortex. A likely mechanism involves propagation of transcellular Ca2+ waves which were proposed to involve purinergic signaling. Because it is not known whether ATP release is required for astroglial Ca2+ wave propagation we investigated this in mouse Müller cells, radial astroglia-like retinal cells in which in which waves can be induced and supported by Orai/TRPC1 (transient receptor potential isoform 1) channels. We found that depletion of endoplasmic reticulum (ER) stores triggers regenerative propagation of transcellular Ca2+ waves that is independent of ATP release and activation of P2X and P2Y receptors. Both the amplitude and kinetics of transcellular, depletion-induced waves were resistant to non-selective purinergic P2 antagonists such as pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS). Thus, store-operated calcium entry (SOCE) is itself sufficient for the initiation and subcellular propagation of calcium waves in radial glia.  相似文献   

20.
Retinal glial (Müller) cells were grown from explants of early postnatal rabbit retinae. The resulting monolayers of flat cells were exposed to control media (containing 5.85 mM K+), and to media with enhanced K+ concentrations (10 and 20 mM) or arginine-vasopressin (AVP, 20 micrograms/ml) or epithelial growth factor (EGF, 10 ng/ml). Autoradiographically, protein synthesis was quantified as L-[3H]-lysine incorporation, and DNA synthesis as [3H]-thymidine incorporation. Furthermore, the activity of Na+,K(+)-ATPase was measured radiochemically. Short exposure to either moderately enhanced K+ concentrations (10 mM) or to AVP, stimulated L-[3H]-lysine incorporation into the cells. Long-lasting exposure to either high K+ concentrations (20 mM) or to EGF stimulated [3H]-uptake. The Na+,K(+)-ATPase activity of cell cultures increased with increasing K+ concentration of the media. It is suggested that release of K+ by active neuronal compartments stimulates local protein synthesis of glial cells, resulting in the formation of glial sheaths with active K+ uptake capacity. Strong K+ release may even induce glial proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号