首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ge L  Smail M  Meng W  Shyr Y  Ye F  Fan KH  Li X  Zhou HM  Bhowmick NA 《PloS one》2011,6(11):e27529

Introduction

Yes-associated protein (YAP) is considered an oncogene found amplified in multiple tumors, including head and neck squamous cell carcinoma (HNSCC). However, the role for YAP expression in HNSCC is not understood. Based on the central role of YAP in the hippo pathway, we tested if YAP was associated with the stage of HNSCC progression and metastatic potential.

Methods

To determine the expression of YAP in human benign and HNSCC tissue specimens, immunohistochemical analyses were performed in whole tissue samples and tissue microarrays. The expression of YAP in tissues of microarray was first associated with clinic-pathologic factors and results verified in samples from whole tissue sections. To investigate the role of YAP and p63 in regulating HNSCC epithelial to mesenchymal transition, epithelial and mesenchymal markers were assayed in Fadu and SCC-25 cells, HNSCC cells with endogenously elevated YAP expression and siRNA-mediated expression knockdown.

Results

Analysis of human HNSCC tissues suggested YAP expression was elevated in tumors compared to benign tissues and specifically localized at the tumor invasive front (p value <0.05). But, indexed YAP expression was lower with greater tumor grade (p value  = 0.02). In contrast, p63 expression was primarily elevated in high-grade tumors. Interestingly, both YAP and p63 was strongly expressed at the tumor invasive front and in metastatic HNSCC. Strikingly, we demonstrated YAP expression in the primary HNSCC tumor was associated with nodal metastasis in univariate analysis (p value  = 0.02). However, the knockdown of YAP in Fadu and SCC-25 cell lines was not associated with changes in epithelial to mesenchymal transdifferentiation or p63 expression.

Conclusion

Together, YAP expression, in combination with p63 can facilitate identification of HNSCC tumors from hyperplastic and benign tissues and the metastatic function of YAP in HNSCC may not be a result of epithelia to mesenchymal transdifferentiation.  相似文献   

2.
The canonical Wnt/β‐catenin signalling pathway and autophagy play critical roles in cancer progression. However, the role of Wnt‐mediated autophagy in cancer radioresistance remains unclear. In this study, we found that irradiation activated the Wnt/β‐catenin and autophagic signalling pathways in squamous cell carcinoma of the head and neck (SCCHN). Wnt3a is a classical ligand that activated the Wnt/β‐catenin signalling pathway, induced autophagy and decreased the sensitivity of SCCHN to irradiation both in vitro and in vivo. Further mechanistic analysis revealed that Wnt3a promoted SCCHN radioresistance via protective autophagy. Finally, expression of the Wnt3a protein was elevated in both SCCHN tissues and patients' serum. Patients showing high expression of Wnt3a displayed a worse prognosis. Taken together, our study indicates that both the canonical Wnt and autophagic signalling pathways are valuable targets for sensitizing SCCHN to irradiation.  相似文献   

3.
We estimated the serum levels of SCC-Ag, CEA and TPA in 69 patients with head or neck neoplasia and 31 healthy patients using a radioimmunometric method (double antibody). SCC-Ag concentrations were significantly increased in 43.4% cancer patients with respect to the cut-off point value (1.7 ng/ml) of the control group, and the specificity was 96.7%. The data varied according to the evolutive phase of disease. Since the combined evaluation of SCC-Ag, TPA and CEA serum levels increased the sensitivity, that was 71.0%, we thought it opportune to use all these markers in the tumoral pathology taken into consideration.  相似文献   

4.
Survivin is ubiquitously expressed in patients with head neck squamous cell carcinoma (HNSCC) and is associated with poor survival and chemotherapy resistance. Sepantronium bromide (YM155) is a selective survivin suppressant that exhibits potent antitumor activities by inducing apoptosis and autophagy in various types of cancer. However, the curative effects and underlying mechanisms of YM155 in HNSCC remain unclear. This study showed that survivin overexpression positively correlated with p-S6, p-Rb and LAMP2 but negatively correlated with the autophagic marker LC3 in human HNSCC tissues. In vitro studies revealed that YM155 triggered apoptosis of HNSCC cells in mitochondria and death receptor-dependent manner. The treatment also significantly enhanced autophagy by upregulating Beclin1, which led to cell death. YM155 not only downregulated the expression of survivin but also remarkably suppressed the activation of the mTOR signaling pathway in vitro and in vivo. YM155 displayed potent antitumor activities in both CAL27 xenograft and transgenic HNSCC mice models by delaying tumor onset and suppressing tumor growth. Furthermore, YM155 combined with docetaxel promoted tumor regression better than either treatment alone without causing considerable body weight loss in the HNSCC xenograft models. Overall, targeting survivin by YM155 can benefit HNSCC therapy by increasing apoptotic and autophagic cell death, and suppressing prosurvival pathways.Head and neck squamous cell carcinoma (HNSCC), which occurs in the oral cavity, oropharynx, larynx and hypopharynx, is the sixth most common malignancy worldwide.1 It affects 600 000 new patients each year, which accounts for over 90% of head and neck cancers.2, 3 The current preferred therapy for HNSCC is combined surgery, radiotherapy, chemotherapy and biotherapy; however, the 5-year survival rate is still <50%, and the long-term survival rate has only marginally improved.4, 5, 6 As an important hallmark of head and neck cancer, apoptosis resistance restricts the efficacy of traditional therapies.7 Survivin (also called BIRC5) inhibits apoptosis-related proteins, regulates cell division, relates to stress response and promotes tumor-associated angiogenesis in HNSCC.8 Survivin is also associated with high-grade and advanced HNSCC, poor survival, high recurrence rate and chemotherapy and radiation resistance. Therefore, targeting survivin is promisingly beneficial for head and neck cancer therapies.Sepantronium bromide (YM155) is a small imidazolium-based compound (1-(2-methoxyethyl)-2-methyl-4,9-dioxo-3-(pyrazin-2-ylmethyl)-4,9-dihydro-1H-naphtho[2,3-d]imidazolium bromide) that selectively suppresses survivin expression9 and displays potent anticancer activities against various types of cancer.10, 11, 12 Previous researches have focused on that YM155 induced the apoptosis by downregulating survivin in cancer cells.10, 13, 14 Recent studies including ours have demonstrated YM155 also triggered autophagy in cancer cells.15, 16, 17 Macroautophagy or autophagy is considered to be another type of programmed cell death wherein proteins are degraded by autophagosomes and lysosomes.18 Autophagy also has an important role in tumorigenesis.19 Autophagy shares several regulatory systems and common pathways with apoptosis; thus, autophagy is closely linked with apoptosis. Beclin1 (ATG6), an autophagy-specific gene that is essential for autophagosome induction and elongation, interacts with several apoptosis-related genes, such as bcl-2, bcl-xl and survivin.20 Therefore, YM155 may not only induce the apoptosis but also affect the autophagy in HNSCC.The present study investigated the antitumor effects of YM155 on HNSCC in vitro and in vivo through dual induction of apoptotic and autophagic cell death. Although it specifically suppressed the expression of survivin, we here proved YM155 also targeted the mTOR signaling pathway, which was the principal regulator of cancer cell survival and autophagy. Most importantly, in an inducible tissue-specific spontaneous HNSCC mouse model with 100% penetrance by the combined deletion of Tgfbr1 and Pten (Tgfbr1/Pten 2cKO) in the oral mucosa21 with ubiquitous activation of the Akt/mTOR/survivin pathway,22 YM155 exerted significant therapeutic effects by delaying tumor onset and suppressing tumor growth. This finding coincided with the xenograft results. Finally, the effects of YM155 when combined with traditional chemotherapeutic agent were also determined.  相似文献   

5.
Cancer-associated fibroblasts (CAFs) consist of heterogeneous cellular populations that contribute critical roles in head and neck squamous cell carcinoma (HNSCC). A series of computer-aided analyses were performed to determine various aspects of CAFs in HNSCC, including their cellular heterogeneity, prognostic value, relationship with immune suppression and immunotherapeutic response, intercellular communication, and metabolic activity. The prognostic significance of CKS2+ CAFs was verified using immunohistochemistry. Our findings revealed that fibroblasts group demonstrated prognostic significance, with the CKS2+ subset of inflammatory CAFs (iCAFs) exhibiting a significant correlation with unfavorable prognosis and being localized in close proximity to cancer cells. Patients with a high infiltration of CKS2+ CAFs had a poor overall survival rate. There is a negative correlation between CKS2+ iCAFs and cytotoxic CD8+ T cells and natural killer (NK) cells, while a positive correlation was found with exhausted CD8+ T cells. Additionally, patients in Cluster 3, characterized by a high proportion of CKS2+ iCAFs, and patients in Cluster 2, characterized by a high proportion of CKS2- iCAFs and CENPF-/MYLPF- myofibroblastic CAFs (myCAFs), did not exhibit significant immunotherapeutic responses. Moreover, close interactions was confirmed to exist between cancer cells and CKS2+ iCAFs/ CENPF+ myCAFs. Furthermore, CKS2+ iCAFs demonstrated the highest level of metabolic activity. In summary, our study enhances the understanding of the heterogeneity of CAFs and provided insights into improving the efficacy of immunotherapies and prognostic accuracy for HNSCC patients.  相似文献   

6.
Protein biomarker discovery for early detection of head and neck squamous cell carcinoma (HNSCC) is a crucial unmet need to improve patient outcomes. Mass spectrometry-based proteomics has emerged as a promising tool for identification of biomarkers in different cancer types. Proteins secreted from cancer cells can serve as potential biomarkers for early diagnosis. In the current study, we have used isobaric tag for relative and absolute quantitation (iTRAQ) labeling methodology coupled with high resolution mass spectrometry to identify and quantitate secreted proteins from a panel of head and neck carcinoma cell lines. In all, we identified 2,472 proteins, of which 225 proteins were secreted at higher or lower abundance in HNSCC-derived cell lines. Of these, 148 were present in higher abundance and 77 were present in lower abundance in the cancer-cell derived secretome. We detected a higher abundance of some previously known markers for HNSCC including insulin like growth factor binding protein 3, IGFBP3 (11-fold) and opioid growth factor receptor, OGFR (10-fold) demonstrating the validity of our approach. We also identified several novel secreted proteins in HNSCC including olfactomedin-4, OLFM4 (12-fold) and hepatocyte growth factor activator, HGFA (5-fold). IHC-based validation was conducted in HNSCC using tissue microarrays which revealed overexpression of IGFBP3 and OLFM4 in 70% and 75% of the tested cases, respectively. Our study illustrates quantitative proteomics of secretome as a robust approach for identification of potential HNSCC biomarkers. This article is part of a Special Issue entitled: An Updated Secretome.  相似文献   

7.
DNA methylation plays an important role in the etiology and pathogenesis of head and neck squamous cell carcinoma (HNSCC). The current study aimed to identify aberrantly methylated-differentially expressed genes (DEGs) by a comprehensive bioinformatics analysis. In addition, we screened for DEGs affected by DNA methylation modification and further investigated their prognostic values for HNSCC. We included microarray data of DNA methylation (GSE25093 and GSE33202) and gene expression (GSE23036 and GSE58911) from Gene Expression Omnibus. Aberrantly methylated-DEGs were analyzed with R software. The Cancer Genome Atlas (TCGA) RNA sequencing and DNA methylation (Illumina HumanMethylation450) databases were utilized for validation. In total, 27 aberrantly methylated genes accompanied by altered expression were identified. After confirmation by The Cancer Genome Atlas (TCGA) database, 2 hypermethylated-low-expression genes (FAM135B and ZNF610) and 2 hypomethylated-high-expression genes (HOXA9 and DCC) were identified. A receiver operating characteristic (ROC) curve confirmed the diagnostic value of these four methylated genes for HNSCC. Multivariate Cox proportional hazards analysis showed that FAM135B methylation was a favorable independent prognostic biomarker for overall survival of HNSCC patients.  相似文献   

8.
9.
10.
Lee J  Jiffar T  Kupferman ME 《PloS one》2012,7(1):e30246
Mechanisms of resistance for HNSCC to cisplatin (CDDP), the foundational chemotherapeutic agent in the treatment of this disease, remain poorly understood. We previously demonstrated that cisplatin resistance (CR) can be overcome by targeting Trk receptor. In the current study, we explored the potential mechanistic role of the BDNF-TrkB signaling system in the development of CDDP resistance in HNSCC. Utilizing an in vitro system of acquired CR, we confirmed a substantial up-regulation of both BDNF and TrkB at the protein and mRNA levels in CR cells, suggesting an autocrine pathway dysregulation in this system. Exogenous BDNF stimulation led to an enhanced expression of the drug-resistance and anti-apoptotic proteins MDR1 and XiAP, respectively, in a dose-dependently manner, demonstrating a key role for BDNF-TrkB signaling in modulating the response to cytotoxic agents. In addition, modulation of TrkB expression induced an enhanced sensitivity of cells to CDDP in HNSCC. Moreover, genetic suppression of TrkB resulted in changes in expression of Bim, XiAP, and MDR1 contributing to HNSCC survival. To elucidate intracellular signaling pathways responsible for mechanisms underlying BDNF/TrkB induced CDDP-resistance, we analyzed expression levels of these molecules following inhibition of Akt. Inhibition of Akt eliminated BDNF effect on MDR1 and Bim expression in OSC-19P cells as well as modulated expressions of MDR1, Bim, and XiAP in OSC-19CR cells. These results suggest BDNF/TrkB system plays critical roles in CDDP-resistance development by utilizing Akt-dependent signaling pathways.  相似文献   

11.
Epithelial–mesenchymal transition (EMT) is associated with metastasis formation, generation and maintenance of cancer stem cells (CSCs). However, the regulatory mechanisms of CSCs have not been clarified. This study aims to investigate the role of TNF receptor‐associated factor 6 (TRAF6) on EMT and CSC regulation in squamous cell carcinoma of head and neck (SCCHN). We found TRAF6 was overexpressed in human SCCHN tissues, and high TRAF6 expression was associated with lymphatic metastasis and resulted in poor prognosis in patients with SCCHN. In addition, elevated TRAF6 expression was observed in several HNSCC cell lines, and wound healing and transwell assay results showed that TRAF6 knockdown inhibited the migration and invasion ability of the SCCHN cells. Moreover, the expression of Vimentin, Slug and N‐cadherin was down‐regulated and that of E‐cadherin was elevated after TRAF6 knockdown but decreased by transforming growth factor beta 1 (TGF‐β1) and CAL27 similar to mesenchymal cells formed after TGF‐β1 induction. In addition, the expression levels of CD44, ALDH1, KLF4 and SOX2 were inhibited after TRAF6 knockdown, and the anchor‐dependent colony formation number and sphere number were remarkably reduced. Flow cytometry showed TRAF6 knockdown reduced ALDH1‐positive cancer stem cells. We also demonstrated that TRAF6 is closely associated with EMT process and cancer stem cells using a Tgfbr1/Pten 2cKO mice SCCHN model and human SCCHN tissue microarray. Our findings indicate that TRAF6 plays a role in EMT phenotypes, the generation and maintenance of CSCs in SCCHN, suggesting that TRAF6 is a potential therapeutic target for SCCHN.  相似文献   

12.
Long noncoding RNAs (lncRNAs) are linked to tumor development and progression. The aim of this study was to determine the prognostic significance and biological role of LINC01116 in head and neck squamous cell carcinoma (HNSCC). We identified 21 aberrantly expressed lncRNAs specific to HNSCC that were common in two microarray datasets. LINC01116 was highly overexpressed in HNSCC tissues and was correlated to shorter overall survival and relapse-free survival duration, as analyzed by the online Gene Expression Profiling Interactive Analysis platform. LINC01116 was also overexpressed in oral squamous cell carcinoma and nasopharyngeal carcinoma tissues, and LINC01116 silencing significantly inhibited the migration and invasion capacities of both cell lines by blocking the epithelial-mesenchymal transition process. In addition, 125 coexpressing genes were identified by circlncRNAnet, and were mainly located on human autosomes and enriched in transforming growth factor-β signaling pathway. These findings indicate that LINC01116 might be a potential therapeutic target for HNSCC.  相似文献   

13.
《Genomics》2020,112(1):297-303
Head and neck squamous cell carcinoma (HNSCC) presents complex chromosomal rearrangements, however, the molecular mechanisms behind HNSCC development remain elusive. The identification of the recurrent chromosomal breakpoints could help to understand these mechanisms. Array-CGH was performed in HNSCC patients and the chromosomal breakpoints involved in gene amplification/loss were analyzed. Frequent breakpoints were clustered in chromosomes 12p, 8p, 3q, 14q, 6p, 4q, Xq and 8q. Chromosomes 6, 14, 3, 8 and X exhibited higher susceptibility to have breaks than other chromosomes. We observed that low copy repeat DNA sequences are localized at or flanking breakpoint sites, ranging from 0 to 200 bp. LINES, SINES and Simple Repeats were the most frequent repeat elements identified in these regions. We conclude that in our cohort specific peri-centromeric and telomeric regions were frequently involved in breakpoints, being the presence of low copy repeats elements one of the explanations for the common rearrangement events observed.  相似文献   

14.
Deregulated long noncoding RNAs (lncRNA) have been critically implicated in tumorigenesis and serve as novel diagnostic and prognostic biomarkers. Here we sought to develop a prognostic lncRNA signature in patients with head and neck squamous cell carcinoma (HNSCC). Original RNA-seq data of 499 HNSCC samples were retrieved from The Cancer Genome Atlas database, which was randomly divided into training and testing set. Univariate Cox regression survival analysis, robust likelihood-based survival model and random sampling iterations were applied to identify prognostic lncRNA candidates in the training cohort. A prognostic risk score was developed based on the Cox coefficient of four individual lncRNA imputed as follows: (0.14546 × expression level of RP11-366H4.1) + (0.27106 × expression level of LINC01123) + (0.54316 × expression level of RP11-110I1.14) + (−0.48794 × expression level of CTD-2506J14.1). Kaplan-Meier analysis revealed that patients with high-risk score had significantly reduced overall survival as compared with those with low-risk score when patients in training, testing, and validation cohorts were stratified into high- or low-risk subgroups. Multivariate survival analysis further revealed that this 4-lncRNA signature was a novel and important prognostic factor independent of multiple clinicopathological parameters. Importantly, ROC analyses indicated that predictive accuracy and sensitivity of this 4-lncRNA signature outperformed those previously well-established prognostic factors. Noticeably, prognostic score based on quantification of these 4-lncRNA via qRT-PCR in another independent HNSCC cohort robustly stratified patients into subgroups with high or low survival. Taken together, we developed a robust 4-lncRNA prognostic signature for HNSCC that might provide a novel powerful prognostic biomarker for precision oncology.  相似文献   

15.
Molecular and Cellular Biochemistry - Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignancy with a poor prognosis, whose biomarkers have not been studied in great detail. We have...  相似文献   

16.
Genetic polymorphisms in some DNA repair proteins are associated with a number of malignant transformations like head and neck squamous cell carcinoma (HNSCC). Xeroderma pigmentosum group D (XPD) and X-ray repair cross-complementing proteins 1 (XRCC1) and 3 (XRCC3) genes are involved in DNA repair and were found to be associated with HNSCC in numerous studies. To establish our overall understanding of possible relationships between DNA repair gene polymorphisms and development of HNSCC, we surveyed the literature on epidemiological studies that assessed potential associations with HNSCC risk in terms of gene–environment interactions, genotype-induced functional defects in enzyme activity and/or protein expression, and the influence of ethnic origin on these associations. We conclude that large, well-designed studies of common polymorphisms in DNA repair genes are needed. Such studies may benefit from analysis of multiple genes or polymorphisms and from the consideration of relevant exposures that may influence the likelihood of HNSCC when DNA repair capacity is reduced.  相似文献   

17.
Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cancer in the world; the main risk factors are alcohol and tobacco use. Advancements in therapies have yet to improve the prognosis of HNSCC. The connection between diabetes and cancer is being recognized, and metformin has been shown to decrease cancer incidence in diabetic patients. Accordingly, here, for the first time, we investigated metformin’s efficacy on the growth and viability of human HNSCC FaDU and Detroit cells. Our results show that metformin treatment (5–20 mM) dose-dependently inhibits the growth of both cell lines. In FaDU cells, metformin caused 18–57% and 35–81% growth inhibition after 48 and 72 h treatments, respectively. Similarly, in Detroit 562 cells, 48 and 72 h metformin treatment resulted in 20–57% and 33–82% inhibition, respectively. Mechanistically, metformin caused G1 arrest, which coincided with a decrease in the protein levels of CDKs (2, 4 and 6), cyclins (D1 and E) and CDK inhibitors (p15, p16, p18 and p27), but no change in p19 and p21. Metformin also decreased the levels of oncogenic proteins Skp2 and β-Trcp. In other studies, metformin decreased the phosphorylation of 4E-BP1 at Ser65, Thr37/46 and Thr70 sites, but drastically increased the phosphorylation of EF2 at Thr56 and AMPK at Thr172, which results in global translational inhibition. In summary, the observed wide spectrum of mechanistic effects of metformin on HNSCC cells provides support for the anticancer capability of the drug and its potential use in future therapies.  相似文献   

18.
Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cancer in the world; the main risk factors are alcohol and tobacco use. Advancements in therapies have yet to improve the prognosis of HNSCC. the connection between diabetes and cancer is being recognized, and metformin has been shown to decrease cancer incidence in diabetic patients. Accordingly, here, for the first time, we investigated metformin''s efficacy on the growth and viability of human HNSCC FaDU and Detroit 562 cells. our results show that metformin treatment (5–20 mM) dose-dependently inhibits the growth of both cell lines. In FaDU cells, metformin caused 18–57% and 35–81% growth inhibition after 48 and 72 h treatments, respectively. Similarly, in Detroit 562 cells, 48 and 72 h metformin treatment resulted in 20–57% and 33–82% inhibition, respectively. Mechanistically, metformin caused G1 arrest, which coincided with a decrease in the protein levels of Cdks (2, 4 and 6), cyclins (D1 and e) and Cdk inhibitors (p15, p16, p18 and p27) but no change in p19 and p21. Metformin also decreased the levels of oncogenic proteins Skp2 and β-Trcp. In other studies, metformin decreased the phosphorylation of 4E-BP1 at Ser65, Thr37/46 and Thr70 sites but drastically increased the phosphorylation of EF2 at Thr56 and AMPK at Thr172, which results in global translational inhibition. In summary, the observed wide spectrum of mechanistic effects of metformin on HNSCC cells provides support for the anticancer capability of the drug and its potential use in future therapies.Key words: metformin, head and neck cancer, cell viability, growth inhibition, cell cycle arrest, chemoprevention  相似文献   

19.
20.
Head and neck squamous cell carcinoma (HNSCC) remains a major health problem worldwide. We aimed to identify a robust microRNA (miRNA)-based signature for predicting HNSCC prognosis. The miRNA expression profiles of HNSCC were obtained from The Cancer Genome Atlas (TCGA) database. The TCGA HNSCC cohort was randomly divided into the discovery and validation cohort. A miRNA-based prognostic signature was built up based on TGCA discovery cohort, and then further validated. The downstream targets of prognostic miRNAs were subjected to functional enrichment analyses. The role of miR-1229-3p, a prognosis-related miRNA, in tumorigenesis of HNSCC was further evaluated. A total of 305 significantly differentially expressed miRNAs were found between HNSCC samples and normal tissues. A six-miRNA prognostic signature was constructed, which exhibited a strong association with overall survival (OS) in the TCGA discovery cohort. In addition, these findings were successfully confirmed in TCGA validation cohort and our own independent cohort. The miRNA-based signature was demonstrated as an independent prognostic indicator for HNSCC. A risk signature-based nomogram model was constructed and showed good performance for predicting the OS for HNSCC. The functional analyses revealed that the downstream targets of these prognostic miRNAs were closely linked to cancer progression. Mechanistically, in vitro analysis revealed that miR-1229-3p played a tumor promoting role in HNSCC. In conclusion, our study has developed a robust miRNA-based signature for predicting the prognosis of HNSCC with high accuracy, which will contribute to improve the therapeutic outcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号