首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Through a delicate balance between quiescence and proliferation, self renewal and production of differentiated progeny, hematopoietic stem cells (HSCs) maintain the turnover of all mature blood cell lineages. The coordination of the complex signals leading to specific HSC fates relies upon the interaction between HSCs and the intricate bone marrow microenvironment, which is still poorly understood[1-2].We describe how by combining a newly developed specimen holder for stable animal positioning with multi-step confocal and two-photon in vivo imaging techniques, it is possible to obtain high-resolution 3D stacks containing HSPCs and their surrounding niches and to monitor them over time through multi-point time-lapse imaging. High definition imaging allows detecting ex vivo labeled hematopoietic stem and progenitor cells (HSPCs) residing within the bone marrow. Moreover, multi-point time-lapse 3D imaging, obtained with faster acquisition settings, provides accurate information about HSPC movement and the reciprocal interactions between HSPCs and stroma cells.Tracking of HSPCs in relation to GFP positive osteoblastic cells is shown as an exemplary application of this method. This technique can be utilized to track any appropriately labeled hematopoietic or stromal cell of interest within the mouse calvarium bone marrow space.  相似文献   

2.
The combination of a hydrophilic embedding resin, Nanoplast, with fluorescent probes, and subsequent imaging using two-photon and confocal laser scanning microscopy (2P-LSM and CLSM) has allowed in imaging of the in situ microspatial arrangements of microbial cells and their extracellular polymeric secretion (EPS) within marine stromatolites. Optical sectioning by 2P-LSM and CLSM allowed imaging of endolithic cyanobacteria cells, Solentia sp., seen within carbonate sand grains. 2P-LSM allowed very clear imaging with a high resolution of bacteria using DAPI, which normally require UV excitation and reduced photo-bleaching of fluorescent probes.  相似文献   

3.
Cells transduced with lentiviral vectors are individually marked by a highly characteristic pattern of insertion sites inherited by all their progeny. We have recently extended this principle of clonal cell marking by introducing the method of RGB marking, which makes use of the simultaneous transduction of target cells with three lentiviral gene ontology (LeGO) vectors encoding red, green or blue fluorescent proteins. In accordance with the additive color model, individual RGB-marked cells display a large variety of unique and highly specific colors. Color codes remain stable after cell division and can thus be used for clonal tracking in vivo and in vitro. Our protocol for efficient RGB marking is based on established methods of lentiviral vector production (3-4 d) and titration (3 d). The final RGB-marking step requires concurrent transduction with the three RGB vectors at equalized multiplicities of infection (1-12 h). The initial efficiency of RGB marking can be assessed after 2-4 d by flow cytometry and/or fluorescence microscopy.  相似文献   

4.
目的随着干细胞研究的推进,大鼠干细胞的研究日趋迫切。本研究旨在为活体荧光影像系统、干细胞归巢、细胞移植体内示踪研究,提供绿色荧光蛋白EGFP转基因大鼠模型。方法通过显微注射方式获得EGFP转基因大鼠,采用活体荧光影像系统、激光共聚焦显微镜,对EGFP转基因大鼠各个组织的荧光表达水平进行比较;采用流式细胞术检测转基因大鼠血液和骨髓细胞、骨髓干细胞的荧光标记率,筛选骨髓干细胞高效标记绿色荧光的转基因大鼠。结果建立了心脏、肝脏、肌肉、肺、胰腺、脑、膀胱、胃、肾脏、肠和脾脏组织中,系统性表达EGFP的SD-TgN(ACT-EGFP-1)ZLFILAS转基因大鼠;流式细胞术检测表明,该品系血液细胞绿色荧光标记率为94.4%,骨髓干细胞绿色荧光标记率为97.8%。结论建立了多组织系统性高表达绿色荧光,骨髓干细胞荧光标记率高达95%以上的转基因大鼠,为影像分析,造血干细胞的归巢等研究提供了大鼠模型。  相似文献   

5.
自从绿色荧光蛋白(GFP)被发现以来,荧光蛋白在生物医学领域已经成为一种重要的荧光成像工具.随着红色荧光蛋白DsRed的出现,各种优化的DsRed突变体和远红荧光蛋白也不断涌现.其中荧光蛋白生色团的形成机制对改建更优的荧光蛋白变种影响很大,对于红色荧光蛋白而言,大多数的红色荧光蛋白的生色团类型为DsRed类似生色团,在此基础上又出现了Far-red DsRed类似生色团.目前,含DsRed类似生色团的荧光蛋白主要有单体红色荧光蛋白、光转换荧光蛋白、斯托克斯红移蛋白、荧光计时器等.这些优化的荧光蛋白作为分子探针可以实现对活细胞、细胞器或胞内分子的时空标记和追踪,已经在生物工程学、细胞生物学、基础医学领域得到广泛应用.本文综述了含DsRed类似生色团的荧光蛋白的研究进展及其应用,以及由此发展起来的远红荧光蛋白在活体显微成像技术中的应用,并展望了荧光探针技术研究的新方向.  相似文献   

6.
Real time multiphoton imaging provides a great opportunity to study cell trafficking and cell-to-cell interactions in their physiological 3-dimensionnal environment. Biological activities of immune cells mainly rely on their motility capacities. Blood monocytes have short half-life in the bloodstream; they originate in the bone marrow and are constitutively released from it. In inflammatory condition, this process is enhanced, leading to blood monocytosis and subsequent infiltration of the peripheral inflammatory tissues. Identifying the biomechanical events controlling monocyte trafficking from the bone marrow towards the vascular network is an important step to understand monocyte physiopathological relevance. We performed in vivo time-lapse imaging by two-photon microscopy of the skull bone marrow of the Csf1r-Gal4VP16/UAS-ECFP (MacBlue) mouse. The MacBlue mouse expresses the fluorescent reporters enhanced cyan fluorescent protein (ECFP) under the control of a myeloid specific promoter 1, in combination with vascular network labelling. We describe how this approach enables the tracking of individual medullar monocytes in real time to further quantify the migratory behaviour within the bone marrow parenchyma and the vasculature, as well as cell-to-cell interactions. This approach provides novel insights into the biology of the bone marrow monocyte subsets and allows to further address how these cells can be influenced in specific pathological conditions.  相似文献   

7.
We describe a novel photoconversion technique to track individual cells in vivo using a commercial lipophilic membrane dye, DiR. We show that DiR exhibits a permanent fluorescence emission shift (photoconversion) after light exposure and does not reacquire the original color over time. Ratiometric imaging can be used to distinguish photoconverted from non-converted cells with high sensitivity. Combining the use of this photoconvertible dye with intravital microscopy, we tracked the division of individual hematopoietic stem/progenitor cells within the calvarium bone marrow of live mice. We also studied the peripheral differentiation of individual T cells by tracking the gain or loss of FoxP3-GFP expression, a marker of the immune suppressive function of CD4+ T cells. With the near-infrared photoconvertible membrane dye, the entire visible spectral range is available for simultaneous use with other fluorescent proteins to monitor gene expression or to trace cell lineage commitment in vivo with high spatial and temporal resolution.  相似文献   

8.
NK cells resist engraftment of syngeneic and allogeneic bone marrow (BM) cells lacking major histocompatibility (MHC) class I molecules, suggesting a critical role for donor MHC class I molecules in preventing NK cell attack against donor hematopoietic stem and progenitor cells (HSPCs), and their derivatives. However, using high-resolution in vivo imaging, we demonstrated here that syngeneic MHC class I knockout (KO) donor HSPCs persist with the same survival frequencies as wild-type donor HSPCs. In contrast, syngeneic MHC class I KO differentiated hematopoietic cells and allogeneic MHC class I KO HSPCs were rejected in a manner that was significantly inhibited by NK cell depletion. In vivo time-lapse imaging demonstrated that mice receiving allogeneic MHC class I KO HSPCs showed a significant increase in NK cell motility and proliferation as well as frequencies of NK cell contact with and killing of HSPCs as compared to mice receiving wild-type HSPCs. The data indicate that donor MHC class I molecules are required to prevent NK cell-mediated rejection of syngeneic differentiated cells and allogeneic HSPCs, but not of syngeneic HSPCs.  相似文献   

9.
In these last two decades , fluorescent proteins (FPs) have become highly valued imaging tools for cell biology, owing to their compatibility with living samples, their low levels of invasiveness and the possibility to specifically fuse them to a variety of proteins of interest. Remarkably, the recent development of phototransformable fluorescent proteins (PTFPs) has made it possible to conceive optical imaging experiments that were unimaginable only a few years ago. For example, it is nowadays possible to monitor intra- or intercellular trafficking, to optically individualize single cells in tissues or to observe single molecules in live cells. The tagging specificity brought by these genetically encoded highlighters leads to constant progress in the engineering of increasingly powerful, versatile and non-cytotoxic FPs. This review is focused on the recent developments of PTFPs and highlights their contribution to studies within cells, tissues and even living organisms. The aspects of single-molecule localization microscopy, intracellular tracking of photoactivated molecules, applications of PTFPs in biotechnology/optobiology and complementarities between PTFPs and other microscopy techniques are particularly discussed.  相似文献   

10.
Dendritic spines are protrusions emerging from the dendrite of a neuron and represent the primary postsynaptic targets of excitatory inputs in the brain. Technological advances have identified these structures as key elements in neuron connectivity and synaptic plasticity. The quantitative analysis of spine morphology using light microscopy remains an essential problem due to technical limitations associated with light''s intrinsic refraction limit. Dendritic spines can be readily identified by confocal laser-scanning fluorescence microscopy. However, measuring subtle changes in the shape and size of spines is difficult because spine dimensions other than length are usually smaller than conventional optical resolution fixed by light microscopy''s theoretical resolution limit of 200 nm.Several recently developed super resolution techniques have been used to image cellular structures smaller than the 200 nm, including dendritic spines. These techniques are based on classical far-field operations and therefore allow the use of existing sample preparation methods and to image beyond the surface of a specimen. Described here is a working protocol to apply super resolution structured illumination microscopy (SIM) to the imaging of dendritic spines in primary hippocampal neuron cultures. Possible applications of SIM overlap with those of confocal microscopy. However, the two techniques present different applicability. SIM offers higher effective lateral resolution, while confocal microscopy, due to the usage of a physical pinhole, achieves resolution improvement at the expense of removal of out of focus light. In this protocol, primary neurons are cultured on glass coverslips using a standard protocol, transfected with DNA plasmids encoding fluorescent proteins and imaged using SIM. The whole protocol described herein takes approximately 2 weeks, because dendritic spines are imaged after 16-17 days in vitro, when dendritic development is optimal. After completion of the protocol, dendritic spines can be reconstructed in 3D from series of SIM image stacks using specialized software.  相似文献   

11.
Super‐resolution microscopy (SRM) has had a substantial impact on the biological sciences due to its ability to observe tiny objects less than 200 nm in size. Stimulated emission depletion (STED) microscopy represents a major category of these SRM techniques that can achieve diffraction‐unlimited resolution based on a purely optical modulation of fluorescence behaviors. Here, we investigated how the laser beams affect fluorescence lifetime in both confocal and STED imaging modes. The results showed that with increasing illumination time, the fluorescence lifetime in two kinds of fluorescent microspheres had an obvious change in STED imaging mode, compared with that in confocal imaging mode. As a result, the reduction of saturation intensity induced by the increase of fluorescence lifetime can improve the STED imaging resolution at the same depletion power. The phenomenon was also observed in Star635P‐labeled human Nup153 in fixed HeLa cells, which can be treated as a reference for the synthesis of fluorescent labels with the sensitivity to the surrounding environment for resolution improvement in STED nanoscopy.   相似文献   

12.
This mini-review discusses the evolution of fluorescence as a tool to study living cells and tissues in vitro and the present role of fluorescent protein biosensors (FPBs) in microphysiological systems (MPSs). FPBs allow the measurement of temporal and spatial dynamics of targeted cellular events involved in normal and perturbed cellular assay systems and MPSs in real time. FPBs evolved from fluorescent analog cytochemistry (FAC) that permitted the measurement of the dynamics of purified proteins covalently labeled with environmentally insensitive fluorescent dyes and then incorporated into living cells, as well as a large list of diffusible fluorescent probes engineered to measure environmental changes in living cells. In parallel, a wide range of fluorescence microscopy methods were developed to measure the chemical and molecular activities of the labeled cells, including ratio imaging, fluorescence lifetime, total internal reflection, 3D imaging, including super-resolution, as well as high-content screening. FPBs evolved from FAC by combining environmentally sensitive fluorescent dyes with proteins in order to monitor specific physiological events such as post-translational modifications, production of metabolites, changes in various ion concentrations, and the dynamic interaction of proteins with defined macromolecules in time and space within cells. Original FPBs involved the engineering of fluorescent dyes to sense specific activities when covalently attached to particular domains of the targeted protein. The subsequent development of fluorescent proteins (FPs), such as the green fluorescent protein, dramatically accelerated the adoption of studying living cells, since the genetic “labeling” of proteins became a relatively simple method that permitted the analysis of temporal–spatial dynamics of a wide range of proteins. Investigators subsequently engineered the fluorescence properties of the FPs for environmental sensitivity that, when combined with targeted proteins/peptides, created a new generation of FPBs. Examples of FPBs that are useful in MPS are presented, including the design, testing, and application in a liver MPS.  相似文献   

13.
Bone is a dynamic tissue that undergoes multiple changes throughout its lifetime. Its maintenance requires a tight regulation between the cells embedded within the bone matrix, and an imbalance among these cells may lead to bone diseases such as osteoporosis. Identifying cell populations and their proteins within bone is necessary for understanding bone biology. Immunolabeling is one approach used to visualize proteins in tissues. Efficient immunolabeling of bone samples often requires decalcification, which may lead to changes in the structural morphology of the bone. Recently, methyl-methacrylate embedding of non-decalcified tissue followed by heat-induced antigen retrieval has been used to process bone sections for immunolabeling. However, this technique is applicable for bone slices below 50-µm thickness while fixed on slides. Additionally, enhancing epitope exposure for immunolabeling is still a challenge. Moreover, imaging bone cells within the bone environment using standard confocal microscopy is difficult. Here we demonstrate for the first time an improved methodology for immunolabeling non-decalcified bone using a testicular hyaluronidase enzyme-based antigen retrieval technique followed by two-photon fluorescence laser microscopy (TPLM) imaging. This procedure allowed us to image key intracellular proteins in bone cells while preserving the structural morphology of the cells and the bone.  相似文献   

14.
The eukaryotic cell relies on complex, highly regulated, and functionally distinct membrane bound compartments that preserve a biochemical polarity necessary for proper cellular function. Understanding how the enzymes, proteins, and cytoskeletal components govern and maintain this biochemical segregation is therefore of paramount importance. The use of fluorescently tagged molecules to localize to and/or perturb subcellular compartments has yielded a wealth of knowledge and advanced our understanding of cellular regulation. Imaging techniques such as fluorescent and confocal microscopy make ascertaining the position of a fluorescently tagged small molecule relatively straightforward, however the resolution of very small structures is limited. On the other hand, electron microscopy has revealed details of subcellular morphology at very high resolution, but its static nature makes it difficult to measure highly dynamic processes with precision. Thus, the combination of light microscopy with electron microscopy of the same sample, termed Correlative Light and Electron Microscopy (CLEM), affords the dual advantages of ultrafast fluorescent imaging with the high-resolution of electron microscopy. This powerful technique has been implemented to study many aspects of cell biology. Since its inception, this procedure has increased our ability to distinguish subcellular architectures and morphologies at high resolution. Here, we present a streamlined method for performing rapid microinjection followed by CLEM (Fig. 1). The microinjection CLEM procedure can be used to introduce specific quantities of small molecules and/or proteins directly into the eukaryotic cell cytoplasm and study the effects from millimeter to multi-nanometer resolution (Fig. 2). The technique is based on microinjecting cells grown on laser etched glass gridded coverslips affixed to the bottom of live cell dishes and imaging with both confocal fluorescent and electron microscopy. Localization of the cell(s) of interest is facilitated by the grid pattern, which is easily transferred, along with the cells of interest, to the Epon resin used for immobilization of samples and sectioning prior to electron microscopy analysis (Fig. 3). Overlay of fluorescent and EM images allows the user to determine the subcellular localization as well as any morphological and/or ultrastructural changes induced by the microinjected molecule of interest (Fig. 4). This technique is amenable to time points ranging from ≤5 s up to several hours, depending on the nature of the microinjected sample.  相似文献   

15.
In vivo imaging of transplanted hematopoietic stem and progenitor cells (HSPCs) was developed to investigate the relationship between HSPCs and components of their microenvironment in the bone marrow. In particular, it allows a direct observation of the behavior of hematopoietic cells during the first few days after transplantation, when the critical events in homing and early engraftment are occurring. By directly imaging these events in living animals, this method permits a detailed assessment of functions previously evaluated by crude assessments of cell counts (homing) or after prolonged periods (engraftment). This protocol offers a new means of investigating the role of cell-intrinsic and cell-extrinsic molecular regulators of hematopoiesis during the early stages of transplantation, and it is the first to allow the study of cell-cell interactions within the bone marrow in three dimensions and in real time. In this paper, we describe how to isolate, label and inject HSPCs, as well as how to perform calvarium intravital microscopy and analyze the resulting images. A typical experiment can be performed and analyzed in ~1 week.  相似文献   

16.
Many biological and clinical studies require the longitudinal study and analysis of morphology and function with cellular level resolution. Traditionally, multiple experiments are run in parallel, with individual samples removed from the study at sequential time points for evaluation by light microscopy. Several intravital techniques have been developed, with confocal, multiphoton, and second harmonic microscopy all demonstrating their ability to be used for imaging in situ 1. With these systems, however, the required infrastructure is complex and expensive, involving scanning laser systems and complex light sources. Here we present a protocol for the design and assembly of a high-resolution microendoscope which can be built in a day using off-the-shelf components for under US$5,000. The platform offers flexibility in terms of image resolution, field-of-view, and operating wavelength, and we describe how these parameters can be easily modified to meet the specific needs of the end user.We and others have explored the use of the high-resolution microendoscope (HRME) in in vitro cell culture 2-5, in excised 6 and living animal tissues 2,5, and in human tissues in vivo 2,7. Users have reported the use of several different fluorescent contrast agents, including proflavine 2-4, benzoporphyrin-derivative monoacid ring A (BPD-MA) 5, and fluoroscein 6,7, all of which have received full, or investigational approval from the FDA for use in human subjects. High-resolution microendoscopy, in the form described here, may appeal to a wide range of researchers working in the basic and clinical sciences. The technique offers an effective and economical approach which complements traditional benchtop microscopy, by enabling the user to perform high-resolution, longitudinal imaging in situ.  相似文献   

17.
郑明杰 《激光生物学报》2010,19(3):423-426,F0003,390
光学显微镜的发展历史是一段不断提高显微镜的分辨率和对比度的历史。双光子显微镜是近30年来非线性显微镜的研究发展的代表。它在分辨率上与共聚焦显微镜相当,但在成像的层析穿透深度上有显著提高,并且大大减少了光毒性与光漂白。由于生物细胞组织中富有各种自家荧光源,因此双光子显微镜被广泛应用于皮肤组织甚至癌组织以及细胞的成像。基于共聚焦扫描显微镜的双光子显微镜可以很容易的与二次谐波显微镜组合,对皮肤组织中的重要成分胶原纤维进行成像。双光子显微镜还可以结合其他非线性光学现象对组织以及细胞进行成像,显示其强大的生命力。将来随着携带方便且廉价的双光子显微镜的出现,双光子显微镜有望在临床医学上发挥其有效的作用。  相似文献   

18.
This review explores the field of fluorescent proteins (FPs) from the perspective of their marine origins and their applications in marine biotechnology and proteomics. FPs occur in hydrozoan, anthozoan, and copepodan species, and possibly in other metazoan niches as well. Many FPs exhibit unique photophysical and photochemical properties that are the source of exciting research opportunities and technological development. Wild-type FPs can be enhanced by mutagenetic modifications leading to variants with optimized fluorescence and new functionalities. Paradoxically, the benefits from ocean-derived FPs have been realized, first and foremost, for terrestrial organisms. In recent years, however, FPs have also made inroads into aquatic biosciences, primarily as genetically encoded fluorescent fusion tags for optical marking and tracking of proteins, organelles, and cells. Examples of FPs and applications summarized here testify to growing utilization of FP-based platform technologies in basic and applied biology of aquatic organisms. Hydra, sea squirt, zebrafish, striped bass, rainbow trout, salmonids, and various mussels are only a few of numerous instances where FPs have been used to address questions relevant to evolutionary and developmental research and aquaculture.  相似文献   

19.
Protein localization in living cells and tissues using FRET and FLIM   总被引:8,自引:0,他引:8  
Interacting proteins assemble into molecular machines that control cellular homeostasis in living cells. While the in vitro screening methods have the advantage of providing direct access to the genetic information encoding unknown protein partners, they do not allow direct access to interactions of these protein partners in their natural environment inside the living cell. Using wide-field, confocal, or two-photon (2p) fluorescence resonance energy transfer (FRET) microscopy, this information can be obtained from living cells and tissues with nanometer resolution. One of the important conditions for FRET to occur is the overlap of the emission spectrum of the donor with the absorption spectrum of the acceptor. As a result of spectral overlap, the FRET signal is always contaminated by donor emission into the acceptor channel and by the excitation of acceptor molecules by the donor excitation wavelength. Mathematical algorithms are required to correct the spectral bleed-through signal in wide-field, confocal, and two-photon FRET microscopy. In contrast, spectral bleed-through is not an issue in FRET/FLIM imaging because only the donor fluorophore lifetime is measured; also, fluorescence lifetime imaging microscopy (FLIM) measurements are independent of excitation intensity or fluorophore concentration. The combination of FRET and FLIM provides high spatial (nanometer) and temporal (nanosecond) resolution when compared to intensity-based FRET imaging. In this paper, we describe various FRET microscopy techniques and its application to protein-protein interactions.  相似文献   

20.
膨胀显微成像技术(expansion microscopy,ExM)是一种新型超分辨成像技术。该技术借助可膨胀水凝胶均匀地物理放大生物样本,在常规光学成像条件下实现超分辨成像。ExM适用于细胞、组织切片等多种类型生物样本。蛋白质、核酸、脂质等生物大分子均可借助ExM进行超分辨成像。ExM可与共聚焦显微镜、光片显微镜、超高分辨显微镜联合使用,进一步提高成像分辨率。近年来,多种从基础ExM拓展而来的衍生技术进一步促进了该技术的实际应用。本文综述了ExM及其衍生技术的基本原理、ExM与不同成像技术联用的研究进展及ExM在不同类型生物样本中的应用进展,并对ExM技术的发展前景做出展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号