首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative real-time PCR (qPCR) is an effective and widely used method to analyze expression patterns of target genes. Selection of stable reference genes is a prerequisite for accurate normalization of target gene expression by qRT-PCR. In Iris germanica L., no studies have yet been published regarding the evaluation of potential reference genes. In this study, nine candidate reference genes were assessed at different flower developmental stages and in different tissues by four different algorithms (GeNorm, NormFinder, BestKeeper, and RefFinder). The results revealed that ACT11 (Actin 11) and EF1α (Elongation factor 1 alpha) were the most stable reference genes in different tissues, whereas TUA (Tubulin alpha) and UBC9 (Ubiquitin-protein ligase 9) were the most stable ones in different flower developmental stages. UBC9 and ACT11 were the most stable reference genes in all of the tested samples, while the SAMDC (S-Adenosylmethionine decarboxylase) showed the least stability. Finally, to validate the suitability of the selected reference genes, the relative expression level of IgTPS (beta-caryophyllene synthase) was assessed and highlighted the importance of suitable reference gene selection. This work constitutes the first systematic evaluation of potential reference genes in I. germanica and provides guidelines for future research on gene function and molecular mechanisms on I. germanica and related species.  相似文献   

2.
The definition of relatively stable expressed internal reference genes is essential in both traditional blotting quantification and as a modern data quantitative strategy. Appropriate internal reference genes can accurately standardize the expression abundance of target genes to avoid serious experimental errors. In this study, the expression profiles of ten candidate genes, ACT1, ACT2, GAPDH, eIF1, eIF2, α-TUB, β-TUB, TBP, RNA Pol II and RP II, were calculated for a suitable reference gene selection in Paeonia ostii T. Hong et J. X. Zhang leaves under various drought stress conditions. Data were processed by the four regularly used evaluation software. A comprehensive analysis revealed that RNA Pol II was the most stable gene and eIF2 was the least stable one. In addition, the geNorm program provided the optimal choice of two reference gene combination, RNA Pol II and β-TUB, for qRT-PCR normalization in P. ostii subjected to different drought stress levels. Our research provided convenience for gene expression analysis in P. ostii under drought stress and promoted research of effective methods to alleviate P. ostii drought stress in the future.  相似文献   

3.
4.
5.
6.
7.
8.
Loquat (Eriobotrya japonica Lindl.) is a subtropical evergreen fruit tree that produces fruits with abundant nutrients and medicinal components. Confirming suitable reference genes for a set of loquat samples before qRT-PCR experiments is essential for the accurate quantification of gene expression. In this study, eight candidate reference genes were selected from our previously published RNA-seq data, and primers for each candidate reference gene were designed and evaluated. The Cq values of the candidate reference genes were calculated by RT-qPCR in 31 different loquat samples, including 12 subgroups of developing or abiotic-stressed tissues. Different combinations of stable reference genes were screened according to a comprehensive rank, which was synthesized from the results of four algorithms, including the geNorm, NormFinder, BestKeeper and ΔCt methods. The screened reference genes were verified by normalizing EjLGA1 in each subgroup. The obtained suitable combinations of reference genes for accurate normalization were GAPDH, EF1α and ACT for floral development; GAPDH, UBCE and ACT for fruit setting; EF1α, GAPDH and eIF2B for fruit ripening; ACT, EF1α and UBCE for leaves under heat stress; eIF2B, UBCE and EF1α for leaves under freezing stress; EF1α, TUA and UBCE for leaves under salt stress; ACT, EF1α and eIF2B for immature pulp under freezing stress; ACT, UBCE and eIF2B for immature seeds under freezing stress; EF1α, eIF2B and UBCE for both immature pulp and seeds under freezing stress; UBCE, TUB and TUA for red-fleshed fruits under cold-storage stress; eIF2B, RPS3 and TUB for white-fleshed fruits under cold-storage stress; and eIF2B, UBCE and RPS3 for both red- and white-fleshed fruits under cold-storage stress. This study obtained different combinations of stable reference genes for accurate normalization in twelve subgroups of developing or abiotic-stressed tissues in loquat. To our knowledge, this is the first report to obtain stable reference genes for normalizing gene expression of abiotic-stressed tissues in E. japonica. The use of the three most stable reference genes could increase the reliability of future quantification experiments.  相似文献   

9.
Herbaceous peony (Paeonia lactiflora Pall.), as a high-end cut flower in the international market, has high ornamental and medicinal values. But in Northern China, drought is a major environmental factor influencing the growth and development of P. lactiflora. Quantitative real-time polymerase chain reaction (qRT-PCR) can evaluate gene expression levels under different stress conditions, and stable internal reference is the key for qRT-PCR. At present, there is no systematic screening of internal reference for correcting gene expressions of P. lactiflora in response to drought stress. In this study, 10 candidate genes [ubiquitin (UBQ2), UBQ1, elongation factor 1-α (EF-1α), Histidine (His), eukaryotic initiation factor (eIF), tubulin (TUB), actin (ACT), UBQ3, ACT2, RNA polymerase II (RNA Pol II)] were chosen, and 4 analysis methods were used to compare the stabilities for these 10 genes coping with drought stress. Due to the difference of operation methods, the results of different analysis were distinct, and the final comprehensive analysis indicated that EF-1α was a relatively stable internal reference gene for P. lactiflora under drought stress. Also, UBQ1 and UBQ2 were the best reference gene combination according to GeNorm analysis. This study will lay a foundation for screening the key genes of P. lactiflora in response to drought stress.  相似文献   

10.
The lignocellulosic crop Miscanthus spp. has been identified as a good candidate for biomass production. The responses of Miscanthus sinensis Anderss. to salinity were studied to satisfy the needs for high yields in marginal areas and to avoid competition with food production. The results indicated that the relative advantages of the tolerant accession over the sensitive one under saline conditions were associated with restricted Na+ accumulation in shoots. Seedlings of two accessions (salt-tolerant ‘JM0119’ and salt-sensitive ‘JM0099’) were subjected to 0 (control), 100, 200, and 300 mM NaCl stress to better understand the salt-induced biochemical responses of genes involved in Na+ accumulation in M. sinensis. The adaptation responses of genes encoding for Na+ /H+ antiporters, NHX1 and SOS1 to NaCl stress were examined in JM0119 and JM0099.The cDNA sequences of genes examined were highly conserved among the relatives of M. sinensis based on the sequencing on approximate 600 bp-long cDNA fragments obtained from degenerate PCR. These salt-induced variations of gene expression investigated by quantitative real-time PCR provided evidences for insights of the molecular mechanisms of salt tolerance in M. sinensis. The expression of NHX1 was up-regulated by salt stress in JM0119 shoot and root tissues. However, it was hardly affected in JM0099 shoot tissue except for a significant increase at the 100 mM salt treatment, and it was salt-suppressed in the JM0099 root tissue. In the root tissue, the expression of SOS1 was induced by the high salt treatment in JM0119 but repressed by all salt treatments in JM0099. Thus, the remarkably higher expression of NHX1 and SOS1 were associated with the resistance to Na+ toxicity by regulation of the Na+ influx, efflux, and sequestration under different salt conditions.  相似文献   

11.
12.
Seven in absentia (SINA) family proteins play a central role in plant growth, development and resistance to abiotic stress. However, their biological function in plant response to cold stress is still largely unknown. In this work, a seven in absentia gene IbSINA5 was isolated from sweet potato. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses demonstrated that IbSINA5 was ubiquitously expressed in various tissues and organs of sweet potato, with a predominant expression in fibrous roots, and was remarkably induced by cold, drought and salt stresses. Subcellular localization assays revealed that IbSINA5-GFP fusion protein was mainly localized in cytoplasm and nucleus. Overexpression of IbSINA5 in sweet potato led to dramatically improved resistance to cold stress in transgenic plants, which was associated with the up-regulated expression of IbCOR (cold-regulated) genes, increased proline production, and decreased malondialdehyde (MDA) and H2O2 accumulation in the leaves of transgenic plants. Furthermore, transient expression of IbCBF3, a C-repeat binding factor (CBF) gene, in the leaf protoplasts of wild type sweet potato plants up-regulated the expression of both IbSINA5 and IbCOR genes. Our results suggest that IbSINA5 could function as a positive regulator in the cold signaling pathway through a CBF-SINA-COR mediated module in sweet potato, and have a great potential to be used as a candidate gene for the future breeding of new plant species with improved cold resistance.  相似文献   

13.
14.
To develop cold-tolerant maize germplasms and identify the activation of INDUCER OF CRT/DRE-BINDING FACTOR EXPRESSION (ICE1) expression in response to cold stress, RT-PCR was used to amplify the complete open reading frame sequence of the ICE1 gene and construct the plant expression vector pCAMBIA3301-ICE1-Bar. Immature maize embryos and calli were transformed with the recombinant vector using Agrobacterium tumefaciens-mediated transformations. From the regenerated plantlets, three T1 lines were screened and identified by PCR. A Southern blot analysis showed that a single copy of the ICE1 gene was integrated into the maize (Zea mays L.) genomes of the three T1 generations. Under low temperature-stress conditions (4°C), the relative conductivity levels decreased by 27.51%–31.44%, the proline concentrations increased by 12.50%–17.50%, the malondialdehyde concentrations decreased by 16.78%–18.37%, and the peroxidase activities increased by 19.60%–22.89% in the T1 lines compared with those of the control. A real-time quantitative PCR analysis showed that the ICE1 gene was ectopically expressed in the roots, stems, and leaves of the T1 lines. ICE1 positively regulates the expression of the CBF genes in response to cold stress. Thus, this study showed the successful transformation of maize with the ICE1 gene, resulting in the generation of a new maize germplasm that had increased tolerance to cold stress.  相似文献   

15.
16.
17.
Reference genes are critical for normalization of the gene expression level of target genes. The widely used housekeeping genes may change their expression levels at different tissue under different treatment or stress conditions. Therefore, systematical evaluation on the housekeeping genes is required for gene expression analysis. Up to date, no work was performed to evaluate the housekeeping genes in cotton under stress treatment. In this study, we chose 10 housekeeping genes to systematically assess their expression levels at two different tissues (leaves and roots) under two different abiotic stresses (salt and drought) with three different concentrations. Our results show that there is no best reference gene for all tissues at all stress conditions. The reliable reference gene should be selected based on a specific condition. For example, under salt stress, UBQ7, GAPDH and EF1A8 are better reference genes in leaves; TUA10, UBQ7, CYP1, GAPDH and EF1A8 were better in roots. Under drought stress, UBQ7, EF1A8, TUA10, and GAPDH showed less variety of expression level in leaves and roots. Thus, it is better to identify reliable reference genes first before performing any gene expression analysis. However, using a combination of housekeeping genes as reference gene may provide a new strategy for normalization of gene expression. In this study, we found that combination of four housekeeping genes worked well as reference genes under all the stress conditions.  相似文献   

18.
Invertase (INV), a key enzyme in sucrose metabolism, irreversibly catalyzes the hydrolysis of sucrose to glucose and fructose, thus playing important roles in plant growth, development, and biotic and abiotic stress responses. In this study, we identified 27 members of the BnaINV family in Brassica napus. We constructed a phylogenetic tree of the family and predicted the gene structures, conserved motifs, cis-acting elements in promoters, physicochemical properties of encoded proteins, and chromosomal distribution of the BnaINVs. We also analyzed the expression of the BnaINVs in different tissues and developmental stages in the B. napus cultivar Zhongshuang 11 using qRT-PCR. In addition, we analyzed RNA-sequencing data to explore the expression patterns of the BnaINVs in four cultivars with different harvest indices and in plants inoculated with the pathogenic fungus Sclerotinia sclerotiorum. We used WGCNA (weighted coexpression network analysis) to uncover BnaINVregulatory networks. Finally, we explored the expression patterns of several BnaINV genes in cultivars with long (Zhongshuang 4) and short (Ningyou 12) siliques. Our results suggest that BnaINVs play important roles in the growth and development of rapeseed siliques and the defense response against pathogens. Our findings could facilitate the breeding of high-yielding B. napus cultivars with strong disease resistance.  相似文献   

19.
Soybean (Glycine max (L.) Merr.) is an important cultivated crop, which requires much water during its growth, and drought seriously affects soybean yields. Studies have shown that the expression of small heat shock proteins can enhance drought resistance, cold resistance and salt resistance of plants. In this experiment, soybean GmHsps_p23-like gene was successfully cloned by RT-PCR, the protein encoded by the GmHsps_p23-like gene was subjected to bioinformatics analysis, and the pCAMBIA3301-GmHsps_p23-like overexpression vector and pCBSG015-GmHsps_p23-like gene editing vector were constructed. Agrobacterium-mediated method was used to transform soybeans to obtain positive plants. RT-PCR detection, rehydration experiment and drought resistance physiological and biochemical index detection were performed on the T2 generation positive transgenic soybean plants identified by PCR and Southern hybridization. The results showed that the overexpression vector plant GmHsps_p23-like gene expression increased. After rehydration, the transgenic overexpression plants returned to normal growth, and the damage to the plants was low. After drought stress, the SOD and POD activities and the PRO content of the transgenic overexpression plants increased, while the MDA content decreased. The reverse was true for soybean plants with genetically modified editing vectors. The drought resistance of the overexpressed soybeans under drought stress was higher than that of the control group, and had a stronger drought resistance. It showed that the expression of soybean GmHsps_p23-like gene can improve the drought resistance of soybean. The cloning and functional verification of soybean GmHsps_p23-like gene had not been reported yet. This is the first time that PCR technology has been used to amplify the soybean GmHsps_p23-like gene and construct an expression vector for this gene. This research has laid the foundation for transgenic technology to improve plant drought resistance and cultivate new drought-resistant transgenic soybean varieties.  相似文献   

20.
The appropriate reference genes are crucial for normalization of the target gene expression in qRT-PCR analysis. Broomcorn millet (Panicum miliaceum L.) is one of the most important crops in drought areas worldwide, while the systematical investigation and evaluation of reference genes has not been investigated in this species up to now. Here, 9 commonly used reference genes were selected to detect their expressional stability in different tissues and under different stresses in broomcorn millet. ΔCt, BestKeeper, NormFinder and GeNorm approaches were used to evaluate the potentiality of these candidate genes as the reference gene in broomcorn millet. Taken together, results found that 18S and GAPDH were the suitable reference genes for gene expression normalization in different tissues and under stress treatment in broomcorn millet. This was the first study to investigate the reference genes for qRT-PCR analysis in broomcorn millet, which will facilitate the gene expression studies and also accelerate revealing the molecular mechanism of well-adapted extreme climatic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号