首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
Seo YH  Jung HJ  Shin HT  Kim YM  Yim H  Chung HY  Lim IK  Yoon G 《Aging cell》2008,7(6):894-907
Glycogen biogenesis and its response to physiological stimuli have often been implicated in age-related diseases. However, their direct relationships to cell senescence and aging have not been clearly elucidated. Here, we report the central involvement of enhanced glycogenesis in cellular senescence. Glycogen accumulation, glycogen synthase (GS) activation, and glycogen synthase kinase 3 (GSK3) inactivation commonly occurred in diverse cellular senescence models, including the liver tissues of aging F344 rats. Subcytotoxic concentrations of GSK3 inhibitors (SB415286 and LiCl) were sufficient to induce cellular senescence with increased glycogenesis. Interestingly, the SB415286-induced glycogenesis was irreversible, as were increased levels of reactive oxygen species and gain of senescence phenotypes. Blocking GSK3 activity using siRNA or dominant negative mutant (GSK3beta-K85A) also effectively induced senescence phenotypes, and GS knock-down significantly attenuated the stress-induced senescence phenotypes. Taken together, these results clearly demonstrate that augmented glycogenesis is not only common, but is also directly linked to cellular senescence and aging, suggesting GSK3 and GS as novel modulators of senescence, and providing new insight into the metabolic backgrounds of aging and aging-related pathogenesis.  相似文献   

8.
Appropriate regulation of the Integrated stress response (ISR) and mTORC1 signaling are central for cell adaptation to starvation for amino acids. Halofuginone (HF) is a potent inhibitor of aminoacylation of tRNAPro with broad biomedical applications. Here, we show that in addition to translational control directed by activation of the ISR by general control nonderepressible 2 (GCN2), HF increased free amino acids and directed translation of genes involved in protein biogenesis via sustained mTORC1 signaling. Deletion of GCN2 reduced cell survival to HF whereas pharmacological inhibition of mTORC1 afforded protection. HF treatment of mice synchronously activated the GCN2-mediated ISR and mTORC1 in liver whereas Gcn2-null mice allowed greater mTORC1 activation to HF, resulting in liver steatosis and cell death. We conclude that HF causes an amino acid imbalance that uniquely activates both GCN2 and mTORC1. Loss of GCN2 during HF creates a disconnect between metabolic state and need, triggering proteostasis collapse.  相似文献   

9.
The integrated stress response (ISR), a defense mechanism cells employ when under stress (e.g., amino acid deprivation), causes suppression of global protein synthesis along with the paradoxical increased expression of a host of proteins that are useful in combating various stresses. Genes that were similarly differentially expressed under conditions of either leucine- or cysteine-depletion were identified. Many of the genes known to contain an amino acid response element and to be induced in response to eIF2α phosphorylation and ATF4 heterodimer binding (ATF3, C/EBPβ, SLC7A1, SLC7A11, and TRIB3), as well as others shown to be induced downstream of eIF2α phosphorylation (C/EBPγ, CARS, SARS, CLCN3, CBX4, and PPP1R15A) were among the upregulated genes. Evidence for the induction of the ISR in these cells also included the increased phosphorylation of eIF2α and increased protein abundance of ATF4, ATF3, and ASNS in cysteine- and leucine-depleted cells. Based on genes highly differentially expressed in both leucine- and cysteine-deficient cells, a list of 67 downregulated and 53 upregulated genes is suggested as likely targets of essential amino acid deprivation in mammalian cells.  相似文献   

10.
11.
The integrated stress response (ISR) is critical for cancer cell survival during stress stimuli and has been implicated in the resistance to cancer therapeutics, in which the mechanism, however, is poorly understood. Here, we showed that paclitaxel, the major chemotherapy drug for breast cancer, induced ISR and phosphorylated ser51 residue of EIF2S1 by EIF2AK3 and EIF2AK4. When exposed to paclitaxel, cancer cells activated the EIF2AK3/EIF2AK4‐pEIF2S1‐ATF4 axis and maintained redox homoeostasis by inducing expression of the major antioxidant enzymes HMOX1, SHMT2 and SLC7A11. Paclitaxel‐mediated cell death was significantly increased following loss of ISR or ATF4 expression. This sensitizing effect could be partially rescued by Trolox, a ROS scavenger. We demonstrated that the alternative initiation factor EIF2A was essential for cancer cell survival after paclitaxel‐mediated ISR both in vitro and in vivo. Moreover, patients with breast cancer exhibited higher ISR after chemotherapy, and the elevated mRNA levels of HMOX1, SHMT2 and EIF2A were correlated with poor prognosis. Collectively, our findings reveal a novel mechanism for paclitaxel resistance and suggest that targeting EIF2A combined with ISR agonist may be a potential treatment regimen to overcome drug resistance for breast cancer.  相似文献   

12.
Glycogen synthase (GS) is activated by glucose/glycogen depletion in skeletal muscle cells, but the contributing signaling pathways, including the chief GS regulator GSK3, have not been fully defined. The MEK/ERK pathway is known to regulate GSK3 and respond to glucose. The aim of this study was to elucidate the GSK3 and MEK/ERK pathway contribution to GS activation by glucose deprivation in cultured human myotubes. Moreover, we tested the glucose-dependence of GSK3 and MEK/ERK effects on GS and angiotensin (1–7) actions on these pathways. We show that glucose deprivation activated GS, but did not change phospho-GS (Ser640/1), GSK3β activity or activity-activating phosphorylation of ERK1/2. We then treated glucose-replete and -depleted cells with SB415286, U0126, LY294 and rapamycin to inhibit GSK3, MEK1/2, PI3K and mTOR, respectively. SB415286 activated GS and decreased the relative phospho-GS (Ser640/1) level, more in glucose-depleted than -replete cells. U0126 activated GS and reduced the phospho-GS (Ser640/1) content significantly in glucose-depleted cells, while GSK3β activity tended to increase. LY294 inactivated GS in glucose-depleted cells only, without affecting relative phospho-GS (Ser640/1) level. Rapamycin had no effect on GS activation. Angiotensin-(1–7) raised phospho-ERK1/2 but not phospho-GSK3β (Ser9) content, while it inactivated GS and increased GS phosphorylation on Ser640/1, in glucose-replete cells. In glucose-depleted cells, angiotensin-(1–7) effects on ERK1/2 and GS were reverted, while relative phospho-GSK3β (Ser9) content decreased. In conclusion, activation of GS by glucose deprivation is not due to GS Ser640/1 dephosphorylation, GSK3β or ERK1/2 regulation in cultured myotubes. However, glucose depletion enhances GS activation/Ser640/1 dephosphorylation due to both GSK3 and MEK/ERK inhibition. Angiotensin-(1–7) inactivates GS in glucose-replete cells in association with ERK1/2 activation, not with GSK3 regulation, and glucose deprivation reverts both hormone effects. Thus, the ERK1/2 pathway negatively regulates GS activity in myotubes, without involving GSK3 regulation, and as a function of the presence of glucose.  相似文献   

13.
14.
Neurogenesis plays an important role in adult hippocampal function, and this process can be modulated by intracellular calcium. The activation of transient receptor potential vanilloid 4 (TRPV4) induces an increase in intracellular calcium concentration, but whether neurogenesis can be modulated by TRPV4 activation remains unclear. Here, we report that intracerebroventricular injection of the TRPV4 agonist GSK1016790A for 5 days enhanced the proliferation of stem cells in the hippocampal dentate gyrus (DG) of adult mice without affecting neurite growth, differentiation, or survival of newborn cells. GSK1016790A induced increases in the hippocampal protein levels of cyclin-dependent kinase (CDK) 6, CDK2, cyclin E1, and cyclin A2 but did not affect CDK4 and cyclin D1 expression. The phosphorylation of retinoblastoma protein (Rb) in hippocampi was enhanced in GSK1016790A-injected mice compared with control mice. Moreover, hippocampal protein levels of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation were enhanced by GSK1016790A. Finally, GSK1016790A-enhanced proliferation was markedly blocked by a MAPK/ERK kinase or p38 MAPK antagonist (U0126 or SB203580, respectively). The increased protein levels of CDK2 and CDK6, as well as those of cyclin E1 and cyclin A2, in GSK1016790A-injected mice were substantially reduced by co-injection of U0126 or SB203580. We conclude that TRPV4 activation results in the proliferation of stem cells in the adult hippocampal DG, which is likely mediated through ERK1/2 and p38 MAPK signaling to increase the expression of CDKs (CDK6 and CDK2) and cyclins (cyclin E1 and A2), phosphorylate Rb consequently, and accelerate the cell cycle ultimately.  相似文献   

15.
16.
Cholestatic liver disorders are accompanied by the hepatic accumulation of cytotoxic bile acids that induce cell death. Increases in cAMP protect hepatocytes from bile acid-induced apoptosis by a cAMP-guanine exchange factor (cAMP-GEF)/phosphoinositide-3-kinase (PI3K)/Akt pathway. The aim of these studies was to identify the downstream substrate in this pathway and to determine at what level in the apoptotic cascade cytoprotection occurs. Since inhibitory phosphorylation of glycogen synthase kinase-3 (GSK) occurs downstream of PI3K/Akt and this phosphorylation has been implicated in cell survival, we conducted studies to determine whether GSK was downstream in cAMP-GEF/PI3K/Akt-mediated cytoprotection. Our results show that treatment of hepatocytes with the cAMP-GEF-specific analog, 4-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cAMP, results in PI3K-dependent phosphorylation of GSK. Direct chemical inhibition of GSK in rat hepatocytes or human HUH7-NTCP cells with several structurally and functionally distinct inhibitors including bromoindirubin-3'-oxime (BIO), maleimides (SB216763, SB415286), thiadiazolidine derivatives, and LiCl attenuates apoptosis induced by glycochenodeoxycholate (GCDC). In addition, genetic silencing of the GSK β isoform with small interfering RNA attenuates GCDC apoptosis in HUH7-NTCP cells. Adenoviral inhibition of the Rap1 blocks both cAMP-GEF-mediated cytoprotection against GCDC-induced apoptosis and Akt/GSK3β phosphorylation. GCDC-induced phosphorylation of the proapoptotic kinase, c-Jun NH(2)-terminal kinase (JNK) is inhibited by GSK inhibition or cAMP-GEF activation. GCDC-induced apoptosis is accompanied by phosphorylation of the endoplasmic reticulum stress markers pIEF2α and IRE-1, and pretreatment with the cAMP-GEF analog or GSK inhibitors prevents this phosphorylation. Collectively, our results support the presence of a cAMP/cAMP-GEF/Rap1/PI3K/Akt/GSKβ survival pathway in hepatocytes that inhibits bile acid-induced JNK phosphorylation.  相似文献   

17.
18.
Transforming growth factor β1 (TGF β1) induces Mv1Lu cell senescence by persistently producing mitochondrial reactive oxygen species (ROS) through decreased complex IV activity. Here, we investigated the molecular mechanism underlying the effect of TGF β1 on mitochondrial complex IV activity. TGF β1 progressively phosphorylated the negative regulatory sites of both glycogen synthase kinase 3 (GSK3) α and β, corresponding well to the intracellular ROS generation profile. Pre-treatment of N-acetyl cysteine, an antioxidant, did not alter this GSK3 phosphorylation (inactivation), whereas pharmacological inhibition of GSK3 by SB415286 significantly increased mitochondrial ROS, implying that GSK3 phosphorylation is an upstream event of the ROS generation. GSK3 inhibition by SB415286 decreased complex IV activity and cellular O(2) consumption rate and eventually induced senescence of Mv1Lu cell. Similar results were obtained with siRNA-mediated knockdown of GSK3. Moreover, we found that GSK3 not only exists in cytosol but also in mitochondria of Mv1Lu cell and the mitochondrial GSK3 binds complex IV subunit 6b which has no electron carrier and is topologically located in the mitochondrial intermembrane space. Involvement of subunit 6b in controlling complex IV activity and overall respiration rate was proved with siRNA-mediated knockdown of subunit 6b. Finally, TGF β1 treatment decreased the binding of the subunit 6b to GSK3 and subunit 6b phosphorylation. Taken together, our results suggest that GSK3 inactivation is importantly involved in TGF β1-induced complex IV defects through decreasing phosphorylation of the subunit 6b, thereby contributing to senescence-associated mitochondrial ROS generation.  相似文献   

19.
20.
Glycogen synthase kinase-3β (GSK3β) and casein kinase-1α (CK1α) are multifunctional kinases that play critical roles in the regulation of a number of cellular processes. In spite of their importance, molecular imaging tools for noninvasive and real-time monitoring of their kinase activities have not been devised. Here we report development of the bioluminescent GSK3β and CK1α reporter (BGCR) based on firefly luciferase complementation. Treatment of SW620 cells stably expressing the reporter with inhibitors of GSK3β (SB415286 and LiCl) or CK1α (CKI-7) resulted in dose- and time-dependent increases in BGCR activity that were validated using Western blotting. No increase in bioluminescence was observed in the case of S37A mutant (GSK3β inhibitors) or S45A mutant (CKI-7), demonstrating the specificity of the reporter. Imaging of mice tumor xenograft generated with BGCR-expressing SW620 cells following treatment with LiCl showed unique oscillations in GSK3β activity that were corroborated by phosphorylated GSK3β immunoblotting. Taken together, the BGCR is a novel molecular imaging tool that reveals unique insight into GSK3β and CK1α kinase activities and may provide a powerful tool in experimental therapeutics for rapid optimization of dose and schedule of targeted therapies and for monitoring therapeutic response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号