首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Panax notoginseng is a traditional Chinese medicinal plant. Root rot of P. notoginseng is one of the most serious diseases affecting P. notoginseng growth and causes wilted leaves, fewer lateral roots and rotten roots. Root rot is a soil-borne disease, and mainly occurs from June to August in Yunnan Province when the temperatures are high and the air is humid. In this study, the endophytic fungal genus Fusarium isolate E-2018.1.22-#3.2 was obtained from a P. notoginseng embryo. Fusarium isolate E-2018.1.22-#3.2 was identified as Fusarium striatum based on morphological characteristics and molecular analysis. The fungus was found to have conidiophores and macroconidia, and its ITS, LSU and TEF-1α genes shared 100%, 99.2% and 99% identities with the homologous genes of Fusarium striatum, respectively. Isolate F. striatum E-2018.1.22-#3.2 can cause root rot symptoms, including black, soft roots, fewer lateral roots and leaf wilt, in 93% of the experimental P. notoginseng plants, and could be re-isolated, fulfilling Koch’s postulates. When the P. notoginseng plants were treated with the fungicide pyraclostrobin, isolate F. striatum E-2018.1.22-#3.2 was unable to cause root rot. We have therefore demonstrated that F. striatum E-2018.1.22-#3.2 is able to cause root rot disease in P. notoginseng. This is the first report of root rot disease caused by F. striatum on P. notoginseng in China.  相似文献   

3.
Abdulrahman Alasmari 《Phyton》2020,89(4):1059-1081
In the Kingdom of Saudi Arabia (KSA), thousands of plants are considered to have therapeutic value. The ambiguous use of identification mainly morphological characteristics of many plants has resulted in the adulteration and displacement of plant products which undermine their therapeutic value and weak documentation of plant resources. The aims of this study were therefore to evaluate genetic variability and explore the phylogeographic architecture for Saudi medicinal plant samples using rbcL and matK genes as barcodes for genomic identification. The matK and rbcL sequences collected for these samples were used as key markers for examining the relationship between Saudi medicinal plant species based on genetic diversity. During our study we were successful in identifying and documenting 4 different species (Foeniculum vulgare, Nitraria retusa, Dodonaea viscosa, and Rumex nervosus) located in Saudi Arabia using DNA barcoding technique. A total number of 8 sequences were obtained with a total sequence length of 6176 bp, where it ranged from 617 bp to 878 bp with an average length of 772 bp. The total number of rbcL sequences length is 2801 bp, where it ranges from 617 bp to 807 bp with an average length of 700.2 bp. Out of the 4 plant samples used, only three samples were identified correctly on the species level with an identity percentage higher than 95% using rbcL gene. Additionally, 4 matK sequences have been retrieved belong to 4 species. The total number of matK sequences length is 3375 bp, where it ranges from 819 bp to 878 bp with an average length of 843.8 bp. Out of the 4 plant samples used, only two samples were identified correctly on the species level with an identity percentage higher than 98% using matK gene. Both rbcL and matK have been able to identify most of our collected plant samples by genus, and some by species. Using only one DNA-barcoding technique was not reliable for plant identification, where matK and rbcL must be used as a dual DNA-barcoding procedure.  相似文献   

4.
Seedlings of Taxus chinensis var. mairei were used as experimental materials to study the adaptation of Piriformospora indica to this plant under water stress. The materials were divided into two groups, namely, with or without inoculation with P. indica. Each group was subjected to four different levels of water stress. Vitality and physiological and biochemical indexes of the roots of T. chinensis var. mairei were regularly measured. Under water stress, T. chinensis var. mairei had significantly decreased root vitality; root vitality was higher in inoculated roots than in uninoculated roots. Under intense water stress, the inoculated roots had a higher soluble sugar content than the uninoculated roots. Under water stress, T. chinensis var. mairei experienced decreased activity of aerobic respiratory metabolic enzymes. The activity of anaerobic respiratory metabolic enzymes and alcohol dehydrogenase initially increased and then decreased, whereas that of lactate dehydrogenase increased. The inoculated roots had a higher activity of respiratory metabolic enzymes than the uninoculated roots. As water stress was further intensified, the roots had significantly decreased activity of aerobic respiratory metabolic enzymes and significantly increased activity of anaerobic respiratory metabolic enzymes. The activity of respiratory metabolic enzymes decreased faster in the uninoculated roots than in the inoculated roots. This study demonstrated that Piriformospora indica plays a positive role in enhancing the antihypoxic ability of T. chinensis var. mairei, thereby alleviating plant damage due to water stress.  相似文献   

5.
Rhodiola quadrifida is a rare mountain medicinal plant whose root extracts are used in traditional Chinese medicine as a hemostatic, antitussive, and tonic in the treatment of gynecological diseases. The aim of the study was to obtain R. quadrifida cultures at different degrees of differentiation in vitro and compare their growth characteristics and the content of salidroside and rosavin. Hairy roots were obtained by incubating cotyledons and hypocotyls in a suspension of Agrobacterium rhizogenes strain A4. The presence of the rolB and rolC genes was proven by polymerase chain reaction. The obtained roots were cultivated in Murashige-Skoog medium (MS). Calluses were obtained from the hairy roots in MS medium with the addition of hormones: 3 mg/L 2,4 D and 0.5 mg/L BAP. The presence of the main secondary metabolites of R. quadrifida, salidroside and rosavin, in calluses and salidroside in hairy roots by HPLC/MS was confirmed. The content of salidroside in callus culture was significantly higher than in hairy roots, 0.158 and 0.047%, respectively. The content of rosavin in callus culture was 0.07%. The content of rosavin and salidroside in callus culture was close to the level of these substances in the rhizomes of R. quadrifida plants growing in vivo, making this culture promising for its possible biotechnological use.  相似文献   

6.
To develop cold-tolerant maize germplasms and identify the activation of INDUCER OF CRT/DRE-BINDING FACTOR EXPRESSION (ICE1) expression in response to cold stress, RT-PCR was used to amplify the complete open reading frame sequence of the ICE1 gene and construct the plant expression vector pCAMBIA3301-ICE1-Bar. Immature maize embryos and calli were transformed with the recombinant vector using Agrobacterium tumefaciens-mediated transformations. From the regenerated plantlets, three T1 lines were screened and identified by PCR. A Southern blot analysis showed that a single copy of the ICE1 gene was integrated into the maize (Zea mays L.) genomes of the three T1 generations. Under low temperature-stress conditions (4°C), the relative conductivity levels decreased by 27.51%–31.44%, the proline concentrations increased by 12.50%–17.50%, the malondialdehyde concentrations decreased by 16.78%–18.37%, and the peroxidase activities increased by 19.60%–22.89% in the T1 lines compared with those of the control. A real-time quantitative PCR analysis showed that the ICE1 gene was ectopically expressed in the roots, stems, and leaves of the T1 lines. ICE1 positively regulates the expression of the CBF genes in response to cold stress. Thus, this study showed the successful transformation of maize with the ICE1 gene, resulting in the generation of a new maize germplasm that had increased tolerance to cold stress.  相似文献   

7.
Cinnamomum japonicum Sieb. is an excellent roadside tree and medicinal tree species with considerable ornamental and economic value. In this study, we successfully developed a large-scale micropropagation protocol for C. japonicum for the first time. Sterilized shoots were excised and used as explants for shoot induction on several basal media, supplemented with different concentrations of plant growth regulators (PGRs), such as Thidiazuron (TDZ), N6 -Benzyladenine (6-benzylaminopurine) (BA), α-naphthaleneacetic acid (NAA) and Gibberellic acid (GA3). After comparison, the most efficient medium for shoot regeneration was 1/2 Murashige and Skoog (MS) medium containing 0.5 mg L–1 BA, 0.05 mg L–1 NAA and 0.2 mg L–1 GA3, which resulted in an average number of induced shoots per explant and shoot length of 5.2 and 1.62 cm at 28 d, respectively. Then, elongated adventitious shoots were transferred to induce roots. 86.7% of shoots was able to root on 1/2 MS medium supplemented with 0.5 mg L–1 NAA and 0.1 mg L–1 BA. The earliest rooting time observed was after 21 d and the average root length was up to 3.3 cm after 28 d. Our study shows that C. japonicum can be successfully regenerated through de novo organogenesis, which lays a foundation for future transformation research on this tree.  相似文献   

8.
Traditionally, Tinospora cordifolia (Willd.) Hook. F. & Thomson (Menispermaceae), Ocimum sanctum L. (Lamiaceae), Moringa oleifera Lam. (Moringaceae), and Phyllanthus niruri L. (Euphorbiaceae) are some of the commonly used medicinal plants in India for curing ailments ranging from common cold, skin diseases, and dental infections to major disorders like diabetes, hypertension, jaundice, rheumatism, etc. To understand and correlate their medicinal use, trace element studies on the aqueous extract of these medicinal plants have been carried out using particle-induced X-ray emission technique. A 2-MeV proton beam was used to identify and characterize major and minor elements namely Cl, K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, and Sr in them. Results have revealed that these elements are present in varying concentrations in the selected plants. Notable results include very high concentrations of Cl, K, and Ca in all the leaf samples, appreciable levels of Mn in all plants, high Zn content in T. cordifolia, and the aqueous extract of Moringa leaves compared to others and relative higher concentrations of Cr in all the plants.  相似文献   

9.
Wood is an organic material that is a source of carbon of organisms called Wood-decay fungi, and to preserve the wood, various toxic compounds to man and the environment have been used. To analyze the effect of N,N-Dimethylhexadecylamine (DMHDA) on wood attacked by the rotting fungus Trametes versicolor L. We used an in vitro system to expose the fungus T. versicolor to different concentrations of the DMHDA (50, 150 and 450 μM). We quantified the diameter of mycelial growth and laccase activity, also, under these experimental conditions we studied morphological details of the organisms using different scanning equipment including scanning electron microscopy. The growth of T. versicolor exposed to DMHDA for 60 days, showed a concentration-dependent dose behavior, also, the electron microscopy analysis revealed that the morphology and mycelial density was affected by the DMHDA, showing a formation of atypical morphological and thickener folds. Finally, the pieces of wood treated with DMHDA and exposed to the fungus had a lower mass loss, after a period of 60 days of exposure, the values obtained were 0.7, 1.0 and 0.5 g of mass lost for the control, LoC and LoDMHDA treatments respectively. Wood-rot fungi have represented economic losses worldwide, the strategies used have been supported by toxic compounds for the environment. The DMHDA both in the Petri dish system and as a wood preservative was shown to significantly inhibit the growth of T. versicolor.  相似文献   

10.
Taoze Sun  Wei Tan  Yujie Yang  Hongna Mu 《Phyton》2021,90(1):171-178
Pinus elliottii is an exotic afforestation pine extensively distributed in southern parts of China. In order to understand whether endophytic fungi can affect seedling growth of P. elliottii, Piriformospora indica (Pi), Funnelifcrmis mosseae (Fm), and Diversispora tortuosa (Dt) were inoculated respectively, and the non-inoculated group was set as control. The growth indexes, the contents of soluble sugar and soluble protein, and plant endogenous hormone levels in the leaves of P. elliottii, were analyzed. The results showed that Fm, Dt and Pi colonized the P. elliottii roots to form mycorrhizal structure and chlamydospores arranged in beads respectively. Three fungal inoculants exhibited the stimulated growth responses, whilst Dt illustrated the most positive effect on plant height, single fresh weight, trunk diameter and root system structure, compared with the control. On the other hand, the soluble sugar and soluble protein contents were increased distinctively in mycorrhizal plants. The endogenous IAA, GA3, ZR contents were increased, while the ABA contents were reduced in mycorrhizal plants versus non-mycorrhizal plants. The fungi-induced endogenous hormone changes triggered plant growth improvement of P. elliottii seedlings. This research unraveled the positive effect of AM fungi and P. indica on growth of pine seedlings, while, more application of endophytic fungi to fields needs to be explored.  相似文献   

11.
Infectious (or Communicable) diseases are not only the past but also the present problem in developing as well as developed countries. It is caused by various pathogenic microbes like fungi, bacteria, parasites and virus etc. The medicinal plants and nano-silver have been used against the pathogenic microbes. Herbal medicines are generally used for healthcare because they have low price and wealthy source of antimicrobial properties. Like medicinal plants, silver nanoparticles also have emergent applications in biomedical fields due to their immanent therapeutic performance. Here, we also explore the various plant parts such as bark, stem, leaf, fruit and seed against Gram negative and Gram-positive bacteria, using different solvents for extraction i.e. methanol, ethyl acetate, chloroform, acetone, n. hexane, butanol, petroleum ether and benzene. Since ancient to date most of the countries have been used herbal medicines, but in Asia, some medicinal plants are commonly used in rural and backward areas as a treatment for infectious diseases. In this review, we provide simple information about medicinal plants and Silver nanoparticles with their potentialities such as antiviral, bactericidal and fungicidal. Additionally, the present review to highlights the versatile applications of medicinal plants against honey bee pathogen such as fungi (Ascosphaera apis), mites (Varroa spp. and Tropilaelaps sp.), bacteria (Melissococcus plutonius Paenibacillus larvae), and microsporidia (Nosema apis and Nosema ceranae). In conclusion, promising nonchemical (plant extracts) are innocuous to adult bees. So, we strongly believed that this effort was made to evaluate the status of medicinal plants researches globally.  相似文献   

12.
A compilation of Bioactive Compounds from Ayurveda   总被引:1,自引:0,他引:1  
This review deals with the key bioactive compounds and the role of medicinal plants in Ayurvedic systems of medicine in India and their earlier investigation. There has been an increase in demand for the Phytopharmaceutical products of Ayurvĕda in Western countries, because of the fact that the allopathic drugs have more side effects. Many pharmaceutical companies are now concentrating on manufacturing of Ayurvĕdic Phytopharmaceutical products. Ayurvĕda is the Indian traditional system of medicine, which also deals about pharmaceutical science. Different type of plant parts used for the Ayurvedic formulation; overall out line of those herbal scenario and its future prospects for the scientific evaluation of medicinal plants used by traditional healers are also discussed. In India most of them, where Ayurvedic treatment is frequently used, for their ailments and provides instructions to local people how to prepare medicine from the herbs. As much as possible importance is also given for the taxonomic literature.  相似文献   

13.
Fusarium wilt, a disease caused by Fusarium oxysporum f.sp batatas (Fob) is an important disease in sweet potato production. Using endophytic bacteria for biological control of sweet potato diseases is one of the important ways. A Bacillus subtilis with antagonistic effect on Fusarium wilt of sweet potato was isolated from soil by confrontation culture. According to the biological characteristics, 16S rDNA sequence analysis, and physiological and biochemical analysis, the Bacillus subtilis HAAS01 was named. A pot experiment was conducted for the biological control experiment of strain HAAS01, and the endogenous hormone content, antioxidant enzyme activity, soluble protein content, and related gene expressions of sweet potato plants were detected. The results showed that the HAAS01 strain could promote the production of endogenous hormones and resist the infection of plant diseases together with defensive enzymes and upregulation of related gene expressions. In summary, Bacillus subtilis HAAS01 was effective in controlling Fusarium wilt of sweet potato and has potential for application and development.  相似文献   

14.
Biotechnological techniques provide a viable alternative to help improve and increase the production of plant species of agricultural and economic importance, which have been affected over the years by climate change, increasing their susceptibility to pests and/or diseases, generating losses in production as well as a decrease in their regenerative and genetic diversity. The application of biotechnological techniques such as in vitro mutagenesis offers a viable option for the generation of crops that are resistant to the different factors caused by abiotic and biotic stress. In vitro mutagenesis has been used in an efficient way to generate genetic changes in different plant species. However, these methods have not been studied thoroughly in crops of agro-industrial interest, such as agave, which represents an economic resource of national importance and are considered as endemic species of Mexico. Therefore, this literary review aimed to focus on the studies that have been used for the genetic improvement of this species via mutagenesis techniques in plants in the agave genus. Therefore, the objective was to set a precedent for future genetic studies that aim to obtain more productive regenerants for various industries, such as food and pharmaceutical. It is also of great interest to compile information from basic research that helps understand and elucidate a model of possible defense mechanisms that are activated in the Agave genus.  相似文献   

15.
A field experiment was conducted to determine the effects of two commercial strains composed of mulple arbuscular mycorrhizal fungi (AMF) species on plant growth, antioxidant capacity, and medicine quality of Paris polyphylla var. yunnanensis in three subtropical soils from Wanzhou, Anshun and Baoshan in fields. The results showed that AMF inoculation enhanced the fungal colonization rate and activities of both succinate dehydrogenase and alkaline phosphatase, thereby, enhancing the mycorrhizal viability of P. polyphylla var. yunnanensis. The concentrations of photosynthetic pigments (chlorophyll a, b, a+b and carotenoids), soluble sugar, soluble protein and photosynthetic capacity were higher in AMF-inoculated plants than in non-AMF-treated plants in field. AMFtreated plants recorded higher activities of catalase, peroxidase and superoxide dismutase, and caused the reduction in malondialdehyde content, indicating lower oxidative damage, compared with non-AMF plants. Polyphyllin I, Polyphyllin II, Polyphyllin III, Polyphyllin IV and total polyphyllin contents were increased by AMF treatment. In conclusion, AMF improved the plant growth, antioxidant capacity and medicinal quality of P. polyphylla var. yunnanensis seedlings. Hereinto, AMF effects on the soil from Wanzhou was relatively greater than on other soils.  相似文献   

16.

Medicinal plants are a rich source of natural products used to treat many diseases; therefore, they are the basis for a new drug discovery. Plants are capable of generating different bioactive secondary metabolites, but a large amount of botanical material is often necessary to obtain small amounts of the target substance. Nowadays, many medicinal plants are becoming rather scarce. For this reason, it is important to point out the interactions between endophytic microorganisms and the host plant, because endophytes are able to produce highly diverse compounds, including those from host plants that have important biological activities. Thence, this review aims at presenting the richness in bioactive compounds of the medicinal plants from Tabebuia and Handroanthus genera, as well as important aspects about endophyte-plant interactions, with emphasis on the production of bioactive compounds by endophytic fungi, which has been isolated from various medicinal plants for such a purpose. Furthermore, bio-prospection of natural products synthesized by endophytes isolated from the aforementioned genera used in traditional medicine could be used to treat illnesses.

  相似文献   

17.
Yulu Chen  Fen Zhang  Ju Cai  Yichen Zhao  Jiaxue Cui  Yan Li 《Phyton》2022,91(5):999-1013
Gibberellic acid controlled the key developmental processes of the life cycle of landing plants, and regulated the growth and development of plants. In this study, a novel gibberellin receptor gene EuGID1 was obtained from Eucommia ulmoides Oliver. The cDNA of EuGID1 was 1556 bp, and the open reading frame was 1029 bp, which encoded 343 amino acids. EuGID1 had the homology sequence with the hormone-sensitive lipase family. Amino acid sequence alignment confirmed EuGID1 protein had the highest homology with the GID1 protein of Manihot esculenta. EuGID1 was located in the nucleus and cell membrane and had expression in four plant organs. Overexpression of EuGID1 in transgenic Arabidopsis plants promoted plant elongation and increased siliques yield.  相似文献   

18.
Gibberellin 2-oxidases (GA2ox) are important enzymes that maintain the balance of bioactive GAs in plants. GA2ox genes have been identified and characterized in many plants, but these genes were not investigated in Brassica napus. Here, we identified 31 GA2ox genes in B. napus and 15 of these BnaGA2ox genes were distributed in the A and C subgenomes. Subcellular localization predictions suggested that all BnaGA2ox proteins were localized in the cytoplasm, and gene structure analysis showed that the BnaGA2ox genes contained 2–4 exons. Phylogenetic analysis indicated that BnGA2ox family proteins in monocotyledons and dicotyledons can be divided into four groups, including two C19-GA2ox and two C20-GA2ox clades. Group 4 is a C20-GA2ox Class discovered recently. Most BnaGA2ox genes had a syntenic relationship with AtGA2ox genes. BnaGA2ox genes in the C subgenome had experienced stronger selection pressure than genes in the A subgenome. BnaGA2ox genes were highly expressed in specific tissues such as those involved in growth and development, and most of them were mainly involved in abiotic responses, regulation of phytohormones and growth and development. Our study provided a valuable evolutionary analysis of GA2ox genes in monocotyledons and dicotyledons, as well as an insight into the biological functions of GA2ox family genes in B. napus.  相似文献   

19.
Plant architecture is a vital agronomic trait to control yield in rice (Oryza sativa L.). A dwarf and small seed 1 (dss1) mutant were obtained from the ethyl methanesulfonate (EMS) mutagenized progeny of a Guizhou glutinous landrace cultivar, Lipingzabianhe. The dss1 mutant displayed phenotypes similar to those of brassinosteroid (BR) deficient mutants, such as dwarfing, dark green and rugose erect leaves, small seeds, and loner neck internode panicles with primary branching. In our previous study, the underlying DSS1 gene was isolated, a novel allele of OsDWARF (OsBR6ox) that encodes a cytochrome P450 protein involved in the BR biosynthetic pathway by MutMap technology. In this work, we confirmed that a Thr335Ile amino acid substitution residing in DSS1/OsDWARF was responsible for the dwarf, panicle architecture, and small seed phenotypes in the dss1 mutants by genetic transformation experiments. The overexpression of OsDWARF in the dss1 mutant background could not only recover dss1 to the normal plant height and panicle architecture but also rescued normal leaf angles, seed size, and leaf color. Thus, the specific mutation in DSS1/OsDWARF influenced plant architecture, seed size, and chlorophyll biosynthesis.  相似文献   

20.
Populus alba is a large woody deciduous plant. The plant has been introduced to shooting, then multiplication of rooting on Murashige and Skoog (MS) medium. This work was designed to estimate the effect of two factors (low levels of 1-Naphthaleneacetic acid NAA and sucrose) on P. alba response resulting in 6 treatments compared to the control, with twelve measured responses. There was a significant difference in some measurements in morphology, like plantlets fresh-weight, shoot-, root-length, and leaf number. In the physiological measurements, there were significant differences in all the measured parameters. The low concentrations of sucrose and media composition/power (MS grams/L) led to starvation in plants; however, these conditions led to enhancement in some morphological and physiological parameters to overcome the starvation effect, compared to the control. The RAPD-PCR molecular marker (four decamers) was used to evaluate the new individuals’ genetic variation (instability), resulting in a total polymorphism percentage of 50.83%. It was formerly known that the plantlets were identical to each other and to the mother plant. In this study, however, the use of distinct media power, hormonal and sucrose levels resulted in molecular variation reflected in P. alba’s morphological and physiological responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号