首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radiation and Environmental Biophysics - Radiodermatitis is a painful side effect for cancer patients undergoing radiotherapy. Irradiation of the skin causes inflammation and breakdown of the...  相似文献   

2.
3.
Trisomy 21 (Down Syndrome, DS) is the most common chromosomal anomaly. Although DS is mostly perceived as affecting cognitive abilities and cardiac health, individuals with DS also exhibit dysregulated immune functions. Levels of pro-inflammatory cytokines are increased, but intrinsic alterations of innate immunity are understudied in DS. Furthermore, elevated Reactive Oxygen Species (ROS) are well documented in individuals with DS, further exacerbating inflammatory processes. Chronic inflammation and oxidative stress are often precursors of subsequent tissue destruction and pathologies, which affect a majority of persons with DS.Together with ROS, the second messenger ion Ca2 + plays a central role in immune regulation. TRPM2 (Transient Receptor Potential Melastatin 2) is a Ca2 +-permeable ion channel that is activated under conditions of oxidative stress. The Trpm2 gene is located on human Chromosome 21 (Hsa21). TRPM2 is strongly represented in innate immune cells, and numerous studies have documented its role in modulating inflammation. We have previously found that as a result of suboptimal cytokine production, TRPM2?/? mice are highly susceptible to the bacterial pathogen Listeria monocytogenes (Lm). We therefore used Lm infection to trigger and characterize immune responsiveness in the DS mouse model Dp10(yey), and to investigate the potential contribution of TRPM2. In comparison to wildtype (WT), Dp10(yey) mice show an increased resistance against Lm infection and higher IFNγ serum concentrations. Using a gene elimination approach, we show that these effects correlate with Trpm2 gene copy number, supporting the notion that Trpm2 might promote hyperinflammation in DS.  相似文献   

4.
Ito T  Matsui Y  Ago T  Ota K  Sumimoto H 《The EMBO journal》2001,20(15):3938-3946
Modular domains mediating specific protein-protein interactions play central roles in the formation of complex regulatory networks to execute various cellular activities. Here we identify a novel domain PB1 in the budding yeast protein Bem1p, which functions in polarity establishment, and mammalian p67(phox), which activates the microbicidal phagocyte NADPH oxidase. Each of these specifically recognizes an evolutionarily conserved PC motif to interact directly with Cdc24p (an essential protein for cell polarization) and p40(phox) (a component of the signaling complex for the oxidase), respectively. Swapping the PB1 domain of Bem1p with that of p67(phox), which abolishes its interaction with Cdc24p, confers on cells temperature- sensitive growth and a bilateral mating defect. These phenotypes are suppressed by a mutant Cdc24p harboring the PC motif-containing region of p40(phox), which restores the interaction with the altered Bem1p. This domain-swapping experiment demonstrates that Bem1p function requires interaction with Cdc24p, in which the PB1 domain and the PC motif participate as responsible modules.  相似文献   

5.
TRPM2 is a cation channel unique within the transient receptor potential family because of its gating by ADP-ribose (ADPR). ADPR gating is enabled by a cytosolic C-terminal Nudix box sequence motif embedded into a region homologous to the NUDT9 ADPR pyrophosphatase. A recently discovered splice variant of TRPM2 (TRPM2-DeltaC) lacks 34 amino acid residues in the NUDT9 domain and is insensitive to ADPR. To analyze in detail which parts of the deleted sequence (DeltaC-stretch) are critical for ADPR gating, we tested mutants that lacked 19, 25, and 29 amino acid residues in the N-terminal part or had amino acid residues substituted in the remaining C-terminal part of the DeltaC-stretch. All of these mutants displayed typical ADPR-induced currents. However, the deletion or substitution of the amino acid residue Asn-1326 immediately downstream of the DeltaC-stretch abrogated ADPR gating. We furthermore analyzed the mutation I1405E/L1406F in the Nudix box of TRPM2, because a considerably decreased AD-PRase activity of the TRPM2 NUDT9-H protein in comparison to the NUDT9 pyrophosphatase has been attributed to the reverse exchange EF --> IL. The I1405E/L1406F variant of TRPM2 failed to respond to ADPR even at concentrations up to 10 mM. We concluded that the DeltaC-stretch contains no individual amino acid residues essential for ADPR gating but may act as a spacer segment stabilizing a conformation necessary for the essential residue Asn-1326 to interact with other channel regions. Enhancing the enzymatic activity of the Nudix box abolishes the ADPR gating of TRPM2, pointing to the requirement of prolonged binding rather than degradation.  相似文献   

6.
The structural study of peptides belonging to the terminal domains of histone H1 can be considered as a step toward the understanding of the function of H1 in chromatin. The conformational properties of the peptide Ac-EPKRSVAFKKTKKEVKKVATPKK (CH-1), which belongs to the C-terminal domain of histone H1(o) (residues 99-121) and is adjacent to the central globular domain of the protein, were examined by means of 1H-NMR and circular dichroism. In aqueous solution, CH-1 behaved as a mainly unstructured peptide, although turn-like conformations in rapid equilibrium with the unfolded state could be present. Addition of trifluoroethanol resulted in a substantial increase of the helical content. The helical limits, as indicated by (i,i + 3) nuclear Overhauser effect (NOE) cross correlations and significant up-field conformational shifts of the C(alpha) protons, span from Pro100 to Val116, with Glu99 and Ala117 as N- and C-caps. A structure calculation performed on the basis of distance constraints derived from NOE cross peaks in 90% trifluoroethanol confirmed the helical structure of this region. The helical region has a marked amphipathic character, due to the location of all positively charged residues on one face of the helix and all the hydrophobic residues on the opposite face. The peptide has a TPKK motif at the C-terminus, following the alpha-helical region. The observed NOE connectivities suggest that the TPKK sequence adopts a type (I) beta-turn conformation, a sigma-turn conformation or a combination of both, in fast equilibrium with unfolded states. Sequences of the kind (S/T)P(K/R)(K/R) have been proposed as DNA binding motifs. The CH-1 peptide, thus, combines a positively charged amphipathic helix and a turn as potential DNA-binding motifs.  相似文献   

7.
The activity of the TRPM7 channel is negatively regulated by intracellular Mg2+. We previously reported that oxidative stress enhances the inhibition of TRPM7 by intracellular Mg2+. Here, we aimed to clarify the mechanism underlying TRPM7 inhibition by hydrogen peroxide (H2O2). Site-directed mutagenesis of full-length TRPM7 revealed that none of the cysteines other than C1809 and C1813 within the zinc-binding motif of the TRPM7 kinase domain were involved in the H2O2-induced TRPM7 inhibition. Mutation of C1809 or C1813 prevented expression of full-length TRPM7 on the plasma membrane. We therefore developed an assay to functionally reconstitute full-length TRPM7 by coexpressing the TRPM7 channel domain (M7cd) and the TRPM7 kinase domain (M7kd) as separate proteins in HEK293 cells. When M7cd was expressed alone, the current was inhibited by intracellular Mg2+ more strongly than that of full-length TRPM7 and was insensitive to oxidative stress. Coexpression of M7cd and M7kd attenuated the inhibition by intracellular Mg2+ and restored sensitivity to oxidative stress, indicating successful reconstitution of a full-length TRPM7-like current. We observed a similar effect when M7cd was coexpressed with the kinase-inactive mutant M7kd-K1645R, suggesting that the kinase activity is not essential for the reconstitution. However, coexpression of M7cd and M7kd carrying a mutation at either C1809 or C1813 failed to restore the full-length TRPM7-like current. No reconstitution was observed when using M7kd carrying a mutation at H1750 and H1807, which are involved in the zinc-binding motif formation with C1809 and C1813. These data suggest that the zinc-binding motif is essential for the intracellular Mg2+-dependent regulation of the TRPM7 channel activity by its kinase domain and that the cysteines in the zinc-binding motif play a role in the oxidative stress response of TRPM7.  相似文献   

8.
TRPM8 is a member of the transient receptor potential ion channel superfamily, which is expressed in sensory neurons and is activated by cold and cooling compounds, such as menthol. Activation of TRPM8 by agonists takes place through shifts in its voltage activation curve, allowing channel opening at physiological membrane potentials. Here, we studied the role of the N-glycosylation occurring at the pore loop of TRPM8 on the function of the channel. Using heterologous expression of recombinant channels in HEK293 cells we found that the unglycosylated TRPM8 mutant (N934Q) displays marked functional differences compared with the wild type channel. These differences include a shift in the threshold of temperature activation and a reduced response to menthol and cold stimuli. Biophysical analysis indicated that these modifications are due to a shift in the voltage dependence of TRPM8 activation toward more positive potentials. By using tunicamycin, a drug that prevents N-glycosylation of proteins, we also evaluated the effect of the N-glycosylation on the responses of trigeminal sensory neurons expressing TRPM8. These experiments showed that the lack of N-glycosylation affects the function of native TRPM8 ion channels in a similar way to heterologously expressed ones, causing an important shift of the temperature threshold of cold-sensitive thermoreceptor neurons. Altogether, these results indicate that post-translational modification of TRPM8 is an important mechanism modulating cold thermoreceptor function, explaining the marked differences in temperature sensitivity observed between recombinant and native TRPM8 ion channels.  相似文献   

9.
The channel kinases TRPM6 and TRPM7 have recently been discovered to play important roles in Mg2+ and Ca2+ homeostasis, which is critical to both human health and cell viability. However, the molecular basis underlying these channels' unique Mg2+ and Ca2+ permeability and pH sensitivity remains unknown. Here we have created a series of amino acid substitutions in the putative pore of TRPM7 to evaluate the origin of the permeability of the channel and its regulation by pH. Two mutants of TRPM7, E1047Q and E1052Q, produced dramatic changes in channel properties. The I-V relations of E1052Q and E1047Q were significantly different from WT TRPM7, with the inward currents of 8- and 12-fold larger than TRPM7, respectively. The binding affinity of Ca2+ and Mg2+ was decreased by 50- to 140-fold in E1052Q and E1047Q, respectively. Ca2+ and Mg2+ currents in E1052Q were 70% smaller than those of TRPM7. Strikingly, E1047Q largely abolished Ca2+ and Mg2+ permeation, rendering TRPM7 a monovalent selective channel. In addition, the ability of protons to potentiate inward currents was lost in E1047Q, indicating that E1047 is critical to Ca2+ and Mg2+ permeability of TRPM7, and its pH sensitivity. Mutation of the corresponding residues in the pore of TRPM6, E1024Q and E1029Q, produced nearly identical changes to the channel properties of TRPM6. Our results indicate that these two glutamates are key determinants of both channels' divalent selectivity and pH sensitivity. These findings reveal the molecular mechanisms underpinning physiological/pathological functions of TRPM6 and TRPM7, and will extend our understanding of the pore structures of TRPM channels.  相似文献   

10.
The serine/threonine kinases of the Akt/protein kinase B family are regulated in part by recruitment to the plasma membrane, which is accomplished by the binding of an N-terminal PH domain to the phosphatidylinositol 3-kinase products phosphoinositol 3,4,5-trisphosphate and phosphoinositol 3,4-bisphosphate. We have examined Akt localization in a murine T cell clone (D10) before and after stimulation by APC/Ag, and we found that whereas the pleckstrin homology domain is required for plasma membrane recruitment of Akt upon T cell activation, the C terminus of the kinase restricts its cellular localization to the immunologic synapse formed at the site of T cell/APC contact. A recently described proline-rich motif in this region appears to be important for proper localization of full-length Akt. Moreover, a form of Akt in which this motif was mutated acts as a potent dominant negative construct to block T cell activation. Therefore, multiple mechanisms are involved in the proper targeting of Akt during the early events of T cell activation.  相似文献   

11.
The early (approximately 30 min) postexercise hypotension response after a session of aerobic exercise is due in part to H1-receptor-mediated vasodilation. The purpose of this study was to determine the potential contribution of H2-receptor-mediated vasodilation to postexercise hypotension. We studied 10 healthy normotensive men and women (ages 23.7 +/- 3.4 yr) before and through 90 min after a 60-min bout of cycling at 60% peak O2 uptake on randomized control and H2-receptor antagonist days (300 mg oral ranitidine). Arterial pressure (automated auscultation), cardiac output (acetylene washin) and femoral blood flow (Doppler ultrasound) were measured. Vascular conductance was calculated as flow/mean arterial pressure. Sixty minutes postexercise on the control day, femoral (delta62.3 +/- 15.6%, where Delta is change; P < 0.01) and systemic (delta13.8 +/- 5.3%; P = 0.01) vascular conductances were increased, whereas mean arterial pressure was reduced (Delta-6.7 +/- 1.1 mmHg; P < 0.01). Conversely, 60 min postexercise with ranitidine, femoral (delta9.4 +/- 9.2%; P = 0.34) and systemic (delta-2.8 +/- 4.8%; P = 0.35) vascular conductances were not elevated and mean arterial pressure was not reduced (delta-2.2 +/- 1.3 mmHg; P = 0.12). Furthermore, postexercise femoral and systemic vascular conductances were lower (P < 0.05) and mean arterial pressure was higher (P = 0.01) on the ranitidine day compared with control. Ingestion of ranitidine markedly reduces vasodilation after exercise and blunts postexercise hypotension, suggesting H2-receptor-mediated vasodilation contributes to postexercise hypotension.  相似文献   

12.
The extracellular matrix (ECM) acts as a critical factor during morphogenesis. Because the organization of the ECM directly influences the structure of tissues and organs, a determination of the way that ECM organization is regulated should help to clarify morphogenesis. We have analyzed the assembly of Del1, an ECM protein produced by endothelial cells in embryos, in the ECM. Del1 consists of three epidermal growth factor repeats (E1–E3) at its N-terminus and two discoidin domains (C1, C2) at its C-terminus. Experiments with various deletion mutants of Del1 have revealed that fragments containing the C-terminus of C1, which has a lectin-like structure, direct deposition in the ECM. The efficiency of deposition varies according to the presence of other domains in Del1. A fragment containing E3 and C1 has the strongest deposition activity, whereas fragments containing C2, which is highly homologous to C1, have low deposition activity. Digestion of ECM with hyaluronidase from bovine testis releases Del1 from the ECM, suggesting that glycosaminoglycans are involved in the deposition of Del1. In vivo gene transfer experiments have shown that fusion with the deposition domain of Del1 dramatically alters the distribution of exogenous proteins in mice. Thus, the extent of Del1 deposition may modify the organization of the ECM.  相似文献   

13.
14.
The family of cytoplasmic polyadenylation element binding proteins CPEB1, CPEB2, CPEB3, and CPEB4 binds to the 3′‐untranslated region (3′‐UTR) of mRNA, and plays significant roles in mRNA metabolism and translation regulation. They have a common domain organization, involving two consecutive RNA recognition motif (RRM) domains followed by a zinc finger domain in the C‐terminal region. We solved the solution structure of the first RRM domain (RRM1) of human CPEB3, which revealed that CPEB3 RRM1 exhibits structural features distinct from those of the canonical RRM domain. Our structural data provide important information about the RNA binding ability of CPEB3 RRM1. Proteins 2014; 82:2879–2886. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
In order to investigate membrane fluidity, the hydrophobic probe, 1,6-diphenyl-1,3,5-hexatriene (DPH), has been incorporated into intact isolated thylakoids and separated granal and stromal lamellae obtained from the chloroplasts of Pisum sativum. The steady-state polarization of DPH fluorescence was measured as a function of temperature and indicated that at physiological values the thylakoid membrane is a relatively fluid system with the stromal lamellae being less viscous than the lamellae of the grana. According to the DPH technique, neither region of the membrane, however, showed a sharp phase transition of its bulk lipids from the liquid-crystalline to the gel state for the temperature range -20° to 50° C. Comparison of intact thylakoids isolated from plants grown at cold (4°/7°C) and warm (14°/17° C) temperatures indicate that there is an adaptation mechanism operating which seems to maintain an optimal membrane viscosity necessary for growth. Using a modified Perrin equation the optimal average viscosity for the thylakoid membrane of the chill-resistant variety used in the study (Feltham First) is estimated to be about 1.8 poise.Abbreviations DPH 1,6-diphenyl-1,3,5-hexatriene - Hepes N-(2-hydroxyethyl)-1-piperazineethanesulphonic acid  相似文献   

16.
beta-Dystroglycan is a ubiquitously expressed integral membrane protein that undergoes tyrosine phosphorylation in an adhesion-dependent manner. However, it remains unknown whether tyrosine-phosphorylated beta-dystroglycan interacts with SH2 domain containing proteins. Here, we show that the tyrosine phosphorylation of beta-dystroglycan is constitutively elevated in v-Src transformed cells. We next reconstituted this phosphorylation event in vivo by transiently coexpressing wild-type c-Src with a fusion protein containing full-length beta-dystroglycan. Our results demonstrate that Src-induced tyrosine phosphorylation of beta-dystroglycan is strictly dependent on the presence of a PPxY motif at its extreme C-terminus. In the nonphosphorylated state, this PPxY motif is normally recognized as a ligand by the WW domain; phosphorylation at this site blocks the binding of certain WW domain containing proteins. Using a GST fusion protein carrying the cytoplasmic tail of beta-dystroglycan, we identified five SH2 domain containing proteins that interact with beta-dystroglycan in a phosphorylation-dependent manner, including c-Src, Fyn, Csk, NCK, and SHC. We localized this binding activity to the PPxY motif by employing a panel of beta-dystroglycan-derived phosphopeptides. In addition, tyrosine phosphorylation of beta-dystroglycan in vivo resulted in the coimmunoprecipitation of the same SH2 domain containing proteins, and this binding event required the beta-dystroglycan C-terminal PPxY motif. We discuss the possibility that tyrosine phosphorylation of the PPxY motif within beta-dystroglycan may act as a regulatory switch to inhibit the binding of certain WW domain containing proteins, while recruiting SH2 domain containing proteins.  相似文献   

17.
It is known that extracellular Mg(2+) and Ca(2+) can permeate TRPM7 and at the same time block the permeation by monovalent cations. In the present study, we examined the molecular basis for the conductivity and sensitivity of human TRPM7 to these divalent cations. Extracellular acidification to pH 4.0 markedly reduced the blocking effects of Mg(2+) and Ca(2+) on the Cs(+) currents, decreasing their binding affinities: their IC(50) values increased 510- and 447-fold, respectively. We examined the effects of neutralizing each of four negatively charged amino acid residues, Glu-1047, Glu-1052, Asp-1054 and Asp-1059, within the putative pore-forming region of human TRPM7. Mutating Glu-1047 to alanine (E1047A) resulted in non-functional channels, whereas mutating any of the other residues resulted in functionally expressed channels. Cs(+) currents through D1054A and E1052A were less sensitive to block by divalent cations; the IC(50) values were increased 5.5- and 3.9-fold, respectively, for Mg(2+) and 10.5- and 6.7-fold, respectively, for Ca(2+). D1059A also had a significant reduction, though less marked compared to the reductions seen for D1054A and E1052A, in sensitivity to Mg(2+) (1.7-fold) and Ca(2+) (3.9-fold). The D1054A mutation largely abolished inward currents conveyed by Mg(2+) and Ca(2+). In the E1052A and D1059A mutants, inward Mg(2+) and Ca(2+) currents were sizable but significantly diminished. Thus, it is concluded that in human TRPM7, (1) both Asp-1054 and Glu-1052, which are located near the narrowest portion in the pore's selectivity filter, may provide the binding sites for Mg(2+) and Ca(2+), (2) Asp-1054 is an essential determinant of Mg(2+)and Ca(2+) conductivity, and (3) Glu-1052 and Asp-1059 facilitate the conduction of divalent cations.  相似文献   

18.
It is known that extracellular Mg2+ and Ca2+ can permeate TRPM7 and at the same time block the permeation by monovalent cations. In the present study, we examined the molecular basis for the conductivity and sensitivity of human TRPM7 to these divalent cations. Extracellular acidification to pH 4.0 markedly reduced the blocking effects of Mg2+ and Ca2+ on the Cs+ currents, decreasing their binding affinities: their IC50 values increased 510- and 447-fold, respectively. We examined the effects of neutralizing each of four negatively charged amino acid residues, Glu-1047, Glu-1052, Asp-1054 and Asp-1059, within the putative pore-forming region of human TRPM7. Mutating Glu-1047 to alanine (E1047A) resulted in non-functional channels, whereas mutating any of the other residues resulted in functionally expressed channels. Cs+ currents through D1054A and E1052A were less sensitive to block by divalent cations; the IC50 values were increased 5.5- and 3.9-fold, respectively, for Mg2+ and 10.5- and 6.7-fold, respectively, for Ca2+. D1059A also had a significant reduction, though less marked compared to the reductions seen for D1054A and E1052A, in sensitivity to Mg2+ (1.7-fold) and Ca2+ (3.9-fold). The D1054A mutation largely abolished inward currents conveyed by Mg2+ and Ca2+. In the E1052A and D1059A mutants, inward Mg2+ and Ca2+ currents were sizable but significantly diminished. Thus, it is concluded that in human TRPM7, (1) both Asp-1054 and Glu-1052, which are located near the narrowest portion in the pore's selectivity filter, may provide the binding sites for Mg2+ and Ca2+, (2) Asp-1054 is an essential determinant of Mg2+ and Ca2+ conductivity, and (3) Glu-1052 and Asp-1059 facilitate the conduction of divalent cations.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号