首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron-sulfur (Fe/S) clusters are important cofactors of numerous proteins involved in electron transfer, metabolic and regulatory processes. In eukaryotic cells, known Fe/S proteins are located within mitochondria, the nucleus and the cytosol. Over the past years the molecular basis of Fe/S cluster synthesis and incorporation into apoproteins in a living cell has started to become elucidated. Biogenesis of these simple inorganic cofactors is surprisingly complex and, in eukaryotes such as Saccharomyces cerevisiae, is accomplished by three distinct proteinaceous machineries. The "iron-sulfur cluster (ISC) assembly machinery" of mitochondria was inherited from the bacterial ancestor of mitochondria. ISC components are conserved in eukaryotes from yeast to man. The key principle of biosynthesis is the assembly of the Fe/S cluster on a scaffold protein before it is transferred to target apoproteins. Cytosolic and nuclear Fe/S protein maturation also requires the function of the mitochondrial ISC assembly system. It is believed that mitochondria contribute a still unknown compound to biogenesis outside the organelle. This compound is exported by the mitochondrial "ISC export machinery" and utilised by the "cytosolic iron-sulfur protein assembly (CIA) machinery". Components of these two latter systems are also highly conserved in eukaryotes. Defects in the mitochondrial ISC assembly and export systems, but not in the CIA machinery have a strong impact on cellular iron uptake and intracellular iron distribution showing that mitochondria are crucial for both cellular Fe/S protein assembly and iron homeostasis.  相似文献   

2.
The assembly of cytosolic and nuclear iron-sulfur (Fe/S) proteins in yeast is dependent on the iron-sulfur cluster assembly and export machineries in mitochondria and three recently identified extramitochondrial proteins, the P-loop NTPases Cfd1 and Nbp35 and the hydrogenase-like Nar1. However, the molecular mechanism of Fe/S protein assembly in the cytosol is far from being understood, and more components are anticipated to take part in this process. Here, we have identified and functionally characterized a novel WD40 repeat protein, designated Cia1, as an essential component required for Fe/S cluster assembly in vivo on cytosolic and nuclear, but not mitochondrial, Fe/S proteins. Surprisingly, Nbp35 and Nar1, themselves Fe/S proteins, could assemble their Fe/S clusters in the absence of Cia1, demonstrating that these components act before Cia1. Consequently, Cia1 is involved in a late step of Fe/S cluster incorporation into target proteins. Coimmunoprecipitation assays demonstrated a specific interaction between Cia1 and Nar1. In contrast to the mostly cytosolic Nar1, Cia1 is preferentially localized to the nucleus, suggesting an additional function of Cia1. Taken together, our results indicate that Cia1 is a new member of the cytosolic Fe/S protein assembly (CIA) machinery participating in a step after Nbp35 and Nar1.  相似文献   

3.
Iron-sulfur (Fe/S) proteins are located in mitochondria, cytosol, and nucleus. Mitochondrial Fe/S proteins are matured by the iron-sulfur cluster (ISC) assembly machinery. Little is known about the formation of Fe/S proteins in the cytosol and nucleus. A function of mitochondria in cytosolic Fe/S protein maturation has been noted, but small amounts of some ISC components have been detected outside mitochondria. Here, we studied the highly conserved yeast proteins Isu1p and Isu2p, which provide a scaffold for Fe/S cluster synthesis. We asked whether the Isu proteins are needed for biosynthesis of cytosolic Fe/S clusters and in which subcellular compartment the Isu proteins are required. The Isu proteins were found to be essential for de novo biosynthesis of both mitochondrial and cytosolic Fe/S proteins. Several lines of evidence indicate that Isu1p and Isu2p have to be located inside mitochondria in order to perform their function in cytosolic Fe/S protein maturation. We were unable to mislocalize Isu1p to the cytosol due to the presence of multiple, independent mitochondrial targeting signals in this protein. Further, the bacterial homologue IscU and the human Isu proteins (partially) complemented the defects of yeast Isu protein-depleted cells in growth rate, Fe/S protein biogenesis, and iron homeostasis, yet only after targeting to mitochondria. Together, our data suggest that the Isu proteins need to be localized in mitochondria to fulfill their functional requirement in Fe/S protein maturation in the cytosol.  相似文献   

4.
5.
Defects in the yeast cysteine desulfurase Nfs1 cause a severe impairment in the 2-thio modification of uridine of mitochondrial tRNAs (mt-tRNAs) and cytosolic tRNAs (cy-tRNAs). Nfs1 can also provide the sulfur atoms of the iron-sulfur (Fe/S) clusters generated by the mitochondrial and cytosolic Fe/S cluster assembly machineries, termed ISC and CIA, respectively. Therefore, a key question remains as to whether the biosynthesis of Fe/S clusters is a prerequisite for the 2-thio modification of the tRNAs in both of the subcellular compartments of yeast cells. To elucidate this question, we asked whether mitochondrial ISC and/or cytosolic CIA components besides Nfs1 were involved in the 2-thio modification of these tRNAs. We demonstrate here that the three CIA components, Cfd1, Nbp35, and Cia1, are required for the 2-thio modification of cy-tRNAs but not of mt-tRNAs. Interestingly, the mitochondrial scaffold proteins Isu1 and Isu2 are required for the 2-thio modification of the cy-tRNAs but not of the mt-tRNAs, while mitochondrial Nfs1 is required for both 2-thio modifications. These results clearly indicate that the 2-thio modification of cy-tRNAs is Fe/S protein dependent and thus requires both CIA and ISC machineries but that of mt-tRNAs is Fe/S cluster independent and does not require key mitochondrial ISC components except for Nfs1.  相似文献   

6.
The genome of the yeast Saccharomyces cerevisiae encodes the essential protein Nar1p that is conserved in virtually all eukaryotes and exhibits striking sequence similarity to bacterial iron-only hydrogenases. A human homologue of Nar1p was shown previously to bind prenylated prelamin A in the nucleus. However, yeast neither exhibits hydrogenase activity nor contains nuclear lamins. Here, we demonstrate that Nar1p is predominantly located in the cytosol and contains two adjacent iron-sulphur (Fe/S) clusters. Assembly of its Fe/S clusters crucially depends on components of the mitochondrial Fe/S cluster biosynthesis apparatus such as the cysteine desulphurase Nfs1p, the ferredoxin Yah1p and the ABC transporter Atm1p. Using functional studies in vivo, we show that Nar1p is required for maturation of cytosolic and nuclear, but not of mitochondrial, Fe/S proteins. Nar1p-depleted cells do not accumulate iron in mitochondria, distinguishing these cells from mutants in components of the mitochondrial Fe/S cluster biosynthesis apparatus. In conclusion, Nar1p represents a crucial, novel component of the emerging cytosolic Fe/S protein assembly machinery that catalyses an essential and ancient process in eukaryotes.  相似文献   

7.
Mitochondria are indispensable for cell viability; however, major mitochondrial functions including citric acid cycle and oxidative phosphorylation are dispensable. Most known essential mitochondrial proteins are involved in preprotein import and assembly, while the only known essential biosynthetic process performed by mitochondria is the biogenesis of iron-sulfur clusters (ISC). The components of the mitochondrial ISC-assembly machinery are derived from the prokaryotic ISC-assembly machinery. We have identified an essential mitochondrial matrix protein, Isd11 (YER048w-a), that is found in eukaryotes only. Isd11 is required for biogenesis of cellular Fe/S proteins and thus is a novel subunit of the mitochondrial ISC-assembly machinery. It forms a complex with the cysteine desulfurase Nfs1 and is required for formation of an Fe/S cluster on the Isu scaffold proteins. We conclude that Isd11 is an indispensable eukaryotic component of the mitochondrial machinery for biogenesis of Fe/S proteins.  相似文献   

8.
9.
Fe/S clusters are co-factors of numerous proteins with important functions in metabolism, electron transport and regulation of gene expression. Presumably, Fe/S proteins have occurred early in evolution and are present in cells of virtually all species. Biosynthesis of these proteins is a complex process involving numerous components. In mitochondria, this process is accomplished by the so-called ISC (iron-sulfur cluster assembly) machinery which is derived from the bacterial ancestor of the organelles and is conserved from lower to higher eukaryotes. The mitochondrial ISC machinery is responsible for biogenesis iron-sulfur proteins both within and outside the organelle. Maturation of the latter proteins involves the ABC transporter Atm1p which presumably exports iron-sulfur clusters from the organelle. This review summarizes recent developments in our understanding of the biogenesis of iron-sulfur proteins both within bacteria and eukaryotes.  相似文献   

10.
Iron-sulfur cluster biogenesis is executed by distinct protein assembly systems. Mammals have two systems, the mitochondrial Fe-S cluster assembly system (ISC) and the cytosolic assembly system (CIA), that are connected by an unknown mechanism. The human members of the NEET family of 2Fe-2S proteins, nutrient-deprivation autophagy factor-1 (NAF-1) and mitoNEET (mNT), are located at the interface between the mitochondria and the cytosol. These proteins have been implicated in cancer cell proliferation, and they can transfer their 2Fe-2S clusters to a standard apo-acceptor protein. Here we report the first physiological 2Fe-2S cluster acceptor for both NEET proteins as human Anamorsin (also known as cytokine induced apoptosis inhibitor-1; CIAPIN-1). Anamorsin is an electron transfer protein containing two iron-sulfur cluster-binding sites that is required for cytosolic Fe-S cluster assembly. We show, using UV-Vis spectroscopy, that both NAF-1 and mNT can transfer their 2Fe-2S clusters to apo-Anamorsin with second order rate constants similar to those of other known human 2Fe-2S transfer proteins. A direct protein-protein interaction of the NEET proteins with apo-Anamorsin was detected using biolayer interferometry. Furthermore, electrospray mass spectrometry of holo-Anamorsin prepared by cluster transfer shows that it receives both of its 2Fe-2S clusters from the NEETs. We propose that mNT and NAF-1 can provide parallel routes connecting the mitochondrial ISC system and the CIA. 2Fe-2S clusters assembled in the mitochondria are received by NEET proteins and when needed transferred to Anamorsin, activating the CIA.  相似文献   

11.
Cytosolic and nuclear iron‐sulphur (Fe/S) proteins include essential components involved in protein translation, DNA synthesis and DNA repair. In yeast and human cells, assembly of their Fe/S cofactor is accomplished by the CIA (cytosolic iron‐sulphur protein assembly) machinery comprised of some 10 proteins. To investigate the extent of conservation of the CIA pathway, we examined its importance in the early‐branching eukaryote Trypanosoma brucei that encodes all known CIA factors. Upon RNAi‐mediated ablation of individual, early‐acting CIA proteins, no major defects were observed in both procyclic and bloodstream stages. In contrast, parallel depletion of two CIA components was lethal, and severely diminished cytosolic aconitase activity lending support for a direct role of the CIA proteins in cytosolic Fe/S protein biogenesis. In support of this conclusion, the T. brucei CIA proteins complemented the growth defects of their respective yeast CIA depletion mutants. Finally, the T. brucei CIA factor Tah18 was characterized as a flavoprotein, while its binding partner Dre2 functions as a Fe/S protein. Together, our results demonstrate the essential and conserved function of the CIA pathway in cytosolic Fe/S protein assembly in both developmental stages of this representative of supergroup Excavata.  相似文献   

12.
13.
14.
G Kispal  P Csere  C Prohl    R Lill 《The EMBO journal》1999,18(14):3981-3989
Iron-sulfur (Fe/S) cluster-containing proteins catalyse a number of electron transfer and metabolic reactions. Little is known about the biogenesis of Fe/S clusters in the eukaryotic cell. Here, we demonstrate that mitochondria perform an essential role in the synthesis of both intra- and extra-mitochondrial Fe/S proteins. Nfs1p represents the yeast orthologue of the bacterial cysteine desulfurase NifS that initiates biogenesis by producing elemental sulfur. The matrix-localized protein is required for synthesis of both mitochondrial and cytosolic Fe/S proteins. The ATP-binding cassette (ABC) transporter Atm1p of the mitochondrial inner membrane performs an essential function only in the generation of cytosolic Fe/S proteins by mediating export of Fe/S cluster precursors synthesized by Nfs1p and other mitochondrial proteins. Assembly of cellular Fe/S clusters constitutes an indispensable biosynthetic task of mitochondria with potential relevance for an iron-storage disease and the control of cellular iron uptake.  相似文献   

15.
Iron–sulfur (Fe–S) clusters play an essential role in plants as protein cofactors mediating diverse electron transfer reactions. Because they can react with oxygen to form reactive oxygen species (ROS) and inflict cellular damage, the biogenesis of Fe–S clusters is highly regulated. A recently discovered group of 2Fe–2S proteins, termed NEET proteins, was proposed to coordinate Fe–S, Fe and ROS homeostasis in mammalian cells. Here we report that disrupting the function of AtNEET, the sole member of the NEET protein family in Arabidopsis thaliana, triggers leaf‐associated Fe–S‐ and Fe‐deficiency responses, elevated Fe content in chloroplasts (1.2–1.5‐fold), chlorosis, structural damage to chloroplasts and a high seedling mortality rate. Our findings suggest that disrupting AtNEET function disrupts the transfer of 2Fe–2S clusters from the chloroplastic 2Fe–2S biogenesis pathway to different cytosolic and chloroplastic Fe–S proteins, as well as to the cytosolic Fe–S biogenesis system, and that uncoupling this process triggers leaf‐associated Fe–S‐ and Fe‐deficiency responses that result in Fe over‐accumulation in chloroplasts and enhanced ROS accumulation. We further show that AtNEET transfers its 2Fe–2S clusters to DRE2, a key protein of the cytosolic Fe–S biogenesis system, and propose that the availability of 2Fe–2S clusters in the chloroplast and cytosol is linked to Fe homeostasis in plants.  相似文献   

16.
Mitochondria perform a central function in the biogenesis of cellular iron-sulphur (Fe/S) proteins. It is unknown to date why this biosynthetic pathway is indispensable for life, the more so as no essential mitochondrial Fe/S proteins are known. Here, we show that the soluble ATP-binding cassette (ABC) protein Rli1p carries N-terminal Fe/S clusters that require the mitochondrial and cytosolic Fe/S protein biogenesis machineries for assembly. Mutations in critical cysteine residues of Rli1p abolish association with Fe/S clusters and lead to loss of cell viability. Hence, the essential character of Fe/S clusters in Rli1p explains the indispensable character of mitochondria in eukaryotes. We further report that Rli1p is associated with ribosomes and with Hcr1p, a protein involved in rRNA processing and translation initiation. Depletion of Rli1p causes a nuclear export defect of the small and large ribosomal subunits and subsequently a translational arrest. Thus, ribosome biogenesis and function are intimately linked to the crucial role of mitochondria in the maturation of the essential Fe/S protein Rli1p.  相似文献   

17.
Most eukaryotes contain iron-sulfur cluster (ISC) assembly proteins related to Saccharomyces cerevisiae Isa1 and Isa2. We show here that Isa1 but not Isa2 can be functionally replaced by the bacterial relatives IscA, SufA, and ErpA. The specific function of these "A-type" ISC proteins within the framework of mitochondrial and bacterial Fe/S protein biogenesis is still unresolved. In a comprehensive in vivo analysis, we show that S. cerevisiae Isa1 and Isa2 form a complex that is required for maturation of mitochondrial [4Fe-4S] proteins, including aconitase and homoaconitase. In contrast, Isa1-Isa2 were dispensable for the generation of mitochondrial [2Fe-2S] proteins and cytosolic [4Fe-4S] proteins. Targeting of bacterial [2Fe-2S] and [4Fe-4S] ferredoxins to yeast mitochondria further supported this specificity. Isa1 and Isa2 proteins are shown to bind iron in vivo, yet the Isa1-Isa2-bound iron was not needed as a donor for de novo assembly of the [2Fe-2S] cluster on the general Fe/S scaffold proteins Isu1-Isu2. Upon depletion of the ISC assembly factor Iba57, which specifically interacts with Isa1 and Isa2, or in the absence of the major mitochondrial [4Fe-4S] protein aconitase, iron accumulated on the Isa proteins. These results suggest that the iron bound to the Isa proteins is required for the de novo synthesis of [4Fe-4S] clusters in mitochondria and for their insertion into apoproteins in a reaction mediated by Iba57. Taken together, these findings define Isa1, Isa2, and Iba57 as a specialized, late-acting ISC assembly subsystem that is specifically dedicated to the maturation of mitochondrial [4Fe-4S] proteins.  相似文献   

18.
The recently solved crystal structures of the human cysteine desulfurase NFS1, in complex with the LYR protein ISD11, the acyl carrier protein ACP, and the main scaffold ISCU, have shed light on the molecular interactions that govern initial cluster assembly on ISCU. Here, we aim to highlight recent insights into iron–sulfur (Fe–S) cluster (ISC) biogenesis in mammalian cells that have arisen from the crystal structures of the core ISC assembly complex. We will also discuss how ISCs are delivered to recipient proteins and the challenges that remain in dissecting the pathways that deliver clusters to numerous Fe–S recipient proteins in both the mitochondrial matrix and cytosolic compartments of mammalian cells.  相似文献   

19.
Members of the bacterial and mitochondrial iron-sulfur cluster (ISC) assembly machinery include the so-called A-type ISC proteins, which support the assembly of a subset of Fe/S apoproteins. The human genome encodes two A-type proteins, termed ISCA1 and ISCA2, which are related to Saccharomyces cerevisiae Isa1 and Isa2, respectively. An additional protein, Iba57, physically interacts with Isa1 and Isa2 in yeast. To test the cellular role of human ISCA1, ISCA2, and IBA57, HeLa cells were depleted for any of these proteins by RNA interference technology. Depleted cells contained massively swollen and enlarged mitochondria that were virtually devoid of cristae membranes, demonstrating the importance of these proteins for mitochondrial biogenesis. The activities of mitochondrial [4Fe-4S] proteins, including aconitase, respiratory complex I, and lipoic acid synthase, were diminished following depletion of the three proteins. In contrast, the mitochondrial [2Fe-2S] enzyme ferrochelatase and cellular heme content were unaffected. We further provide evidence against a localization and direct Fe/S protein maturation function of ISCA1 and ISCA2 in the cytosol. Taken together, our data suggest that ISCA1, ISCA2, and IBA57 are specifically involved in the maturation of mitochondrial [4Fe-4S] proteins functioning late in the ISC assembly pathway.  相似文献   

20.
Gerber J  Lill R 《Mitochondrion》2002,2(1-2):71-86
Iron-sulfur (Fe-S) clusters are ubiquitous co-factors of proteins that play an important role in metabolism, electron-transfer and regulation of gene expression. In eukaryotes mitochondria are the primary site of Fe-S cluster biogenesis. The organelles contain some ten proteins of the so-called iron-sulfur cluster (ISC) assembly machinery that is well-conserved in bacteria and eukaryotes. The ISC assembly machinery is responsible for biogenesis of Fe-S proteins within mitochondria. In addition, this machinery is involved in the maturation of extra-mitochondrial Fe-S proteins by cooperating with mitochondrial proteins with an exclusive function in this process. This review summarizes recent developments in our understanding of the biogenesis of cellular Fe-S proteins in eukaryotes. Particular emphasis is given to disorders in Fe-S protein biogenesis causing human disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号