首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Annexin A2, a calcium-, actin-, and lipid-binding protein involved in exocytosis, mediates the formation of lipid microdomains required for the structural and spatial organization of fusion sites at the plasma membrane. To understand how annexin A2 promotes this membrane remodeling, the involvement of cortical actin filaments in lipid domain organization was investigated. 3D electron tomography showed that cortical actin bundled by annexin A2 connected docked secretory granules to the plasma membrane and contributed to the formation of GM1-enriched lipid microdomains at the exocytotic sites in chromaffin cells. When an annexin A2 mutant with impaired actin filament–bundling activity was expressed, the formation of plasma membrane lipid microdomains and the number of exocytotic events were decreased and the fusion kinetics were slower, whereas the pharmacological activation of the intrinsic actin-bundling activity of endogenous annexin A2 had the opposite effects. Thus, annexin A2–induced actin bundling is apparently essential for generating active exocytotic sites.  相似文献   

2.
Dynamic remodeling of the actin cytoskeleton is required for cell spreading, motility, and migration and can be regulated by tyrosine kinase activity. Phosphotyrosine proteomic screening revealed phosphorylation of the lipid-, calcium-, and actin-binding protein annexin A2 (AnxA2) at Tyr23 as a major event preceding ts-v-Src kinase-induced cell scattering. Expression of the phospho-mimicking mutant Y23E-AnxA2 itself was sufficient to induce actin reorganization and cell scattering in MDCK cells. While Y23E-AnxA2, but not Y23A-AnxA2, enhanced Src- or hepatocyte growth factor (HGF)-induced cell scattering, short hairpin RNA-mediated knockdown of AnxA2 inhibited both v-Src- and HGF-induced cell scattering. Three-dimensional branching morphogenesis was induced in wild-type-AnxA2-expressing cells only in the presence of HGF, while Y23E-AnxA2 induced HGF-independent branching morphogenesis. Knockdown of AnxA2 prevented lumen formation during cystogenesis. The Y23E-AnxA2-induced scattering was associated with dephosphorylation/activation of the actin-severing protein cofilin. Likewise, inactive S3E-cofilin and constitutively active LIM kinase, a direct upstream kinase of cofilin, inhibited Y23E-AnxA2-induced scattering. Together, our studies indicate an essential role for AnxA2 phosphorylation in regulating cofilin-dependent actin cytoskeletal dynamics in the context of cell scattering and branching morphogenesis.  相似文献   

3.
The furosemide-sensitive Na+-K+-2Cl cotransporter (NKCC2) is responsible for urine concentration and helps maintain systemic salt homeostasis. Its activity depends on trafficking to, and insertion into, the apical membrane, as well as on phosphorylation of conserved N-terminal serine and threonine residues. Vasopressin (AVP) signaling via PKA and other kinases activates NKCC2. Association of NKCC2 with lipid rafts facilitates its AVP-induced apical translocation and activation at the surface. Lipid raft microdomains typically serve as platforms for membrane proteins to facilitate their interactions with other proteins, but little is known about partners that interact with NKCC2. Yeast two-hybrid screening identified an interaction between NKCC2 and the cytosolic protein, annexin A2 (AnxA2). Annexins mediate lipid raft-dependent trafficking of transmembrane proteins, including the AVP-regulated water channel, aquaporin 2. Here, we demonstrate that AnxA2, which binds to phospholipids in a Ca2+-dependent manner and may organize microdomains, is codistributed with NKCC2 to promote its apical translocation in response to AVP stimulation and low chloride hypotonic stress. NKCC2 and AnxA2 interact in a phosphorylation-dependent manner. Phosphomimetic AnxA2 carrying a mutant phosphoacceptor (AnxA2-Y24D-GFP) enhanced surface expression and raft association of NKCC2 by 5-fold upon low chloride hypotonic stimulation, whereas AnxA2-Y24A-GFP and PKC-dependent AnxA2-S26D-GFP did not. As the AnxA2 effect involved only nonphosphorylated NKCC2, it appears to affect NKCC2 trafficking. Overexpression or knockdown experiments further supported the role of AnxA2 in the apical translocation and surface expression of NKCC2. In summary, this study identifies AnxA2 as a lipid raft-associated trafficking factor for NKCC2 and provides mechanistic insight into the regulation of this essential cotransporter.  相似文献   

4.
The phospholipid-binding annexin A2 (AnxA2) is known to play a role in the regulation of membrane and actin dynamics, in particular in the endocytic pathway. The protein is present on early endosomes, where it regulates membrane traffic, including the biogenesis of multivesicular transport intermediates destined for late endosomes. AnxA2 membrane association depends on the protein N terminus and membrane cholesterol but does not involve the AnxA2 ligand p11/S100A10. However, the precise mechanisms that control AnxA2 membrane association and function are not clear. In the present study, we have investigated the role of AnxA2 N-terminal phosphorylation in controlling association to endosomal membranes and functions. We found that endosomal AnxA2 was partially tyrosine-phosphorylated and that mutation of Tyr-23 to Ala (AnxA2Y23A), but not of Ser-25 to Ala, impaired AnxA2 endosome association. We then found that the AnxA2Y23A mutant was unable to bind endosomes in vivo, whereas a phospho-mimicking AnxA2 mutant (Y23D) showed efficient endosome binding capacity. Similarly, we found that AnxA2Y23D interacted more efficiently with liposomes in vitro when compared with AnxA2Y23A. To investigate the role of Tyr-23 in vivo, AnxA2 was knocked down with small interfering RNAs, and then cells were recomplemented with RNA interference-resistant forms of the protein. Using this strategy, we could show that AnxA2Y23D, but not AnxA2Y23A, could restore early-to-late endosome transport after AnxA2 depletion. We conclude that phosphorylation of Tyr-23 is essential for proper endosomal association and function of AnxA2, perhaps because it stabilizes membrane-associated protein via a conformational change.  相似文献   

5.
Annexin A2 (AnxA2), a Ca(2+)-dependent phospholipid-binding protein, is known to associate with the plasma membrane and the endosomal system. Within the plasma membrane, AnxA2 associates in a Ca(2+) dependent manner with cholesterol-rich lipid raft microdomains. Here, we show that the association of AnxA2 with the lipid rafts is influenced not only by intracellular levels of Ca(2+) but also by N-terminal phosphorylation at tyrosine 23. Binding of AnxA2 to the lipid rafts is followed by the transport along the endocytic pathway to be associated with the intralumenal vesicles of the multivesicular endosomes. AnxA2-containing multivesicular endosomes fuse directly with the plasma membrane resulting in the release of the intralumenal vesicles into the extracellular environment, which facilitates the exogenous transfer of AnxA2 from one cell to another. Treatment with Ca(2+) ionophore triggers the association of AnxA2 with the specialized microdomains in the exosomal membrane that possess raft-like characteristics. Phosphorylation at Tyr-23 is also important for the localization of AnxA2 to the exosomal membranes. These results suggest that AnxA2 is trafficked from the plasma membrane rafts and is selectively incorporated into the lumenal membranes of the endosomes to escape the endosomal degradation pathway. The Ca(2+)-dependent exosomal transport constitutes a novel pathway of extracellular transport of AnxA2.  相似文献   

6.
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a minor component of the lipid bilayer but plays an important role in various cellular functions, including exocytosis and endocytosis. Recently, PI(4,5)P2 was shown to form microdomains in the plasma membrane. In this study, we investigated the relationship between the spatial organization of PI(4,5)P2 microdomains and exocytotic machineries in clonal rat pheochromocytoma PC12 cells. Both PI(4,5)P2 and syntaxin, a soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein essential for exocytosis, exhibited punctate clusters in isolated plasma membranes. The number of PI(4,5)P2 microdomains colocalizing with syntaxin clusters and large dense core vesicles (LDCVs) was decreased after catecholamine release. Alternatively, the expression of type I phosphatidylinositol-4-phosphate 5-kinase (PIP5KI) increased the number of PI(4,5)P2 microdomains at syntaxin clusters with docked LDCVs and enhanced exocytotic activity, possibly by increasing the number of release sites. About half of the PI(4,5)P2 microdomains were not colocalized with Thy-1, a specific marker of lipid rafts, and the colocalization of transfected PIP5KI with syntaxin clusters was observed. These results suggest that the formation of PI(4,5)P2 microdomains at syntaxin clusters with docked LDCVs is essential for Ca2+-dependent exocytosis.  相似文献   

7.
Cornely R  Rentero C  Enrich C  Grewal T  Gaus K 《IUBMB life》2011,63(11):1009-1017
Annexin A6 (AnxA6) belongs to the conserved annexin protein family--a group of Ca(2+) -dependent membrane binding proteins. It is the largest of all annexin proteins and upon activation, binds to negatively charged phospholipids in the plasma membrane and endosomes. In addition, AnxA6 associates with cholesterol-rich membrane microdomains termed lipid rafts. Membrane cholesterol triggers Ca(2+) -independent translocation of AnxA6 to membranes and AnxA6 levels determine the number of caveolae, a form of specialized rafts at the cell surface. AnxA6 also has an F-actin binding domain and interacts with cytoskeleton components. Taken together, this suggests that AnxA6 has a scaffold function to link membrane microdomains with the organization of the cytoskeleton. Such a link facilitates AnxA6 to participate in plasma membrane repair and it would also impact on receptor signalling at the cell surface, growth factor, and lipoprotein receptor trafficking, Ca(2+) -channel activity and T cell activation. Hence, the regulation of cell surface receptors by AnxA6 may be facilitated by its unique structure that allows recruitment of interaction partners and simultaneously bridging specialized membrane domains with cortical actin surrounding activated receptors.  相似文献   

8.
Rho GTPases are key regulators of the actin cytoskeleton in membrane trafficking events. We previously reported that Cdc42 facilitates exocytosis in neuroendocrine cells by stimulating actin assembly at docking sites for secretory granules. These findings raise the question of the mechanism activating Cdc42 in exocytosis. The neuronal guanine nucleotide exchange factor, intersectin-1L, which specifically activates Cdc42 and is at an interface between membrane trafficking and actin dynamics, appears as an ideal candidate to fulfill this function. Using PC12 and chromaffin cells, we now show the presence of intersectin-1 at exocytotic sites. Moreover, through an RNA interference strategy coupled with expression of various constructs encoding the guanine nucleotide exchange domain, we demonstrate that intersectin-1L is an essential component of the exocytotic machinery. Silencing of intersectin-1 prevents secretagogue-induced activation of Cdc42 revealing intersectin-1L as the factor integrating Cdc42 activation to the exocytotic pathway. Our results extend the current role of intersectin-1L in endocytosis to a function in exocytosis and support the idea that intersectin-1L is an adaptor that coordinates exo-endocytotic membrane trafficking in secretory cells.  相似文献   

9.
Biological membranes are organized into dynamic microdomains that serve as sites for signal transduction and membrane trafficking. The formation and expansion of these microdomains are driven by intrinsic properties of membrane lipids and integral as well as membrane-associated proteins. Annexin A2 (AnxA2) is a peripherally associated membrane protein that can support microdomain formation in a Ca2+-dependent manner and has been implicated in membrane transport processes. Here, we performed a quantitative analysis of the binding of AnxA2 to solid supported membranes containing the annexin binding lipids phosphatidylinositol-4,5-bisphosphate and phosphatidylserine in different compositions. We show that the binding is of high specificity and affinity with dissociation constants ranging between 22.1 and 32.2 nM. We also analyzed binding parameters of a heterotetrameric complex of AnxA2 with its S100A10 protein ligand and show that this complex has a higher affinity for the same membranes with Kd values of 12 to 16.4 nM. Interestingly, binding of the monomeric AnxA2 and the AnxA2-S100A10 complex are characterized by positive cooperativity. This cooperative binding is mediated by the conserved C-terminal annexin core domain of the protein and requires the presence of cholesterol. Together our results reveal for the first time, to our knowledge, that AnxA2 and its derivatives bind cooperatively to membranes containing cholesterol, phosphatidylserine, and/or phosphatidylinositol-4,5-bisphosphate, thus providing a mechanistic model for the lipid clustering activity of AnxA2.  相似文献   

10.
Biological membranes are organized into dynamic microdomains that serve as sites for signal transduction and membrane trafficking. The formation and expansion of these microdomains are driven by intrinsic properties of membrane lipids and integral as well as membrane-associated proteins. Annexin A2 (AnxA2) is a peripherally associated membrane protein that can support microdomain formation in a Ca2+-dependent manner and has been implicated in membrane transport processes. Here, we performed a quantitative analysis of the binding of AnxA2 to solid supported membranes containing the annexin binding lipids phosphatidylinositol-4,5-bisphosphate and phosphatidylserine in different compositions. We show that the binding is of high specificity and affinity with dissociation constants ranging between 22.1 and 32.2 nM. We also analyzed binding parameters of a heterotetrameric complex of AnxA2 with its S100A10 protein ligand and show that this complex has a higher affinity for the same membranes with Kd values of 12 to 16.4 nM. Interestingly, binding of the monomeric AnxA2 and the AnxA2-S100A10 complex are characterized by positive cooperativity. This cooperative binding is mediated by the conserved C-terminal annexin core domain of the protein and requires the presence of cholesterol. Together our results reveal for the first time, to our knowledge, that AnxA2 and its derivatives bind cooperatively to membranes containing cholesterol, phosphatidylserine, and/or phosphatidylinositol-4,5-bisphosphate, thus providing a mechanistic model for the lipid clustering activity of AnxA2.  相似文献   

11.
Annexin 2 is a calcium-dependent phospholipid-binding protein that has been implicated in a number of membrane-related events, including regulated exocytosis. In chromaffin cells, we previously reported that catecholamine secretion requires the translocation and formation of the annexin 2 tetramer near the exocytotic sites. Here, to obtain direct evidence for a role of annexin 2 in exocytosis, we modified its expression level in chromaffin cells by using the Semliki Forest virus expression system. Using a real-time assay for individual cells, we found that the reduction of cytosolic annexin 2, and the consequent decrease of annexin 2 tetramer at the cell periphery, strongly inhibited exocytosis, most likely at an early stage before membrane fusion. Secretion also was severely impaired in cells expressing a chimera that sequestered annexin 2 into cytosolic aggregates. Moreover, we demonstrate that secretagogue-evoked stimulation triggers the formation of lipid rafts in the plasma membrane, essential for exocytosis, and which can be attributed to the annexin 2 tetramer. We propose that annexin 2 acts as a calcium-dependent promoter of lipid microdomains required for structural and spatial organization of the exocytotic machinery.  相似文献   

12.
The formation of dynamic membrane microdomains is an important phenomenon in many signal transduction and membrane trafficking events. It is driven by intrinsic properties of membrane lipids and integral as well as membrane-associated proteins. Here we analyzed the ability of one peripherally associated membrane protein, annexin A2 (AnxA2), to induce the formation of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-rich domains in giant unilamellar vesicles (GUVs) of complex lipid composition. AnxA2 is a cytosolic protein that can bind PI(4,5)P2 and other acidic phospholipids in a Ca2+-dependent manner and that has been implicated in cellular membrane dynamics in endocytosis and exocytosis. We show that AnxA2 binding to GUVs induces lipid phase separation and the recruitment of PI(4,5)P2, cholesterol and glycosphingolipids into larger clusters. This property is observed for the full-length monomeric protein, a mutant derivative comprising the C-terminal protein core domain and for AnxA2 residing in a heterotetrameric complex with its intracellular binding partner S100A10. All AnxA2 derivatives inducing PI(4,5)P2 clustering are also capable of forming interconnections between PI(4,5)P2-rich microdomains of adjacent GUVs. Furthermore, they can induce membrane indentations rich in PI(4,5)P2 and inward budding of these membrane domains into the lumen of GUVs. This inward vesiculation is specific for AnxA2 and not shared with other PI(4,5)P2-binding proteins such as the pleckstrin homology (PH) domain of phospholipase Cδ1. Together our results indicate that annexins such as AnxA2 can efficiently induce membrane deformations after lipid segregation, a mechanism possibly underlying annexin functions in membrane trafficking.  相似文献   

13.
Exocytosis in neuroendocrine cells: new tasks for actin   总被引:1,自引:0,他引:1  
Most secretory cells undergoing calcium-regulated exocytosis in response to cell surface receptor stimulation display a dense subplasmalemmal actin network, which is remodeled during the exocytotic process. This review summarizes new insights into the role of the cortical actin cytoskeleton in exocytosis. Many earlier findings support the actin-physical-barrier model whereby transient depolymerization of cortical actin filaments permits vesicles to gain access to their appropriate docking and fusion sites at the plasma membrane. On the other hand, data from our laboratory and others now indicate that actin polymerization also plays a positive role in the exocytotic process. Here, we discuss the potential functions attributed to the actin cytoskeleton at each major step of the exocytotic process, including recruitment, docking and fusion of secretory granules with the plasma membrane. Moreover, we present actin-binding proteins, which are likely to link actin organization to calcium signals along the exocytotic pathway. The results cited in this review are derived primarily from investigations of the adrenal medullary chromaffin cell, a cell model that is since many years a source of information concerning the molecular machinery underlying exocytosis.  相似文献   

14.
Annexin A2 (AnxA2) interacts with numerous ligands, including calcium, lipids, mRNAs and intracellular and extracellular proteins. Different post-translational modifications participate in the discrimination of the functions of AnxA2 by modulating its ligand interactions. Here, phospho-mimicking mutants (AnxA2-S25E and AnxA2-S25D) were employed to investigate the effects of Ser25 phosphorylation on the structure and function of AnxA2 by using AnxA2-S25A as a control. The overall α-helical structure of AnxA2 is not affected by the mutations, since the thermal stabilities and aggregation tendencies of the mutants differ only slightly from the wild-type (wt) protein. Unlike wt AnxA2, all mutants bind the anxA2 3′ untranslated region and β-γ-G-actin with high affinity in a Ca2 +-independent manner. AnxA2-S25E is not targeted to the nucleus in transfected PC12 cells. In vitro phosphorylation of AnxA2 by protein kinase C increases its affinity to mRNA and inhibits its nuclear localisation, in accordance with the data obtained with the phospho-mimicking mutants. Ca2 +-dependent binding of wt AnxA2 to phosphatidylinositol, phosphatidylinositol-3-phosphate, phosphatidylinositol-4-phosphate and phosphatidylinositol-5-phosphate, as well as weaker but still Ca2 +-dependent binding to phosphatidylserine and phosphatidylinositol-3,5-bisphosphate, was demonstrated by a protein–lipid overlay assay, whereas binding of AnxA2 to these lipids, as well as its binding to liposomes, is inhibited by the Ser25 mutations. Thus, introduction of a modification (mutation or phosphorylation) at Ser25 appears to induce a conformational change leading to increased accessibility of the mRNA- and G-actin-binding sites in domain IV independent of Ca2 + levels, while the Ca2 +-dependent binding of AnxA2 to phospholipids is attenuated.  相似文献   

15.
Release of neurotransmitters and hormones occurs by calcium-regulated exocytosis, a process that shares many similarities in neurons and neuroendocrine cells. Exocytosis is confined to specific regions in the plasma membrane, where actin remodelling, lipid modifications and protein-protein interactions take place to mediate vesicle/granule docking, priming and fusion. The spatial and temporal coordination of the various players to form a "fast and furious" machinery for secretion remain poorly understood. ARF and Rho GTPases play a central role in coupling actin dynamics to membrane trafficking events in eukaryotic cells. Here, we review the role of Rho and ARF GTPases in supplying actin and lipid structures required for synaptic vesicle and secretory granule exocytosis. Their possible functional interplay may provide the molecular cues for efficient and localized exocytotic fusion.  相似文献   

16.
In neuroendocrine cells, regulated exocytosis is a multistep process that comprises the recruitment and priming of secretory granules, their docking to the exocytotic sites, and the subsequent fusion of granules with the plasma membrane leading to the release of secretory products into the extracellular space. Using bacterial toxins which specially inactivate subsets of G proteins, we were able to demonstrate that both trimeric and monomeric G proteins directly control the late stages of exocytosis in chromaffin cells. Indeed, in secretagogue-stimulated chromaffin cells, the subplasmalemmal actin cytoskeleton undergoes a specific reorganization that is a prerequisite for exocytosis. Our results suggest that a granule-bound trimeric Go protein controls the actin network surrounding secretory granules through a pathway involving the GTPase RhoA and a downstream phosphatidylinositol 4-kinase. Furthermore, the GTPase Cdc42 plays a active role in exocytosis, most likely by providing specific actin structures to the late docking and/or fusion steps. We propose that G proteins tightly control secretion in neuroendocrine cells by coupling the actin cytoskeleton to the sequential steps underlying membrane trafficking at the site of exocytosis. Our data highlight the use of bacterial toxins, which proved to be powerful tools to dissect the exocytotic machinery at the molecular level.  相似文献   

17.
In neuroendocrine cells, actin reorganization is a prerequisite for regulated exocytosis. Small GTPases, Rho proteins, represent potential candidates coupling actin dynamics to membrane trafficking events. We previously reported that Cdc42 plays an active role in regulated exocytosis in chromaffin cells. The aim of the present work was to dissect the molecular effector pathway integrating Cdc42 to the actin architecture required for the secretory reaction in neuroendocrine cells. Using PC12 cells as a secretory model, we show that Cdc42 is activated at the plasma membrane during exocytosis. Expression of the constitutively active Cdc42(L61) mutant increases the secretory response, recruits neural Wiskott-Aldrich syndrome protein (N-WASP), and enhances actin polymerization in the subplasmalemmal region. Moreover, expression of N-WASP stimulates secretion by a mechanism dependent on its ability to induce actin polymerization at the cell periphery. Finally, we observed that actin-related protein-2/3 (Arp2/3) is associated with secretory granules and that it accompanies granules to the docking sites at the plasma membrane upon cell activation. Our results demonstrate for the first time that secretagogue-evoked stimulation induces the sequential ordering of Cdc42, N-WASP, and Arp2/3 at the interface between granules and the plasma membrane, thereby providing an actin structure that makes the exocytotic machinery more efficient.  相似文献   

18.
Keratins are cytoplasmic intermediate filament proteins providing crucial structural support in epithelial cells. Keratin expression has diagnostic and even prognostic value in disease settings, and recent studies have uncovered modulatory roles for select keratin proteins in signaling pathways regulating cell growth and cell death. Elevated keratin expression in select cancers is correlated with higher expression of EGF receptor (EGFR), whose overexpression and/or mutation give rise to cancer. To explore the role of keratins in oncogenic signaling pathways, we examined the regulation of epithelial growth-associated keratin 17 (K17) in response to EGFR activation. K17 is specifically up-regulated in detergent-soluble fraction upon EGFR activation, and immunofluorescence analysis revealed alterations in K17-containing filaments. Interestingly, we identified AnxA2 as a novel interacting partner of K17, and this interaction is antagonized by EGFR activation. K17 and AnxA2 proteins show reciprocal regulation. Modulating expression of AnxA2 altered K17 stability, and AnxA2 overexpression delays EGFR-mediated change in K17 detergent solubility. Down-regulation of K17 expression, in turn, results in decreased AnxA2 phosphorylation at Tyr-23. These findings uncover a novel interaction involving K17 and AnxA2 and identify AnxA2 as a potential regulator of keratin filaments.  相似文献   

19.
The ubiquitously expressed family of α-actinins bridges actin filaments to stabilize adhesions, a process disrupted during growth factor-induced migration of cells. During the dissolution of the actin cytoskeleton, actinins are phosphorylated on tyrosines, although the consequences of this are unknown. We expressed the two isoforms of human α-actinin in murine fibroblasts that express human epidermal growth factor receptor (EGFR) and found that both α-actinin 1 (ACTN1) and α-actinin 4 (ACTN4) were phosphorylated on tyrosine residues after stimulation with EGF, although ACTN4 was phosphorylated to the greater extent. This required the activation of Src protein-tyrosine kinase and p38-MAPK (and phosphoinositide trisphosphate kinase in part) but not MEK/ERK or Rac1, as determined by inhibitors. The EGF-induced phosphorylation sites of ACTN4 were mapped to tyrosine 4, the major site, and tyrosine 31, the minor one. Truncation mutagenesis showed that the C-terminal domains of ACTN4 (amino acids 300–911), which cross-link the actin binding head domains, act as an inhibitory domain for both actin binding and EGF-mediated phosphorylation. These two properties were mutually exclusive; removal of the C terminus enhanced actin binding of ACTN4 mutants while limiting EGF-induced phosphorylation, and conversely EGF-stimulated phosphorylation of ACTN4 decreased its affinity to actin. Interestingly, a phosphomimetic of tyrosine 265 (which can be found in carcinoma cells and lies near the K255E mutation that causes focal segmental glomerulosclerosis) demonstrated increased actin binding activity and susceptibility of ACTN4 to calpain-mediated cleavage; this variant also retarded cell spreading. Remarkably, either treatment of cells with low concentrations of latrunculin A, which has been shown to depolymerize F-actin, or the deletion of the actin binding domain (100–252 amino acids) of ACTN4Y265E restored EGF-induced phosphorylation. An F-actin binding assay in vitro showed that Y4E/Y31E, a mimetic of diphosphorylated ACTN4, bound F-actin slightly compared with wild type (WT). Importantly, the EGF-mediated phosphorylation of ACTN4 at tyrosine 4 and 31 significantly inhibited multinucleation of proliferating NR6WT fibroblasts that overexpress ACTN4. These results suggest that EGF regulates the actin binding activity of ACTN4 by inducing tyrosyl-directed phosphorylation.  相似文献   

20.
GTPases of the Rho family are molecular switches that play an important role in a wide range of membrane-trafficking processes including neurotransmission and hormone release. We have previously demonstrated that RhoA and Cdc42 regulate calcium-dependent exocytosis in chromaffin cells by controlling actin dynamics, whereas Rac1 regulates lipid organisation. These findings raised the question of the upstream mechanism activating these GTPases during exocytosis. The guanine nucleotide exchange factors (GEFs) that catalyse the exchange of GDP for GTP are crucial elements regulating Rho signalling. Using an RNA interference approach, we have recently demonstrated that the GEFs Intersectin-1L and β-Pix, play essential roles in neuroendocrine exocytosis by controlling the activity of Cdc42 and Rac1, respectively. This review summarizes these results and discusses the functional importance of Rho GEFs in the exocytotic machinery in neuroendocrine cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号