首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
多糖单加氧酶(polysaccharidemonooxygenase,PMO)是一种铜离子依赖的氧化酶,属于辅助活性酶类第九家族(auxiliary activity 9,AA9),在存在电子供体维生素C(vitamin C,Vc)的情况下,可以氧化裂解纤维素的多糖链,显著提高纤维素的酶解效率。本文克隆了嗜热革节孢Scytalidium thermophilumAA9家族的一个编码基因pmo7651,并在毕赤酵母GS115进行诱导表达,通过His标签获得了重组蛋白PMO7651-His。以磷酸膨胀纤维素(PASC)为底物进行酶促反应,薄层层析法(TLC)结果显示PMO7651酶解产物主要为纤维二糖至纤维五糖;飞行时间质谱法(MALDI-TOF-MS)和溴氧化法确定PMO7651具有C1、C4、C6位的氧化活性;底物结合平面的3个芳香族氨基酸位点突变对酶的活性具有不同程度的影响;在PMO7651帮助下,纤维素酶的降解效率均具有不同程度的提高。  相似文献   

2.
纤维素酶是能特异性分解纤维素的一系列酶,被广泛应用于食品加工处理、衣物洗涤、农业及造纸等行业。纤维素酶通过不同的水解方式协同作用将纤维素水解为寡糖或可发酵糖。在将纤维素分解成寡糖的过程中,外切葡聚糖酶(CBH)和内切葡聚糖酶(EG)发挥了重要作用。目前关于两种酶协同作用机制和顺序尚未有明确的解释。本研究将嗜热毛壳菌来源的cbh和葡萄穗霉来源的eg分别与绿色荧光蛋白基因gfp和红色荧光蛋白基因mcherry进行融合,并电转入毕赤酵母X33进行异源表达,随后对这两种融合纤维素酶CBH-GFP和EG-MCHERRY进行了性质分析。结果表明:两种融合荧光蛋白的纤维素酶基因在毕赤酵母X33中实现了分泌表达。纯化的CBH-GFP和EG-MCHERRY的蛋白浓度与荧光强度呈正相关关系。对羧甲基纤维素钠(CMC-Na)、磷酸膨胀纤维素(PASC)、滤纸(FP)、微晶纤维素(Avicel)的活性测试结果显示,CBH-GFP对CMC-Na、PASC、Avicel均有催化活性,而EG-MCHERRY对CMC-Na、PASC具有催化活性,CBH-GFP对PASC有最高比酶活(1.1 U/mg);EG-MCHE...  相似文献   

3.
不同碳源和氮源对金针菇降解木质纤维素酶活性的影响   总被引:1,自引:0,他引:1  
安琪  吴雪君  吴冰  戴玉成 《菌物学报》2015,34(4):761-771
以3株栽培的金针菇Flammulina velutipes为材料,研究它们在玉米芯和棉子壳以及不同碳源、氮源培养条件下纤维素、半纤维素和木质素降解酶活性的规律。结果表明,不同金针菇菌株的羧甲基纤维素酶、木聚糖酶和漆酶活力显著不同(P<0.001),同时,培养条件对羧甲基纤维素酶、木聚糖酶和漆酶的活力都有显著影响(P<0.001)。在简单碳源存在的条件下,金针菇的羧甲基纤维素酶和木聚糖酶活力远远低于复杂碳源培养基(P<0.05)。全营养培养基上生长的金针菇的羧甲基纤维素酶和木聚糖酶活力低于缺乏碳源和氮源的培养基(P<0.05)。漆酶活力在无简单氮源培养基上低于全培养基(P<0.05)和无葡萄糖培养基(P<0.05),即复杂碳源和氮源培养基上的漆酶活力低于简单碳源和氮源培养基(P<0.05)。  相似文献   

4.
Ser236位于横贯枯草蛋白酶E的α螺旋末端,远离催化活性中心,Ser236的突变不会对酶的活性产生大的影响。用定点突变的方法对枯草蛋白酶E的基因进行改造引入Ser236Cys,可能会形成分子间二硫键,有利于提高酶的稳定性。Ser236Cys变体酶(BP1)活性是野生型蛋白酶E的15倍,热稳定性提高3倍;进一步在其他位点引入突变的变体酶BU1(A1a15Asp/Gly20His/Ser236Cys)和BW1(Ser24His/Lys27Asp/Ser236Cys)活性都比野生型蛋白酶E低,但BW1的稳定性稍高于野生型蛋白酶E。  相似文献   

5.
大黄欧文氏菌(Erwinia rhapontici)蔗糖异构酶催化蔗糖异构为异麦芽酮糖和海藻酮糖,具有一个可能控制产物特异性的325RLDRD329基序.本研究以定点突变方法对该基序的带电荷氨基酸进行突变,共构建R325D、R328A、R328D、R328Q和D329N 5个突变体.通过对突变体的酶学特性及突变体转化蔗糖的产物组成分析,结果显示所构建突变体的Km值上升约2~5倍,比活力下降至野生型SI比活力的11.8%~25.3%.HPLC分析显示Arg325和Arg328分别突变为Asp,导致产物中异麦芽酮糖/海藻酮糖的比例从6.93分别降至0.96和2.92,并伴随一个未知寡糖出现.Arg328突变为Ala和Gln同样导致反应产物中海藻酮糖比例上升,异麦芽酮糖比例下降.但是突变体D329N反应产物比例没有变化.以上结果表明325RLDRD329基序对大黄欧文氏菌蔗糖异构酶的酶活具有重要作用,并对酶的产物特异性产生影响.本研究结果将为该酶的作用机理研究奠定基础.  相似文献   

6.
【目的】对北京棒杆菌(Corynebacterium pekinense)天冬氨酸激酶(Aspartate kinase,AK)进行改造,期望获得具有较高酶活力且酶活性质改善的高产天冬氨酸族氨基酸的优良突变株,并削弱甚至解除Thr对AK的反馈抑制作用。【方法】利用定点突变技术对Gln(Q)316位点进行突变,高通量筛选获得活力提高明显的突变体,并将其在大肠杆菌BL21中高效表达,对野生型(Wild type,WT)和突变体Q316P AK用镍柱纯化,进行酶动力学及酶学性质研究。【结果】获得突变体Q316P,并在大肠杆菌BL21中成功表达。与野生型相比,突变体Q316P的V_(max)提高8.53倍,n值由2.15降低为1.29,正协同性减弱;最适温度由25°C升高至30°C;最适p H由8.0降低至7.5,半衰期由3.8 h延长至5.0 h;且在实验范围浓度内,底物抑制剂苏氨酸对突变体Q316P表现出激活作用;Q316P AK对金属离子K+和有机溶剂甲醇表现出良好抗性。【结论】获得酶活力提高、酶学性质改善的突变体,并一定程度上解除苏氨酸对AK的反馈抑制,为构建高产天冬氨酸族氨基酸工程菌提供参考。  相似文献   

7.
用定点突变的方法研究S221C/P225A,N118S/S221C/P225A,D60N/S221C/P225A和Q103R/S221C/P225A突变对蛋白酶活性,酯酶活性与蛋白酶活性之比的影响。结果表明:S221C/P225A突变使蛋白酶活性比枯草蛋白酶E低73000多倍,酯酶活性与蛋白酶活性之比是Subtiligase的3倍;N118S/S221C/P225A突变使蛋白酶活性和酯酶活性分别比S221C/P225A突变下降3.6倍和15倍,酯酶与蛋白酶活性之比下降4倍,同时增加变体酶的热稳定性;D60N/N118S/S221C/P225A突变使蛋白酶活性比N118S/S221C/P225A突变体下降15倍,但对酯酶活性几乎没有影响,酯酶与蛋白酶活性之比增加14倍,分别是S221C/P225A突变体和Subtiligase的3.3倍和10.3倍;但是,Q103R/N118S/S221C/P225A突变使蛋白酶活性比N118S/S221C/P225A突变体增加5倍,酯酶活性下降55倍,酯酶与蛋白酶活性之比下降1000倍。  相似文献   

8.
基于易错PCR的黄曲霉毒素解毒酶体外分子定向进化   总被引:3,自引:0,他引:3  
运用定向进化-易错PCR方法,提高黄曲霉毒素解毒酶的活力及稳定性,并结合辣根过氧化物酶 (HRP)-隐性亮绿 (RBG) 快速高通量筛选系统,构建了库容约为104的突变体库。经过两轮易错PCR,最终分别获得了耐高温70 ℃突变酶A1773、pH 4.0稳定性的突变酶A1476,pH 4.0和pH 7.5均表现稳定性的突变酶A2863,其酶活力比野生酶分别提高了6.5倍、21倍和12.6倍。经序列分析表明,发现突变酶A1773发生了Glu127Lys和Gln613Arg突变;突变酶A2863发生了Gly73  相似文献   

9.
为了提高glycosyl hydrolase 5 (GH5)家族的持续性内切酶EG5C-1的催化活性,对EG5C-1进行同源建模和分子对接,分析确定了活性架构区域内的23个关键氨基酸残基,并通过丙氨酸扫描、饱和突变和组合突变等方法最终获得催化活性显著提高的突变体D70Q/S235W,并分析其酶学性质。结果表明:D70Q/S235W的最适反应温度为60℃,最适pH为6.0。以羧甲基纤维素钠(CMC)和微晶纤维素(Avicel)为底物进行水解产物分析,突变体D70Q/S235W的主要水解产物为纤维二糖和纤维三糖。本研究筛选获得催化活性和酶学性质显著提高的突变体,可为纤维素酶的蛋白质工程改造奠定基础。  相似文献   

10.
《菌物学报》2017,(12):1616-1624
多糖单加氧酶(Polysaccharide monooxygenases,PMOs)是一类含铜氧化酶,在还原型辅因子(如维生素C)存在下可使纤维素分子氧化降解,在纤维素的酶解中起重要作用。本研究克隆5个嗜热真菌PMOs基因,构建p PICZαA-PMO表达载体,电转毕赤酵母GS115进行真核表达,经镍柱纯化获得重组蛋白后对其氧化活性进行探究。用5个PMOs分别处理磷酸膨胀纤维素(PASC),薄层层析法(TLC)鉴定酶解产物主要为纤维二糖到纤维六糖;飞行时间质谱法(MALDI-TOF-MS)鉴定结果显示:PMO0810为C4或C6氧化,PMO2033、PMO0154、PMO4983既有C1氧化也有C4或C6氧化,PMO3424未检测到相应的氧化裂解峰。  相似文献   

11.
Zhang YH  Lynd LR 《Biomacromolecules》2005,6(3):1510-1515
A rapid and accurate method for determining the number-average degree of polymerization (DP(n)) was established for insoluble cellulose and soluble cellodextrins as the ratio of glucosyl monomer concentration determined by the phenol-sulfuric acid method divided by the reducing-end concentration determined by a modified 2,2'-bicinchoninate (BCA) method. The modified BCA method, featuring incubation at 75 degrees C for 30 min, did not result in beta-glucosidic bond cleavage, whereas substantial cleavage was observed at higher temperature. Solubilization of insoluble cellulose in cold phosphoric acid prior to measurement of the reducing-end concentration by the BCA method was found not to be necessary for several model celluloses such as microcrystalline cellulose, but such solubilization was required for large fibers of cellulose such as Whatman No. 1 filter paper. The phenol-sulfuric acid method can be used for measuring the glucosyl monomer concentration of soluble cellodextrins, and also for insoluble cellulose if preceded by a liquefaction step. Standard deviations of < or =2% were obtained for both reducing and glucosyl monomer determination and of < or =3% for overall determination of DP. By use of the reported method, hydrolysis of phosphoric acid-swollen cellulose (PASC) by the Trichoderma reesei cellulase system was shown to result in a rapid decrease in DP as hydrolysis proceeded. By contrast, the DP of Avicel remained nearly constant during hydrolysis. The specific enzymatic cellulose hydrolysis rate is 100-fold higher for PASC as compared to Avicel.  相似文献   

12.
In bacterial cellulase systems, glycoside hydrolase family 9 (GH9) cellulases are generally regarded as the major cellulose-degrading factors besides GH48 exoglucanase. In this study, umcel9A, which was cloned from uncultured microorganisms from compost, with the encoded protein being theme C GH9 cellulase, was heterologously expressed in Escherichia coli, and the biochemical properties of the purified enzyme were characterized. Hydrolysis of carboxylmethylcellulose (CMC) by Umcel9A led to the decreased viscosity of CMC solution and production of reducing sugars. Interestingly, cellobiose was the major product when cellulosic materials were hydrolyzed by Umcel9A. Six representative carbohydrate-binding modules (CBMs) from different CBM families (CBM1, CBM2, CBM3, CBM4, CBM10, and CBM72) were fused with Umcel9A at the natural terminal position, resulting in significant enhancement of the binding capacity of the chimeric enzymes toward four different insoluble celluloses as compared with that of Umcel9A. Catalytic activity of the chimeric enzymes against insoluble celluloses, including phosphoric acid-swollen cellulose (PASC), alkali-pretreated sugarcane bagasse (ASB), filter paper powder (FPP), and Avicel, was higher than that of Umcel9A, except for Umcel9A-CBM3. In these chimeric enzymes, CBM4-Umcel9A exhibited the highest activity toward the four tested insoluble celluloses and displayed 4.2-, 3.0-, 2.4-, and 6.6-fold enhanced activity toward PASC, ASB, FPP, and Avicel, respectively, when compared with that of Umcel9A. CBM4-Umcel9A also showed highest V max and catalytic efficiency (k cat/K M) against PASC. Construction of chimeric enzymes may have potential applications in biocatalytic processes and provides insight into the evolution of the molecular architecture of catalytic module and CBM in GH9 cellulases.  相似文献   

13.
A novel endoglucanase gene was cloned from Rhizopus stolonifer and expressed in Escherichia coli, the gene product EG II (45 kDa) was assigned to Glycoside Hydrolase Family 45 (GH45), and its specific activity on phosphoric acid-swollen cellulose (PASC) was 48 IU/mg. To solve the problem of substrate accumulation in the cellulose hydrolysis and enhance the catalytic efficiency of endoglucanase, the eg2 gene was modified by site directed mutagenesis. Mutations generated by overlapping PCR have been proven to increase its catalytic activity on carboxymenthyl cellulose, microcrystalline cellulose (Avicel) and PASC, among which the mutant EG II-E containing all 6 mutations (N39S, V136D, T251G, D255G, P256S and E260D) peaked 121 IU/mg on PASC. The bioinformatic analysis showed that 2 key catalytic residues (D136 and D260) moved closer with the opening of a loop after mutagenesis, and a tunnel was formed by structural transformation. This structure was conducive for the substrate to access the active centre, and D136 played an indispensable role in the substrate recognition.  相似文献   

14.
In this study, we expressed two cellulase encoding genes, an endoglucanase of Trichoderma reesei (EGI) and the beta-glucosidase of Saccharomycopsis fibuligera (BGL1), in combination in Saccharomyces cerevisiae. The resulting strain was able to grow on phosphoric acid swollen cellulose (PASC) through simultaneous production of sufficient extracellular endoglucanase and beta-glucosidase activity. Anaerobic growth (0.03h(-1)) up to 0.27gl(-1) DCW was observed on medium containing 10gl(-1) PASC as sole carbohydrate source with concomitant ethanol production of up to 1.0gl(-1). We have thus demonstrated the construction of a yeast strain capable of growth on and one-step conversion of amorphous cellulose to ethanol, representing significant progress towards realization of one-step processing of cellulosic biomass in a consolidated bioprocessing configuration. To our knowledge, this is the first report of a recombinant strain of S. cerevisiae growing on pure cellulose.  相似文献   

15.
1. Cell-free culture filtrates of the fungus Fusarium solani were examined for homogeneity with respect to beta-d-glucosidase and C(x) activities. 2. o-Nitrophenyl beta-d-glucoside and cellobiose were both used as substrates for beta-d-glucosidase activity. 3. No evidence for the non-identity of nitrophenyl beta-d-glucosidase and cellobiase activities could be found, either by heat treatment, gel filtration on Sephadex G-100 or by isoelectric focusing. 4. The beta-d-glucosidase component was also a feeble exo-beta-glucanase: it had a molecular weight of approx. 400000. 5. The fall in viscosity of a solution of CM-cellulose, the formation of reducing sugars in a solution of CM-cellulose and the solubilization of phosphoric acid-swollen cellulose (Walseth cellulose), were all used for the measurement of C(x) activity. 6. The ratio of the two types of CM-cellulase activity was not changed after gel filtration on Sephadex G-100 or after chromatography on DEAE-Sephadex. 7. Three peaks of C(x) activity were obtained after electrofocusing, but all three possessed the same ratio of the two types of CM-cellulase activity as well as the same CM-cellulase/Walseth activity ratio, as the unfractionated enzyme; all three isoenzymes (isoelectric points, 4.75, 4.80-4.85 and 5.15) acted in synergism with a mixture of the C(1) and the beta-d-glucosidase components to the same extent in the solubilization of cotton fibre. 8. The molecular weight of the C(x) component was approx. 37000.  相似文献   

16.
The gene coding for CelG, a family 9 cellulase from Clostridium cellulolyticum, was cloned and overexpressed in Escherichia coli. Four different forms of the protein were genetically engineered, purified, and studied: CelGL (the entire form of CelG), CelGcat1 (the catalytic domain of CelG alone), CelGcat2 (CelGcat1 plus 91 amino acids at the beginning of the cellulose binding domain [CBD]), and GST-CBD(CelG) (the CBD of CelG fused to glutathione S-transferase). The biochemical properties of CelG were compared with those of CelA, an endoglucanase from C. cellulolyticum which was previously studied. CelG, like CelA, was found to have an endo cutting mode of activity on carboxymethyl cellulose (CMC) but exhibited greater activity on crystalline substrates (bacterial microcrystalline cellulose and Avicel) than CelA. As observed with CelA, the presence of the nonhydrolytic miniscaffolding protein (miniCipC1) enhanced the activity of CelG on phosphoric acid swollen cellulose (PASC), but to a lesser extent. The absence of the CBD led to the complete inactivation of the enzyme. The abilities of CelG and GST-CBD(CelG) to bind various substrates were also studied. Although the entire enzyme is able to bind to crystalline cellulose at a limited number of sites, the chimeric protein GST-CBD(CelG) does not bind to either of the tested substrates (Avicel and PASC). The lack of independence between the two domains and the weak binding to cellulose suggest that this CBD-like domain may play a special role and be either directly or indirectly involved in the catalytic reaction.  相似文献   

17.
Modification of substrate specificity of an autoprocessing enzyme is accompanied by a risk of significant failure of self-cleavage of the pro-region essential for activation. Therefore, to enhance processing, we engineered the pro-region of mutant subtilisins E of Bacillus subtilis with altered substrate specificity. A high-activity mutant subtilisin E with Ile31Leu replacement (I31L) as well as the wild-type enzyme show poor recognition of acid residues as the P1 substrate. To increase the P1 substrate preference for acid residues, Glu156Gln and Gly166Lys/Arg substitutions were introduced into the I31L gene based upon a report on subtilisin BPN' [Wells et al. (1987) Proc. Natl. Acad. Sci. USA 84, 1219-1223]. The apparent P1 specificity of four mutants (E156Q/G166K, E156Q/G166R, G166K, and G166R) was extended to acid residues, but the halo-forming activity of Escherichia coli expressing the mutant genes on skim milk-containing plates was significantly decreased due to the lower autoprocessing efficiency. A marked increase in active enzyme production occurred when Tyr(-1) in the pro-region of these mutants was then replaced by Asp or Glu. Five mutants with Glu(-2)Ala/Val/Gly or Tyr(-1)Cys/Ser substitution showing enhanced halo-forming activity were further isolated by PCR random mutagenesis in the pro-region of the E156Q/G166K mutant. These results indicated that introduction of an optimum arrangement at the cleavage site in the pro-region is an effective method for obtaining a higher yield of active enzymes.  相似文献   

18.
1. The C(1) component that was isolated from a Trichoderma koningii cellulase preparation (Wood, 1968) by chromatography on DEAE-Sephadex with a salt gradient was still associated with a trace of CM-cellulase activity (determined by reducing-sugar and viscometric methods). 2. Further chromatography on DEAE-Sephadex, with a pH gradient instead of a salt gradient, provided a C(1) component that could still produce reducing sugars from a solution of CM-cellulose (to a very limited extent), but which could no longer decrease the viscosity (i.e. under the assay conditions employed). 3. No evidence for the non-identity of C(1) component and the trace of CM-cellulase activity could be found when electrofocusing was done in a stabilized pH gradient covering three pH units (pH3-6) or, alternatively, only 0.5 pH unit (pH3.72-4.25). 4. The two protein peaks that were separated by electrofocusing in carrier ampholytes covering only 0.5 pH unit (isoelectric pH values of 3.80 and 3.95) were shown to be isoenzymes of the C(1) component: they differed in the extent to which they were associated with carbohydrate (9% and 33%). 5. The purified C(1) component had little ability to attack CM-cellulose or highly ordered forms of cellulose, but degraded phosphoric acid-swollen cellulose readily: cellobiose was the principal product of the hydrolysis (97%). 6. Dewaxed cotton fibre was degraded to the extent of 15% when exposed to high concentrations of C(1) component over a prolonged period: cellobiose was again the principal sugar present in the supernatant (96%). 7. Cellotetraose and cellohexaose were hydrolysed almost exclusively to cellobiose. 8. Evidence indicates that the C(1) component is a beta-1,4-glucan cellobiosylhydrolase.  相似文献   

19.
Cellulase, an enzymatic complex that synergically promotes the degradation of cellulose to glucose and cellobiose, free or adsorbed onto Si/SiO2 wafers at 60 °C has been employed as catalyst in the hydrolysis of microcrystalline cellulose (Avicel), microcrystalline cellulose pre-treated with hot phosphoric acid (CP), cotton cellulose (CC) and eucalyptus cellulose (EC). The physical characteristics such as index of crystallinity (IC), degree of polymerization (DP) and water sorption values were determined for all samples. The largest conversion rates of cellulose into the above-mentioned products using free cellulase were observed for samples with the largest water sorption values; conversion rates showed no correlation with either IC or DP of the biopolymer. Cellulose with large water sorption value possesses large pore volumes, hence higher accessibility. The catalytic efficiency of immobilized cellulase could not be correlated with the physical characteristics of cellulose samples. The hydrolysis rates of the same cellulose samples with immobilized cellulase were lower than those by the free enzyme, due to the diffusion barrier (biopolymer chains approaching to the immobilized enzyme) and less effective contact between the enzyme active site and its substrate. Immobilized cellulase, unlike its free counterpart, can be recycled at least six times without loss of catalytic activity, leading to higher overall cellulose conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号