首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribosome inactivating proteins (RIPs) like ricin, pokeweed antiviral protein (PAP) and Shiga‐like toxins 1 and 2 (Stx1 and Stx2) share the same substrate, the α‐sarcin/ricin loop, but differ in their specificities towards prokaryotic and eukaryotic ribosomes. Ricin depurinates the eukaryotic ribosomes more efficiently than the prokaryotic ribosomes, while PAP can depurinate both types of ribosomes. Accumulating evidence suggests that different docking sites on the ribosome might be used by different RIPs, providing a basis for understanding the mechanism underlying their kingdom specificity. Our previous results demonstrated that PAP binds to the ribosomal protein L3 to depurinate the α‐sarcin/ricin loop and binding of PAP to L3 was critical for its cytotoxicity. Here, we used surface plasmon resonance to demonstrate that ricin toxin A chain (RTA) binds to the P1 and P2 proteins of the ribosomal stalk in Saccharomyces cerevisiae. Ribosomes from the P protein mutants were depurinated less than the wild‐type ribosomes when treated with RTA in vitro. Ribosome depurination was reduced when RTA was expressed in the ΔP1 and ΔP2 mutants in vivo and these mutants were more resistant to the cytotoxicity of RTA than the wild‐type cells. We further show that while RTA, Stx1 and Stx2 have similar requirements for ribosome depurination, PAP has different requirements, providing evidence that the interaction of RIPs with different ribosomal proteins is responsible for their ribosome specificity.  相似文献   

2.
Ribosome inactivating proteins (RIPs) depurinate a universally conserved adenine in the α-sarcin/ricin loop (SRL) and inhibit protein synthesis at the translation elongation step. We previously showed that ribosomal stalk is required for depurination of the SRL by ricin toxin A chain (RTA). The interaction between RTA and ribosomes was characterized by a two-step binding model, where the stalk structure could be considered as an important interacting element. Here, using purified yeast ribosomal stalk complexes assembled in vivo, we show a direct interaction between RTA and the isolated stalk complex. Detailed kinetic analysis of these interactions in real time using surface plasmon resonance (SPR) indicated that there is only one type of interaction between RTA and the ribosomal stalk, which represents one of the two binding steps of the interaction with ribosomes. Interactions of RTA with the isolated stalk were relatively insensitive to salt, indicating that nonelectrostatic interactions were dominant. We compared the interaction of RTA with the full pentameric stalk complex containing two pairs of P1/P2 proteins with its interaction with the trimeric stalk complexes containing only one pair of P1/P2 and found that the rate of association of RTA with the pentamer was higher than with either trimer. These results demonstrate that the stalk is the main landing platform for RTA on the ribosome and that pentameric organization of the stalk accelerates recruitment of RTA to the ribosome for depurination. Our results suggest that multiple copies of the stalk proteins might also increase the scavenging ability of the ribosome for the translational GTPases.  相似文献   

3.
Pokeweed antiviral protein (PAP) is a ribosome-inactivating protein that depurinates the highly conserved α-sarcin/ricin loop in the large rRNA. Here, using site-directed mutagenesis and systematic deletion analysis from the 5′ and the 3′ ends of the PAP cDNA, we identified the amino acids important for ribosome depurination and cytotoxicity of PAP. Truncating the first 16 amino acids of PAP eliminated its cytotoxicity and the ability to depurinate ribosomes. Ribosome depurination gradually decreased upon the sequential deletion of C-terminal amino acids and was abolished when a stop codon was introduced at Glu-244. Cytotoxicity of the C-terminal deletion mutants was lost before their ability to depurinate ribosomes. Mutations in Tyr-123 at the active site affected cytotoxicity without altering the ribosome depurination ability. Total translation was not inhibited in yeast expressing the non-toxic Tyr-123 mutants, although ribosomes were depurinated. These mutants depurinated ribosomes only during their translation and could not depurinate ribosomes in trans in a translation-independent manner. A mutation in Leu-71 in the central domain affected cytotoxicity without altering the ability to depurinate ribosomes in trans and inhibit translation. These results demonstrate that the ability to depurinate ribosomes in trans in a catalytic manner is required for the inhibition of translation, but is not sufficient for cytotoxicity.  相似文献   

4.
During ricin intoxication in mammalian cells, ricin''s enzymatic (RTA) and binding (RTB) subunits disassociate in the endoplasmic reticulum. RTA is then translocated into the cytoplasm where, by virtue of its ability to depurinate a conserved residue within the sarcin–ricin loop (SRL) of 28S rRNA, it functions as a ribosome-inactivating protein. It has been proposed that recruitment of RTA to the SRL is facilitated by ribosomal P-stalk proteins, whose C-terminal domains interact with a cavity on RTA normally masked by RTB; however, evidence that this interaction is critical for RTA activity within cells is lacking. Here, we characterized a collection of single-domain antibodies (VHHs) whose epitopes overlap with the P-stalk binding pocket on RTA. The crystal structures of three such VHHs (V9E1, V9F9, and V9B2) in complex with RTA revealed not only occlusion of the ribosomal P-stalk binding pocket but also structural mimicry of C-terminal domain peptides by complementarity-determining region 3. In vitro assays confirmed that these VHHs block RTA–P-stalk peptide interactions and protect ribosomes from depurination. Moreover, when expressed as “intrabodies,” these VHHs rendered cells resistant to ricin intoxication. One VHH (V9F6), whose epitope was structurally determined to be immediately adjacent to the P-stalk binding pocket, was unable to neutralize ricin within cells or protect ribosomes from RTA in vitro. These findings are consistent with the recruitment of RTA to the SRL by ribosomal P-stalk proteins as a requisite event in ricin-induced ribosome inactivation.  相似文献   

5.
The nature of the modification of yeast ribosomes by the recombinant form of the ricin A chain has been examined. Evidence is presented that the 26S rRNA molecule is depurinated at a specific site and that the activity is inhibited by antibody raised to ricin A chain. It thus appears that the recombinant form of this toxin retains the depurination activity of the native molecule. These results are consistent with the model that the site of depurination is in a highly conserved sequence forming a loop on the surface of the ribosome, a domain involved in elongation factor-dependent binding of aminoacyl-tRNA.  相似文献   

6.
Depurination of plant ribosomes by pokeweed antiviral protein   总被引:4,自引:0,他引:4  
B E Taylor  J D Irvin 《FEBS letters》1990,273(1-2):144-146
Mammalian ribosomes have been shown to be enzymatically modified by ribosomal inactivating protein (RIPs) via specific depurination of rRNA. Here we report that ribosomes isolated from wheat germ contain intact and undepurinated rRNA and are depurinated by pokeweed antiviral protein (PAP). Pokeweed ribosomes isolated under the same conditions are depurinated. Total RNA isolated from pokeweed in the presence of strong denaturants was found to pbe partially depurinated. We conclude that wheat germ ribosomes are resistant to the endogenous RIP, tritin, but are sensitive to PAP and that pokeweed ribosomes can be depurinated by the N-glycosidase activity of endogenous PAP during isolation.  相似文献   

7.
Ricin inhibits protein synthesis by depurinating the α-sarcin/ricin loop (SRL). Ricin holotoxin does not inhibit translation unless the disulfide bond between the A (RTA) and B (RTB) subunits is reduced. Ricin holotoxin did not bind ribosomes or depurinate them but could depurinate free RNA. When RTA is separated from RTB, arginine residues located at the interface are exposed to the solvent. Because this positively charged region, but not the active site, is blocked by RTB, we mutated arginine residues at or near the interface of RTB to determine if they are critical for ribosome binding. These variants were structurally similar to wild type RTA but could not bind ribosomes. Their Km values and catalytic rates (kcat) for an SRL mimic RNA were similar to those of wild type, indicating that their activity was not altered. However, they showed an up to 5-fold increase in Km and up to 38-fold decrease in kcat toward ribosomes. These results suggest that the stalk binding stimulates the catalysis of ribosome depurination by RTA. The mutated arginines have side chains behind the active site cleft, indicating that the ribosome binding surface of RTA is on the opposite side of the surface that interacts with the SRL. We propose that stalk binding stimulates the catalysis of ribosome depurination by orienting the active site of RTA toward the SRL and thereby allows docking of the target adenine into the active site. This model may apply to the translation factors that interact with the stalk.  相似文献   

8.
Parikh BA  Baykal U  Di R  Tumer NE 《Biochemistry》2005,44(7):2478-2490
Pokeweed antiviral protein (PAP) is a single-chain ribosome inactivating protein (RIP) that binds to ribosomes and depurinates the highly conserved alpha-sarcin/ricin loop (SRL) of the large subunit rRNA. Catalytic depurination of a specific adenine has been proposed to result in translation arrest and cytotoxicity. Here, we show that both precursor and mature forms of PAP are localized in the endoplasmic reticulum (ER) in yeast. The mature form is retro-translocated from the ER into the cytosol where it escapes degradation unlike the other substrates of the retro-translocation pathway. A mutation of a highly conserved asparagine residue at position 70 (N70A) delays ribosome depurination and the onset of translation arrest. The ribosomes are eventually depurinated, yet cytotoxicity and loss of viability are markedly absent. Analysis of the variant protein, N70A, does not reveal any decrease in the rate of synthesis, subcellular localization, or the rate of transport into the cytosol. N70A destabilizes its own mRNA, binds to cap, and blocks cap dependent translation, as previously reported for the wild-type PAP. However, it cannot depurinate ribosomes in a translation-independent manner. These results demonstrate that N70 near the active-site pocket is required for depurination of cytosolic ribosomes but not for cap binding or mRNA destabilization, indicating that the activity of PAP on capped RNA can be uncoupled from its activity on rRNA. These findings suggest that the altered active site of PAP might accommodate a narrower range of substrates, thus reducing ribotoxicity while maintaining potential therapeutic benefits.  相似文献   

9.
The cytotoxin ricin disables translation by depurinating a conserved site in eukaryotic rRNA. In vitro selection has been used to generate RNA ligands (aptamers) specific for the catalytic ricin A-chain (RTA). The anti-RTA aptamers bear no resemblance to the normal RTA substrate, the sarcin-ricin loop (SRL), and were not depurinated by RTA. An initial 80-nucleotide RNA ligand was minimized to a 31-nucleotide aptamer that contained all sequences and structures necessary for interacting with RTA. This minimal RNA formed high affinity complexes with RTA (K(d) = 7.3 nM) which could compete directly with the SRL for binding to RTA. The aptamer inhibited RTA depurination of the SRL and could partially protect translation from RTA inhibition. The IC(50) of the aptamer for RTA in an in vitro translation assay is 100 nM, roughly 3 orders of magnitude lower than a small molecule inhibitor of ricin, pteroic acid, and 2 orders of magnitude lower than the best known RNA inhibitor. The novel anti-RTA aptamers may find application as diagnostic reagents for a potential biological warfare agent and hold promise as scaffolds for the development of strong ricin inhibitors.  相似文献   

10.
Ribosome-mediated folding of partially unfolded ricin A-chain   总被引:6,自引:0,他引:6  
After endocytic uptake by mammalian cells, the cytotoxic protein ricin is transported to the endoplasmic reticulum, whereupon the A-chain must cross the lumenal membrane to reach its ribosomal substrates. It is assumed that membrane traversal is preceded by unfolding of ricin A-chain, followed by refolding in the cytosol to generate the native, biologically active toxin. Here we describe biochemical and biophysical analyses of the unfolding of ricin A-chain and its refolding in vitro. We show that native ricin A-chain is surprisingly unstable at pH 7.0, unfolding non-cooperatively above 37 degrees C to generate a partially unfolded state. This species has conformational properties typical of a molten globule, and cannot be refolded to the native state by manipulation of the buffer conditions or by the addition of a stem-loop dodecaribonucleotide or deproteinized Escherichia coli ribosomal RNA, both of which are substrates for ricin A-chain. By contrast, in the presence of salt-washed ribosomes, partially unfolded ricin A-chain regains full catalytic activity. The data suggest that the conformational stability of ricin A-chain is ideally poised for translocation from the endoplasmic reticulum. Within the cytosol, ricin A-chain molecules may then refold in the presence of ribosomes, resulting in ribosome depurination and cell death.  相似文献   

11.
Ribosome-inactivating proteins, such as the pokeweed antiviral protein (PAP), inhibit translation by depurinating the conserved sarcin/ricin loop of the large ribosomal RNA. Depurinated ribosomes are unable to bind elongation factor 2, and, thus, the translocation step of the elongation cycle is inhibited. Though the consequences of depurination are well characterized, the ribosome conformation required for depurination to take place has not been described. In this report, we correlate biochemical and genetic data to conclude that pokeweed antiviral protein depurinates the sarcin/ricin loop when the A-site of the ribosomal peptidyl-transferase center is unoccupied. We show that prior incubation of ribosomes with puromycin, an analog of the 3'-terminus of aminoacyl-tRNA, inhibits both binding and depurination by PAP in a concentration-dependent manner. Expression of PAP in the yeast strain mak8-1 results in little depurination unless the cells are lysed, a process that would promote loss of aminoacyl-tRNA from the ribosome. The mak8-1 strain is known to exhibit a higher affinity for aminoacyl-tRNA compared with wild-type cells, and therefore, its ribosomes are more resistant to PAP in vivo. These data contribute to the mechanism of action of pokeweed antiviral protein; specifically, they have uncovered the ribosomal conformation required for depurination that leads to subsequent translation inhibition.  相似文献   

12.
In a study of the translational efficiency of ribosomal subunits as a function of an in vivo temperature pretreatment, ribosomes were isolated from heat-pretreated (36°C) and reference (20°C) wheat seedlings (Triticum aestivum L.). The efficiency of recombined subunits in translating polyuridylic acid was assessed. A threefold increase in the rate of incorporation of phenylalanine by ribosomes from heat-pretreated plants was due to the large ribosomal subunit. This adaptive temperature effect was not correlated with a higher thermal stability of ribosomes or subunits from heat-pretreated seedlings, and two-dimensional gel electrophoresis failed to detect structural alterations of ribosomal proteins. Phosphorylation of ribosomal proteins in vitro showed no differences between ribosomes or subunits from heat-pretreated and reference plants. Incubation with [32P]orthophosphate in vivo led to twice the amount of phosphate in ribosomal proteins from heat-pretreated wheat seedlings. This result is important with respect to the evaluation of the molecular basis of enhanced translational efficiency of ribosomes isolated from heat-pretreated wheat seedlings.  相似文献   

13.
14.
Ribotoxins are potent inhibitors of protein biosynthesis and inactivate ribosomes from a variety of organisms. The ribotoxin α-sarcin cleaves the large 23S ribosomal RNA (rRNA) at the universally conserved sarcin–ricin loop (SRL) leading to complete inactivation of the ribosome and cellular death. The SRL interacts with translation factors that hydrolyze GTP, and it is important for their binding to the ribosome, but its precise role is not yet understood. We studied the effect of α-sarcin on defined steps of translation by the bacterial ribosome. α-Sarcin-treated ribosomes showed no defects in mRNA and tRNA binding, peptide-bond formation and sparsomycin-dependent translocation. Cleavage of SRL slightly affected binding of elongation factor Tu ternary complex (EF-Tu•GTP•tRNA) to the ribosome. In contrast, the activity of elongation factor G (EF-G) was strongly impaired in α-sarcin-treated ribosomes. Importantly, cleavage of SRL inhibited EF-G binding, and consequently GTP hydrolysis and mRNA–tRNA translocation. These results suggest that the SRL is more critical in EF-G than ternary complex binding to the ribosome implicating different requirements in this region of the ribosome during protein elongation.  相似文献   

15.
Shiga toxins produced by Escherichia coli O157:H7 are responsible for food poisoning and hemolytic uremic syndrome (HUS). The A subunits of Shiga toxins (Stx1A and Stx2A) inhibit translation by depurinating a specific adenine in the large rRNA. To determine if Stx1A and Stx2A require the ribosomal stalk for depurination, their activity and cytotoxicity were examined in the yeast P protein deletion mutants. Stx1A and Stx2A were less toxic and depurinated ribosomes less in a strain lacking P1/P2 on the ribosome and in the cytosol (ΔP2) than in a strain lacking P1/P2 on the ribosome, but containing free P2 in the cytosol (ΔP1). To determine if cytoplasmic P proteins facilitated depurination, Stx1A and Stx2A were expressed in the P0ΔAB mutant, in which the binding sites for P1/P2 were deleted on the ribosome, and P1/P2 accumulated in the cytosol. Stx1A was less toxic and depurinated ribosomes less in P0ΔAB, suggesting that intact binding sites for P1/P2 were critical. In contrast, Stx2A was toxic and depurinated ribosomes in P0ΔAB as in wild type, suggesting that it did not require the P1/P2 binding sites. Depurination of ΔP1, but not P0ΔAB ribosomes increased upon addition of purified P1α/P2βin vitro, and the increase was greater for Stx1 than for Stx2. We conclude that cytoplasmic P proteins stimulate depurination by Stx1 by facilitating the access of the toxin to the ribosome. Although ribosomal stalk is important for Stx1 and Stx2 to depurinate the ribosome, Stx2 is less dependent on the stalk proteins for activity than Stx1 and can depurinate ribosomes with an incomplete stalk better than Stx1.  相似文献   

16.
The rRNA depurination activities of five ribosome-inactivating proteins (RIPs) were compared in vitro using yeast and tobacco leaf ribosomes as substrates. All of the RIPs (pokeweed antiviral protein (PAP), dianthin 32, tritin, barley RIP and ricin A-chain) were active on yeast ribosomes. PAP and dianthin 32 were highly active and ricin A-chain weakly active on tobacco ribosomes, whereas tritin and barley RIP were inactive. PAP and dianthin 32 were highly effective in inhibiting the formation of local lesions caused by tobacco mosaic virus (TMV) on tobacco leaves, whereas tritin, barley RIP and ricin A-chain were ineffective. The apparent anomaly between the in vitro rRNA depurination activity, but lack of antiviral activity of ricin A-chain was further investigated by assaying for rRNA depurination in situ following the topical application of the RIP to leaves. No activity was detected, a finding consistent with the apparent lack of antiviral activity of this RIP. Thus, it is concluded that there is a positive correlation between RIP-catalysed depurination of tobacco ribosomes and antiviral activity which gives strong support to the hypothesis that the antiviral activity of RIPs works through ribosome inactivation.  相似文献   

17.
Alpha-sarcin ribotoxins comprise a unique family of ribonucleases that cripple the ribosome by catalyzing endoribonucleolytic cleavage of ribosomal RNA at a specific location in the sarcin/ricin loop (SRL). The SRL structure alone is cleaved site-specifically by the ribotoxin, but the ribosomal context enhances the reaction rate by several orders of magnitude. We show that, for the alpha-sarcin-like ribotoxin restrictocin, this catalytic advantage arises from favorable electrostatic interactions with the ribosome. Restrictocin binds at many sites on the ribosomal surface and under certain conditions cleaves the SRL with a second-order rate constant of 1.7 x 10(10) M(-1) s(-1), a value that matches the predicted frequency of random restrictocin-ribosome encounters. The results suggest a mechanism of target location whereby restrictocin encounters ribosomes randomly and diffuses within the ribosomal electrostatic field to the SRL. These studies show a role for electrostatics in protein-ribosome recognition.  相似文献   

18.
Ribosome inactivating proteins (RIPs) inhibit protein synthesis depurinating a conserved residue in the sarcin/ricin loop of ribosomes. Some RIPs are only active against eukaryotic ribosomes, but other RIPs inactivate with similar efficiency prokaryotic and eukaryotic ribosomes, suggesting that different RIPs would interact with different proteins. The SRL in Trypanosoma cruzi ribosomes is located on a 178b RNA molecule named 28Sδ. In addition, T. cruzi ribosomes are remarkably resistant to TCS. In spite of these peculiarities, we show that TCS specifically depurinate the predicted A51 residue on 28Sδ. We also demonstrated that the C-terminal end of ribosomal P proteins is needed for full activity of the toxin. In contrast to TCS, PAP inactivated efficiently T.cruzi ribosomes, and most importantly, does not require from the C-terminal end of P proteins. These results could explain, at least partially, the different selectivity of these toxins against prokaryotic and eukaryotic ribosomes.  相似文献   

19.
Rajamohan F  Ozer Z  Mao C  Uckun FM 《Biochemistry》2001,40(31):9104-9114
Pokeweed antiviral protein (PAP) is a ribosome-inactivating protein (RIP) which catalytically cleaves a specific adenine base from the highly conserved alpha-sarcin/ricin loop (SRL) of the large ribosomal RNA and thereby inhibits the protein synthesis. The ribosomal protein L3, a highly conserved protein located at the peptidyltransferase center of the ribosomes, is involved in binding of PAP to ribosomes and subsequent depurination of the SRL. We have recently discovered that recombinant PAP mutants with alanine substitution of the active center cleft residues (69)NN(70) (FLP-4) and (90)FND(92) (FLP-7) that are not directly involved in the catalytic depurination at the active site exhibit >150-fold reduced ribosome inhibitory activity [(2000) J. Biol. Chem. 275, 3382--3390]. We hypothesized that the partially exposed half of the active site cleft could be the potential docking site for the L3 molecule. Our modeling studies presented herein indicated that PAP residues 90--96, 69--70, and 118--120 potentially interact with L3. Therefore, mutations of these residues were predicted to result in destabilization of interactions with rRNA and lead to a lower binding affinity with L3. In the present structure-function relationship study, coimmunoprecipitation assays with an in vitro synthesized yeast ribosomal protein L3 suggested that these mutant PAP proteins poorly interact with L3. The binding affinities of the mutant PAP proteins for ribosomes and recombinant L3 protein were calculated from rate constants and analysis of binding using surface plasmon resonance biosensor technology. Here, we show that, compared to wild-type PAP, FLP-4/(69)AA(70) and FLP-7/(90)AAA(92) exhibit significantly impaired affinity for ribosomes and L3 protein, which may account for their inability to efficiently inactivate ribosomes. By comparison, recombinant PAP mutants with alanine substitutions of residues (28)KD(29) and (111)SR(112) that are distant from the active center cleft showed normal binding affinity to ribosomes and L3 protein. The single amino acid mutants of PAP with alanine substitution of the active center cleft residues N69 (FLP-20), F90 (FLP-21), N91 (FLP-22), or D92 (FLP-23) also showed reduced ribosome binding as well as reduced L3 binding, further confirming the importance of the active center cleft for the PAP--ribosome and PAP--L3 interactions. The experimental findings presented in this report provide unprecedented evidence that the active center cleft of PAP is important for its in vitro binding to ribosomes via the L3 protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号