共查询到20条相似文献,搜索用时 0 毫秒
1.
Although fire‐ and ant–plant interactions influence the community structure and dynamics of Neotropical savannas, no previous studies have considered their simultaneous effects on target host plants. We monitored the effect of ant exclusion for 3 years on leaf area loss to leaf chewing insects, thrips abundance, and reproductive output of the extrafloral nectary‐bearing shrub, Peixotoa tomentosa (Malpighiaceae). We predicted that the impact of ants on herbivores and plants would depend on the ant species, and that fire would reduce the effect of ants. We deliberately chose control plants that differed in their occupant ant species. Fire occurred in the second year of the study, allowing us to determine its effect on the benefit afforded by ants. Ants reduced leaf area loss and thrips abundance, and increased fruit and seed production in all 3 years. Some ant species were more effective than others, while plants with multiple ant species suffered higher leaf area loss than plants with a single ant species. In the year following the fire, leaf damage was greater than in the other years, regardless of the ant species, and the proportional effect of ants in reducing damage was less. Interactions affecting thrips abundance did not change following fire, nor was the benefit to the plant proportionally reduced. Overall, the identity of the ant species had a greater effect than did the occurrence of fire on the ant–herbivore–plant interaction: the identity of the ant species influenced leaf area loss, thrips numbers, and bud and seed production, while fire only modified the impact of ants on the amount of leaf area consumed by insect herbivores. 相似文献
2.
Joyshree Chanam Srinivasan Kasinathan Gautam K. Pramanik Amaraja Jagdeesh Kanchan A. Joshi Renee M. Borges 《Biotropica》2015,47(1):1-5
The ant‐plant Humboldtia brunonis secretes extrafloral nectar (EFN) despite the lack of antiherbivore protection from most ants. EFN was richer in composition than phloem sap and honeydew from untended Hemiptera on the plant, suggesting that EFN could potentially distract ants from honeydew, since ants rarely tended Hemiptera on this plant. 相似文献
3.
Moshe Gish Mark C. Mescher Consuelo M. De Moraes 《Proceedings. Biological sciences / The Royal Society》2015,282(1816)
Extrafloral (EF) nectaries recruit carnivorous arthropods that protect plants from herbivory, but they can also be exploited by nectar thieves. We studied the opportunistic, targeted predation (and destruction) of EF nectaries by insects, and the localized chemical defences that plants presumably use to minimize this effect. In field and laboratory experiments, we identified insects that were possibly responsible for EF nectary predation in Vicia faba (fava bean) and determined the extent and accuracy of the feeding damage done to the EF nectaries by these insects. We also performed biochemical analyses of plant tissue samples in order to detect microscale distribution patterns of chemical defences in the area of the EF nectary. We observed selective, targeted feeding on EF nectaries by several insect species, including some that are otherwise not primarily herbivorous. Biochemical analyses revealed high concentrations of l-3,4-dihydroxyphenylalanine, a non-protein amino acid that is toxic to insects, near and within the EF nectaries. These results suggest that plants allocate defences to the protection of EF nectaries from predation, consistent with expectations of optimal defence theory, and that this may not be entirely effective, as insects limit their exposure to these defences by consuming only the secreting tissue of the nectary. 相似文献
4.
LEANDRO FREITAS GABRIEL BERNARDELLO LEONARDO GALETTO ADELITA A. S. PAOLI 《Botanical journal of the Linnean Society. Linnean Society of London》2001,136(3):267-277
Flower morphology, nectary structure, nectar chemical composition, breeding system, floral visitors and pollination were analysed in Croton sarcopetalus , a diclinous-monoecious shrub from Argentina. Male flowers have five receptacular nectaries, with no special vascular bundles, that consist of a uniserial epidermis with stomata subtended by a secretory parenchyma. Female flowers bear two different types of nectaries: inner (IN) and outer (ON) floral nectaries. IN, five in all, are structurally similar to the nectaries of male flowers. The five ON are vascularized, stalked, and composed of secretory, column-shaped epidermal cells without stomata subtended by secretory and ground parenchyma. In addition, ON act as post-floral nectaries secreting nectar during fruit ripening. Extrafloral nectaries (EFN) are located on petioles, stipules and leaf margins. Petiolar EFN are patelliform, stalked and anatomically similar to the ON of the female flower. Nectar sampled from all nectary types is hexose dominant, except for the ON of the female flower at the post-floral stage that is sucrose dominant. The species is self-compatible, but geitonogamous fertilization is rarely possible because male and female flowers are not usually open at the same time in the same individual, i.e. there is temporal dioecism. Flowers are visited by 22 insect species, wasps being the most important group of pollinators. No significant differences were found in fruit and seed set between natural and hand pollinated flowers. This pattern indicates that fruit production in this species is not pollen/pollinator limited and is mediated by a wide array of pollinators. 相似文献
5.
Fbio T. Pacelhe Fernanda V. Costa Frederico S. Neves Judith Bronstein Marco A. R. Mello 《Biotropica》2019,51(2):196-204
Ant–plant mutualisms are useful models for investigating how plant traits mediate interspecific interactions. As plant‐derived resources are essential components of ant diets, plants that offer more nutritious food to ants should be better defended in return, as a result of more aggressive behavior toward natural enemies. We tested this hypothesis in a field experiment by adding artificial nectaries to individuals of the species Vochysia elliptica (Vochysiaceae). Ants were offered one of four liquid foods of different nutritional quality: amino acids, sugar, sugar + amino acids, and water (control). We used live termites (Nasutitermes coxipoensis) as herbivore competitors and observed ant behavior toward them. In 88 hr of observations, we recorded 1,009 interactions with artificial nectaries involving 1,923 individual ants of 26 species. We recorded 381 encounters between ants and termites, of which 38% led to attack. Sixty‐one percent of these attacks led to termite exclusion from the plants. Recruitment and patrolling were highest when ants fed upon nectaries providing sugar + amino acids, the most nutritious food. This increase in recruitment and patrolling led to higher encounter rates between ants and termites, more frequent attacks, and faster and more complete termite removal. Our results are consistent with the hypothesis that plant biotic defense is mediated by resource quality. We highlight the importance of qualitative differences in nectar composition for the outcome of ant–plant interactions. Abstract in Portuguese is available with online material. 相似文献
6.
Nayara G. Cruz Camilla S. Almeida Leandro Bacci Paulo F. Cristaldo Alisson S. Santana Alexandre P. Oliveira Efrem J. M. Ribeiro Ana P. A. Araújo 《Austral ecology》2019,44(1):60-69
The results of ecological interactions depend on the costs and benefits involved in different ecological contexts. Turnera subulata is a shrubby plant with extrafloral nectaries that are associated with ants. Here, we test the hypotheses that the association between T. subulata and ants results in: (i) positive effects on host plant growth and reproduction; (ii) plant herbivory reduction and (iii) inhibition of the host plant visitation by beneficial organisms. Thirty experimental plots were established in northeastern Brazil, either in association with ants or without ants (N = 15 plots/treatment), with four plants each (total 120 plants). Vegetative growth (plant height and number of leaves), reproductive investment (flowers and fruits), herbivory rates and numbers of beneficial visitors were quantified during all phenological stages of the host plant. Data were analysed using generalized linear mixed models. At the host plant maturation stage, we found a trade‐off between growth and reproduction. Plants with ants had lower mean height; however, they invested more in reproduction (a higher number of flowers and fruits) compared to plants without ants. During the flowering stage, the abundance of sucking herbivores was higher in plots without ants but chewing herbivore abundance increased in the maturation stage in plots with ants. The cumulative proportion of leaves with herbivore damage did not differ between treatments, and the presence of ants reduced the number of beneficial visitors (e.g. pollinators and natural enemies) to the host plants. Our results show that association with ants results in some costs for the host plant, however, these costs appear to be offset by the defensive role of ants, which favours plant reproductive investment. In general, our results help to elucidate mechanisms involved in trophic interactions within the complex network of interactions involving ants and plants. 相似文献
7.
Plant fitness is affected by herbivory, and in moist tropical forests, 70 percent of herbivore damage occurs on young leaves. Thus, to understand the effects of herbivory on tropical plant fitness, it is necessary to understand how tropical young leaves survive the brief, but critical, period of susceptibility. In this study, we surveyed three species of Inga during young leaf expansion. Three classes of toxic secondary metabolites (phenolics, saponins, and tyrosine), extrafloral nectar production, leaf area, and extrafloral nectary area were measured at randomly assigned young leaf sizes. In addition, all defenses were compared for potential trade‐offs during leaf expansion. No trade‐offs among defenses were found, and the concentration of all defenses, except tyrosine, decreased during leaf expansion. We suggest that plants continued to increase phenolic and saponin content, but at a rate that resulted in decreasing concentrations. In contrast, tyrosine content per leaf steadily increased such that a constant concentration was maintained regardless of young leaf size. Nectar production remained constant during leaf expansion, but, because young leaf area increased by tenfold, the investment in extrafloral nectar per leaf area significantly decreased. In addition, nectary area did not change during leaf expansion and therefore the relative size of the nectary significantly decreased during young leaf expansion. These results support the predictions of the optimal defense hypothesis and demonstrate that the youngest leaves have the highest investment in multiple defenses, most likely because they have the highest nitrogen content and are most susceptible to a diversity of herbivores. 相似文献
8.
Abstract The association between visiting ants and the extrafloral nectaries (EFN)‐bearing shrub Hibiscus pernambucensis Arruda (Malvaceae) was investigated in two different coastal habitats – a permanently dry sandy forest and a regularly inundated mangrove forest. In both habitats the frequency of plants with ants and the mean number of ants per plant were much higher on H. pernambucensis than on non‐nectariferous neighbouring plants. In the sandy forest the proportion of live termite baits attacked by ants on H. pernambucensis was much higher than on plants lacking EFNs. In the mangrove, however, ants attacked equal numbers of termites on either plant class. Ant attendance to tuna/honey baits revealed that overall ant activity in the sandy forest is higher than in the mangrove area. The vertical distribution (ground vs. foliage) of ant activity also differed between habitats. While in the mangrove foraging ants were more frequent at baits placed on foliage, in the sandy forest ant attendance was higher at ground baits. Plants housing ant colonies were more common in the mangrove than in the sandy forest. Frequent flooding in the mangrove may have resulted in increased numbers of ant nests on vegetation and scattered ant activity across plant foliage, irrespective of possession of EFNs. Thus plants with EFNs in the mangrove may not experience increased ant aggression towards potential herbivores relative to plants lacking EFNs. The study suggests that the vertical distribution of ant activity, as related to different nest site distribution (ground vs. foliage) through a spatial scale, can mediate ant foraging patterns on plant foliage and probably affect the ants’ potential for herbivore deterrence on an EFN‐bearing plant species. 相似文献
9.
Ant–plant mutualisms are usually regarded as driven by ants defending plants against herbivores in return for plant‐produced food rewards and housing. However, ants may provide additional services. In a review of published studies on ant–pathogen–plant interactions, we investigated whether ants’ extensive hygiene measures, including the use of ant‐produced antibiotics, extend to their host plants and reduce plant pathogen loads. From 30 reported species combinations, we found that the presence of ants lead to reduced pathogen levels in 18 combinations and to increased levels in 6. On average, ants significantly reduced pathogen incidence with 59%. This effect size did not differ significantly from effect sizes reported from meta‐analyses on herbivore protection. Thus, pathogen and herbivore protection could be of equal importance in ant–plant mutualisms. Considering the abundance of these interactions, ecological impacts are potentially high. Furthermore, awareness of this service may stimulate the development of new measures to control plant diseases in agriculture. It should be noted, though, that studies were biased toward tropical ant–plant symbioses and that the literature in the field is limited at present. Future research on plant pathogens is needed to enhance our understanding of ant–plant mutualisms and their evolution. 相似文献
10.
Much effort has been devoted to understanding the function of extrafloral nectaries (EFNs) for ant–plant–herbivore interactions. However, the pattern of evolution of such structures throughout the history of plant lineages remains unexplored. In this study, we used empirical knowledge on plant defences mediated by ants as a theoretical framework to test specific hypotheses about the adaptive role of EFNs during plant evolution. Emphasis was given to different processes (neutral or adaptive) and factors (habitat change and trade‐offs with new trichomes) that may have affected the evolution of ant–plant associations. We measured seven EFN quantitative traits in all 105 species included in a well‐supported phylogeny of the tribe Bignonieae (Bignoniaceae) and collected field data on ant–EFN interactions in 32 species. We identified a positive association between ant visitation (a surrogate of ant guarding) and the abundance of EFNs in vegetative plant parts and rejected the hypothesis of phylogenetic conservatism of EFNs, with most traits presenting K‐values < 1. Modelling the evolution of EFN traits using maximum likelihood approaches further suggested adaptive evolution, with static‐optimum models showing a better fit than purely drift models. In addition, the abundance of EFNs was associated with habitat shifts (with a decrease in the abundance of EFNs from forest to savannas), and a potential trade‐off was detected between the abundance of EFNs and estipitate glandular trichomes (i.e. trichomes with sticky secretion). These evolutionary associations suggest divergent selection between species as well as explains K‐values < 1. Experimental studies with multiple lineages of forest and savanna taxa may improve our understanding of the role of nectaries in plants. Overall, our results suggest that the evolution of EFNs was likely associated with the adaptive process which probably played an important role in the diversification of this plant group. 相似文献
11.
H. GIBB 《Austral ecology》2012,37(7):789-799
Ecological restoration aims to re‐establish both biodiversity and ecological function in damaged ecosystems. Ants are important drivers of ecological functions and are early colonizers of restored ecosystems. Rates at which ants perform functions are thought to be fuelled by access to plant sugars. In revegetated farmland in south‐eastern Australia, I tested if ant activity on trees, which reflects use of arboreal sugars, follows a predictable trajectory of recovery towards a remnant‐like state. Additionally, I examined whether planting method alters this trajectory by comparing tube stock (TS), which results in low Eucalyptus densities, with direct seeding (DS), which results in high Eucalyptus densities. Replicate sites (n = 5) of young (planted between 1998 and 2001) and old (planted between 1989 and 1994) TS and DS revegetation, pastures and remnants were compared. Activity on trunks was significantly positively correlated with ant tending of Hemiptera in young and old revegetation. In DS plantings, activity and estimated liquid loads on Eucalyptus trees were low and rapidly approached that in remnants, while TS sites remained similar to high values observed in pastures with trees. Patterns for Acacia were less clear, reflecting consistent densities for this species between TS and DS. At the whole‐of‐field scale, planting methods did not differ. Importantly, although trajectories differed, neither TS nor DS sites approached the low activity or estimated liquid loads observed in remnants. Rates of ant use of arboreal sugars and associated sugar‐fuelled processes may thus take considerably longer to recover than the period covered by this study. This finding suggests planting method may affect the trajectory and outcome of revegetation for plant health, as well as sugar‐fuelled ecosystem functions performed by ants. 相似文献
12.
K. P. Gaffal 《Plant biology (Stuttgart, Germany)》2012,14(5):691-695
Evidence in favour of the ability of extrafloral nectaries (EFNs) to form nectar drop(let)s, secrete extrafloral nectar (EFNec) also during the night and store starch was compiled in order to refute controversial assertions. Not only were more than 150 reports of direct observations of EFNec drop(let)s found, but also 90 studies which suggest that EFNec secretion is copious enough to form drop(let)s automatically by forces of physics (surface tension strength), provided nectar accumulation is not interrupted by predatory animals. Twenty direct observations of nocturnal production of EFNec sufficiently proved that it is not always produced during the day. Additionally, numerous observations of the nocturnal activities of nectar consumers on EFNs indirectly indicated very common nocturnal secretion of EFNec. Although there is an early report of a starch‐containing EFN from 1881 (Trelease), few similar observations in other EFNs followed. Nevertheless, four studies have described the disappearance of stored starch during secretion and senescence of the EFNs. Referring back to an apparent relationship between the degradation of starch stored in a floral nectary and programmed cell death, at least in EFNs with transient storage of starch, a similar relationship cannot be excluded. 相似文献
13.
Abstract. 1. Field investigation of the association between sponge gourd, Luffa cylindrica plants and its ant visitors revealed that five of the six most frequent species: Camponotus compressus, C. paria, Pheidole sp., Pachycondyla tesserinoda and Tetramorium sp. mainly visited the extrafloral (EF) nectaries present on the leaves, bracts, bracteoles and calyx of the plant. Tapinoma melanocephalum was the only ant species observed at the floral as well as the EF nectaries.
2. A bioassay of ant behaviour revealed aversion to young and mature unisexual flowers of sponge gourd in the five predominantly EF nectary-visiting ant species, while floral preference was demonstrated in T. melanocephalum. A significant difference was not found in the number of insect pollinators visiting T. melanocephalum occupied and un-occupied flowers, suggesting the absence of deterrent effect of this tiny ant species on the pollinators.
3. Further behavioural assays showed preference for 2- and 4-day-old leaves and also 2-day-old buds, while the 4-day-old buds induced avoidance in all the species. Androecium and gynoecium had significantly higher repellent effects in comparison to the petals. Thus floral repellents, probably help to reduce nectar theft and prevent loss of pollen function.
4. This aversion was not demonstrated in the case of old flowers. A significantly greater number of insect pollinators visited young and mature flowers compared with old flowers, suggesting that selective exclusion of medium- and large-sized EF nectary-visiting ant species from the flowers, as a result of aversion to floral repellents, serves to avoid the threat of attack to insect pollinators of sponge gourd. 相似文献
2. A bioassay of ant behaviour revealed aversion to young and mature unisexual flowers of sponge gourd in the five predominantly EF nectary-visiting ant species, while floral preference was demonstrated in T. melanocephalum. A significant difference was not found in the number of insect pollinators visiting T. melanocephalum occupied and un-occupied flowers, suggesting the absence of deterrent effect of this tiny ant species on the pollinators.
3. Further behavioural assays showed preference for 2- and 4-day-old leaves and also 2-day-old buds, while the 4-day-old buds induced avoidance in all the species. Androecium and gynoecium had significantly higher repellent effects in comparison to the petals. Thus floral repellents, probably help to reduce nectar theft and prevent loss of pollen function.
4. This aversion was not demonstrated in the case of old flowers. A significantly greater number of insect pollinators visited young and mature flowers compared with old flowers, suggesting that selective exclusion of medium- and large-sized EF nectary-visiting ant species from the flowers, as a result of aversion to floral repellents, serves to avoid the threat of attack to insect pollinators of sponge gourd. 相似文献
14.
Background
Plants in over one hundred families in habitats worldwide bear extrafloral nectaries (EFNs). EFNs display a remarkable diversity of evolutionary origins, as well as diverse morphology and location on the plant. They secrete extrafloral nectar, a carbohydrate-rich food that attracts ants and other arthropods, many of which protect the plant in return. By fostering ecologically important protective mutualisms, EFNs play a significant role in structuring both plant and animal communities. And yet researchers are only now beginning to appreciate their importance and the range of ecological, evolutionary and morphological diversity that EFNs exhibit.Scope
This Highlight features a series of papers that illustrate some of the newest directions in the study of EFNs. Here, we introduce this set of papers by providing an overview of current understanding and new insights on EFN diversity, ecology and evolution. We highlight major gaps in our current knowledge, and outline future research directions.Conclusions
Our understanding of the roles EFNs play in plant biology is being revolutionized with the use of new tools from developmental biology and genomics, new modes of analysis allowing hypothesis-testing in large-scale phylogenetic frameworks, and new levels of inquiry extending to community-scale interaction networks. But many central questions remain unanswered; indeed, many have not yet been asked. Thus, the EFN puzzle remains an intriguing challenge for the future. 相似文献15.
Myrmecophytes depend on symbiotic ants (plant‐ants) to defend against herbivores. Although these defensive mechanisms are highly effective, some herbivorous insects can use myrmecophytes as their host‐plants. The feeding habits of these phytophages on myrmecophytes and the impacts of the plant‐ants on their feeding behavior have been poorly studied. We examined two phasmid species, Orthomeria alexis and O. cuprinus, which are known to feed on Macaranga (Euphorbiaceae) myrmecophytes in a Bornean primary forest. Our observations revealed that: (i) each phasmid species relied on two closely‐related myrmecophytic Macaranga species for its host‐plants in spite of their normal plant‐ant symbioses; and (ii) there was little overlap between their host‐plant preferences. More O. cuprinus adults and nymphs were found on new leaves, which were attended by more plant‐ants than mature leaves, while most adults and nymphs of O. alexis tended to avoid new leaves. In a feeding choice experiment under ant‐excluded conditions, O. alexis adults chose a non‐host Macaranga myrmecophyte that was more intensively defended by plant‐ants and was more palatable than their usual host‐plants almost as frequently as their usual host‐plant, suggesting that the host‐plant range of O. alexis was restricted by the presence of plant‐ants on non‐host‐plants. Phasmid behavior that appeared to minimize plant‐ant attacks is described. 相似文献
16.
Victor Rico-Gray Jos G. García-Franco Mnica Palacios-Rios Cecilia íz-Castelazo Victor Parra-Tabla Jorge A. Navarro 《Biotropica》1998,30(2):190-200
The richness and seasonal variation of ant-plant interactions were compared in four habitats in México: lowland tropical dry forest (La Mancha, Veracruz), coastal sand dune matorral (San Benito, Yucatán), semiarid highland vegetation (Zapotitlán, Puebla), and lower montane humid forest (Xalapa, Veracruz). The effects of temperature and precipitation on the seasonal distribution of the number of ant-plant interactions differed among habitats. The general linear models fitted to the ant-plant interaction curves explained 78.8 percent of the variation for La Mancha, 80.1 percent for Zapotitlán, 18 percent for San Benito, and 29.5 percent for Xalapa. Even though rainfall is low in Zapotitlán and San Benito, minimum temperature was the most important factor accounting for the seasonal distribution and low number of interactions. At La Mancha, with milder minimum temperatures and higher water availability, temperature alone did not account for the seasonal distribution and number of interactions, whereas the effect of the precipitation × temperature interaction was highly significant. Xalapa exhibits the lowest temperatures and the highest precipitation, but the role of these factors was only marginal. We suggest that the vegetation at Xalapa, a mixture of tropical and temperate floristic elements, constrains ant-plant interactions due to a limited presence of nectaries. Also, ants are less abundant in cool and relatively aseasonal habitats. The other habitats have tropical floristic elements that are abundant and frequently have nectar-producing structures. We report considerable variation among habitats in the number and seasonal distribution of ant-plant interactions, and suggest that it is due to the effect of variation in environmental parameters, the richness of plants with nectaries in the vegetation, and habitat heterogeneity. 相似文献
17.
1. Ant–plant mutualisms have been the focus of considerable empirical research, but few studies have investigated how introduced ants affect these interactions. Using 2 years of survey data, this study examines how the introduced Argentine ant [Linepithema humile (Mayr)] differs from native ants with respect to its ability to protect the extrafloral nectary‐bearing coast barrel cactus (Ferocactus viridescens) in Southern California. 2. Eighteen native ant species visited cacti in uninvaded areas, but cacti in invaded areas were primarily visited by the Argentine ant. The main herbivore of the coast barrel cactus present at the study sites is a leaf‐footed bug (Narnia wilsoni). 3. Herbivore presence (the fraction of surveys in which leaf‐footed bugs were present on individual cacti) was negatively related to ant presence (the fraction of surveys in which ants were present on individual cacti). Compared with cacti in uninvaded areas, those in invaded areas were less likely to have herbivores and when they did had them less often. 4. Seed mass was negatively related to herbivore presence, and this relationship did not differ for cacti in invaded areas versus those in uninvaded areas. 5. Although the Argentine ant might provide superior protection from herbivores, invasion‐induced reductions in ant mutualist diversity could potentially compromise plant reproduction. The cumulative number of ant species on individual cacti over time was lower in invaded areas and was associated with a shortened seasonal duration of ant protection and reduced seed mass. These results support the hypothesis that multiple partners may enhance mutualism benefits. 相似文献
18.
The first data on the taxonomic distribution and abundance of woody plants with extrafloral nectaries (EFN) from SE Asia are reported. The species richness and frequency of woody angiosperm plants with extrafloral nectaries was studied in the Pasoh Forest Reserve, a primary lowland forest in Peninsular Malaysia. EFN were present on 12.3% of the 741 species surveyed. 91 plant species belonging to 47 genera and 16 families were found to have EFN. Euphorbiaceae, Dipterocarpaceae, Rosaceae, Leguminosae, and Ebenaceae were the families most frequently bearing EFN whereas EFN were rare in the more primitive subclasses of the Magnoliopsida and common in the more advanced taxa (Dilleniidae, Rosidae, Asteridae). Most common were flattened glands associated with the leaf blade. A comparison with data from the Neotropics showed a great similarity in regard to the taxonomic distribution of plants with EFN. EFN-plants occupied 19.3% of the cover of the Pasoh Forest 50 ha plot.Species with EFN were under-represented among shrubs and trees of the understorey. We found an increase in the number of species with EFN as well as in their cover from the understorey to the canopy emergents. EFN were found more often among the abundant species (species with n>500/50 ha). Percentage occurrence and cover of EFN-bearing plants in the 50 ha plot of primary forest was lower than recorded for secondary habitats in tropical areas. At present, in the core zone of the Pasoh Forest Reserve which has been investigated only few species known to indicate disturbance occur. Therefore most of the recorded EFN-species cannot be regarded as secondary forest plants.The interactions between ants and EFN-bearing plants appear to be rather facultative and nonspecific. In Pasoh we found 28 ant species from seven genera visiting EFN. Most of the EFN-associated ants belonged to the subfamily Myrmicinae while Ponerines were rare, a pattern which was also reported for the Neotropics.In cooperation with the Forest Research Institute Malaysia, Kepong, 52109 Kuala Lumpur, Selangor, Malaysia. 相似文献
19.
E. Blue J. Kay B.S. Younginger D. J. Ballhorn 《Plant biology (Stuttgart, Germany)》2015,17(3):712-719
Folivores are major plant antagonists in most terrestrial ecosystems. However, the quantitative effects of leaf area loss on multiple interacting plant traits are still little understood. We sought to contribute to filling this lack of understanding by applying different types of leaf area removal (complete leaflets versus leaflet parts) and degrees of leaf damage (0, 33 and 66%) to lima bean (Phaseolus lunatus) plants. We quantified various growth and fitness parameters including above‐ and belowground biomass as well as the production of reproductive structures (fruits, seeds). In addition, we measured plant cyanogenic potential (HCNp; direct chemical defence) and production of extrafloral nectar (EFN; indirect defence). Leaf damage reduced above‐ and belowground biomass production in general, but neither variation in quantity nor type of damage resulted in different biomass. Similarly, the number of fruits and seeds was significantly reduced in all damaged plants without significant differences between treatment groups. Seed mass, however, was affected by both type and quantity of leaf damage. Leaf area loss had no impact on HCNp, whereas production of EFN decreased with increasing damage. While EFN production was quantitatively affected by leaf area removal, the type of damage had no effect. Our study provides a thorough analysis of the quantitative and qualitative effects of defoliation on multiple productivity‐related and defensive plant traits and shows strong differences in plant response depending on trait. Quantifying such plant responses is vital to our understanding of the impact of herbivory on plant fitness and productivity in natural and agricultural ecosystems. 相似文献
20.
The extrafloral nectaries of many plants promote ant defense against insect herbivores. We examined the influence of extrafloral nectaries on the levels of parasitism of a generalist insect herbivore, the gypsy moth (Lymantria dispar L.). Larvae and pupae of the moth were collected from trees with and without extrafloral nectaries growing in the same forests in South Korea and reared to evaluate parasitism. More parasitism occurred on plants with extrafloral nectaries in seven of the nine season-long collections at the six sites and in four out of five collecting periods. Parasitism was higher on the four main genera of plants with extrafloral nectaries than on any of five main genera of plants without extrafloral nectaries. There was no difference in parasitoid richness; nine species occurred in each group, eight of which were the same. There was a positive and almost significant correlation between the abundance of plants with extrafloral nectaries and the parasitism of gypsy moth at the sites. Extrafloral nectaries may reduce herbivory by inducing more parasitism of the insect herbivores that attack plants bearing the glands. 相似文献