首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stems,nodes, crown clades,and rank‐free lists: is Linnaeus dead?   总被引:3,自引:0,他引:3  
Recent radical proposals to overhaul the methods of biological classification are reviewed. The proposals of phylogenetic nomenclature are to translate cladistic phylogenies directly into classifications, and to define taxon names in terms of clades. The method has a number of radical consequences for biologists: taxon names must depend rigidly on the particular cladogram favoured at the moment, familiar names may be reassigned to unfamiliar groupings, Linnaean category terms (e.g. phylum, order, family) are abandoned, and the Linnaean binomen (e.g. Homo sapiens) is abandoned. The tenets of phylogenetic nomenclature have gained strong support among some vocal theoreticians, and rigid principles for legislative control of clade names and definitions have been outlined in the PhyloCode. The consequences of this semantic maelstrom have not been worked out. In pratice, phylogenetic nomenclature will bc disastrous, promoting confusion and instability, and it should be abandoned. It is based on a fundamental misunderstanding of the difference between a phylogeny (which is real) and a classification (which is utilitarian). Under the new view, classifications are identical to phlylogenies, and so the proponents of phylogenetic nomenclature will end up abandoning classifications altogether.  相似文献   

2.
The Linnaean system of nomenclature has been used and adapted by biologists over a period of almost 250 years. Under the current system of codes, it is now applied to more than 2 million species of organisms. Inherent in the Linnaean system is the indication of hierarchical relationships. The Linnaean system has been justified primarily on the basis of stability. Stability can be assessed on at least two grounds: the absolute stability of names, irrespective of taxonomic concept; and the stability of names under changing concepts. Recent arguments have invoked conformity to phylogenetic methods as the primary basis for choice of nomenclatural systems, but even here stability of names as they relate to monophyletic groups is stated as the ultimate objective. The idea of absolute stability as the primary justification for nomenclatural methods was wrong from the start. The reasons are several. First, taxa are concepts, no matter the frequency of assertions to the contrary; as such, they are subject to change at all levels and always will be, with the consequence that to some degree the names we use to refer to them will also be subject to change. Second, even if the true nature of all taxa could be agreed upon, the goal would require that we discover them all and correctly recognize them for what they are. Much of biology is far from that goal at the species level and even further for supraspecific taxa. Nomenclature serves as a tool for biology. Absolute stability of taxonomic concepts—and nomenclature—would hinder scientific progress rather than promote it. It can been demonstrated that the scientific goals of systematists are far from achieved. Thus, the goal of absolute nomenclatural stability is illusory and misguided. The primary strength of the Linnaean system is its ability to portray hierarchical relationships; stability is secondary. No single system of nomenclature can ever possess all desirable attributes: i.e., convey information on hierarchical relationships, provide absolute stability in the names portraying those relationships, and provide simplicity and continuity in communicating the identities of the taxa and their relationships. Aside from myriad practical problems involved in its implementation, it must be concluded that “phylogenetic nomenclature” would not provide a more stable and effective system for communicating information on biological classifications than does the Linnaean system.  相似文献   

3.
Ceci n'est pas une pipe: names, clades and phylogenetic nomenclature   总被引:2,自引:0,他引:2  
An introduction is provided to the literature and to issues relating to phylogenetic nomenclature and the PhyloCode, together with a critique of the current Linnaean system of nomenclature. The Linnaean nomenclature fixes taxon names with types, and associates the names with ranks (genus, family, etc.). In phylogenetic nomenclature, names are instead defined with reference to cladistic relationships, and the names are not associated with ranks. We argue that taxon names under the Linnaean system are unclear in meaning and provide unstable group–name associations, notwithstanding whether or not there are agreements on relationships. Furthermore, the Linnaean rank assignments lack justification and invite unwarranted comparisons across taxa. On the contrary, the intention of taxon names in phylogenetic nomenclature is clear and stable, and the application of the names will be unambiguous under any given cladistic hypothesis. The extension of the names reflects current knowledge of relationships, and will shift as new hypotheses are forwarded. The extension of phylogenetic names is, therefore, clear but is associated to (and thus dependent upon) cladistic hypotheses. Stability in content can be maximized with carefully formulated name definitions. A phylogenetic nomenclature will shift the focus from discussions of taxon names towards the understanding of relationships. Also, we contend that species should not be recognized as taxonomic units. The term ‘species’ is ambiguous, it mixes several distinct classes of entities, and there is a large gap between most of the actual concepts and the evidence available to identify the entities. Instead, we argue that only clades should be recognized. Among these, it is useful to tag the smallest named clades, which all represent non-overlapping groups. Such taxa  – LITUs (Least Inclusive Taxonomic Units) – are distinguished from more inclusive clades by being spelled with lower-case initial letter. In contrast to species, LITUs are conceptually straightforward and are, like other clades, identified by apomorphies.  相似文献   

4.
HAWKSWORTH, D. L., 1992. The need for a more effective biological nomenclature for the 21st century. The procedures of biological nomenclature are now under immense pressure to change. Users are frustrated by the instability of names and lack of consensus, and increasingly undertake work previously the province of taxonomists; data are presented to show they tend to ignore unwelcome changes. Taxonomists themselves are deflected from both systematic and phylogenetic investigations, and documenting the world's biodiversity, by nomenclatural matters. A survey of 60 U.K. botanical taxonomists revealed that about half spent 10–75% of their research time on nomenclatural matters; extrapolated to the U.K. as a whole, botanical nomenclature could occupy up to 52 full-time posts at a cost of £ 1.3 million. Further, an analysis of 15 monographs of fungal genera showed that overall 85% of the names investigated were not accepted. The major problems to confront relate to concepts of priority, effective and valid publication, illegitimacy, types, ambiregnal organisms and the decision-making bodies. While most of these issues have been overcome by bacteriologists, only now are those concerned with botanical and zoological nomenclature starting to tackle them in earnest. A more effective biological nomenclature could be produced by extending the concept of lists of nomenclaturally protected names. This would resolve questions of effective and valid publication, priority, and application. Such lists would primarily assist taxonomists by dealing with much of the nomenclatural ‘noise’ of the past. Registration procedures are needed to complement such lists for names introduced in the future. The need for standard names and classifications fixed for limited periods is increasingly being met by specialist user groups and also concerns some taxonomists, but is best handled outside formal systems by appropriate specialist bodies. Increased harmonization of the Codes is possible when facing common problems and essential to resolve the difficulties posed by ambiregnal organisms. The image of taxonomy is adversely affected by unsatisfactory nomenclatural systems. Taxonomists should be responsible and refrain from changing names only for nomenclatural reasons while these matters are in discussion. Users and taxonomists need to work with nomenclaturalists to improve the effectiveness of biological nomenclature, if they are to ensure that it will fulfil both their requirements in the 21st century. The prospects for systematics are bleak if it fails to consummate the dual responsibilities of scientific endeavour and user requirements  相似文献   

5.
Proper application of the principles of biological nomenclature is fundamental for scientific and technical communication about organisms. As other scientific disciplines, taxonomy inherently is open to change, thus species names cannot be final and immutable. Nevertheless, altering the names of organisms of high economical, medical, or veterinary importance can become a complex challenge between the scientific need to have correct classifications, and the practical ideal of having fixed classifications. Trypanosoma evansi (Steel, 1885), T. brucei Plimmer & Bradford, 1899 and T. equiperdum Doflein, 1901 are important parasites of mammals. According to current knowledge, the three names are synonyms of a single trypanosome species, the valid name of which should be T. evansi by the mandatory application of the Principle of Priority of zoological nomenclature. Subspecies known as T. brucei brucei Plimmer & Bradford, 1899, T. b. gambiense Dutton, 1902 and T. b. rhodesiense Stephens & Fantham, 1910 should be referred to respectively as T. evansi evansi (Steel, 1885), T. e. gambiense and T. e. rhodesiense. The polyphyletic groupings so far known as T. evansi and T. equiperdum should be referred respectively to as surra- and dourine-causing strains of T. e. evansi. Likewise, trypanosomes so far known as T. b. brucei should be referred to as nagana-causing strains of T. e. evansi. Though it modifies the scientific names of flagship human and animal parasites, the amended nomenclature proposed herein should be adopted because it reflects phylogenetic and biological advancements, fixes errors, and is simpler than the existing classificatory system.  相似文献   

6.
There are now overlapping codes of nomenclature that govern some of the same names of biological taxa. The International Code of Zoological Nomenclature (ICZN) uses the non-evolutionary concept of a "type species" to fix the names of animal taxa to particular ranks in the nomenclatural hierarchy. The PhyloCode, in contrast, uses phylogenetic definitions for supraspecific taxa at any hierarchical level within the Tree of Life (without associating the names to particular ranks), but does not deal with the names of species. Thus, biologists who develop classifications of animals need to use both systems of nomenclature, or else operate without formal rules for the names of some taxa (either species or many monophyletic groups). In addition, the ICZN does not permit the unique naming of many taxa that are considered to be between the ranks of genus and species. Hillis and Wilcox [Hillis, D.M., Wilcox, T.P., 2005. Phylogeny of the New World true frogs (Rana). Mol. Phylogenet. Evol. 34, 299-314] provided recommendations for the classification of New World true frogs that utilized the ICZN to provide names for species, and the PhyloCode to provide names for supraspecific taxa. Nonetheless, they created new taxon names that followed both sets of rules, to avoid conflicting classifications. They also recommended that established names for both species and clades be used whenever possible, to stabilize the names of both species and clades under either set of rules, and to avoid conflicting nomenclatures. Dubois [Dubois, A., 2006. Naming taxa from cladograms: a cautionary tale. Mol. Phylogenet. Evol., 42, 317-330] objected to these principles, and argued that the names provided by Hillis and Wilcox [Hillis, D.M., Wilcox, T.P., 2005. Phylogeny of the New World true frogs (Rana). Mol. Phylogenet. Evol. 34, 299-314] are unavailable under the ICZN, and that the two nomenclatural systems are incompatible. Here, I argue that he is incorrect in these assertions, and present arguments for retaining the established names of New World true frogs, which are largely compatible under both sets of nomenclatural rules.  相似文献   

7.
Taxon names as paradigms: the structure of nomenclatural revolutions   总被引:1,自引:1,他引:0  
In the present paper I argue that the two systems of phylogenetic nomenclature hitherto proposed represent, in a generalized sense, two different philosophies for how science develops and progresses. The phylogenetic system of definition initially proposed by de Queiroz and Gauthier [Syst. Zool. 39 (1990) 307], and later labeled PSD, is typically Popperian in the sense that science progresses toward truth by an accumulation of knowledge. Phylogenetic definitions of taxon names are assumed to adapt automatically to each new hypothesis of phylogeny, thereby reflecting better and better hypotheses. The phylogenetic system of reference proposed by Härlin [Zool. Scr. 27 (1998a) 381], on the other hand, is more Kuhnian, because it is built on the idea that successive hypotheses are incommensurable (and thus not cumulative) and that taxon names might be equalled with low‐level paradigms.  相似文献   

8.
Dayrat, B. & Gosliner, T. M. (2005). Species names and metaphyly: a case study in Discodorididae (Mollusca, Gastropoda, Euthyneura, Nudibranchia, Doridina) —Zoologica Scripta, **, ***–***. Absence of resolution in phylogenetic trees, or metaphyly, is a common phenomenon. It mainly results from the fact that each data set has its own limit and can hardly be expected to reconstruct alone an entire hierarchy. Because metaphyly helps point out which regions of a tree merit further investigation, one should not avoid metaphyly but rather should try to detect it by addressing carefully node reliability. In this paper we explore the implication of metaphyly for species names. We present a phylogenetic analysis of Discodorididae (Mollusca, Gastropoda, Nudibranchia, Doridina), with an emphasis on relationships among species of Discodoris and its traditionally close ‘allies’ such as Peltodoris and Anisodoris. We demonstrate that some species must be transferred to different discodoridid subclades with which they share synapomorphies, but that many species form a metaphyletic group at the base of Discodorididae, and therefore cannot be placed in any taxon of genus level. We demonstrate that the current International Code of Zoological Nomenclature does not allow taxonomists to handle this situation because it requires selecting a taxon name of genus rank for every species binomial. Then we evaluate the results provided by new forms of species names, both in a rank‐based system, such as the current nomenclature, and a rank‐free system. All solutions considered would cause radical changes to the ‘spirit’ of the current ICZN (and, by extension, to the other current codes). In a rank‐free system of nomenclature, such as the PhyloCode, the best result is obtained with an epithet‐based form that does not mention supra‐specific relationships. Under this method, official species names would take the form ‘boholiensis Bergh, 1877’, although page numbers and letters can be added for uniqueness purposes. Taxonomists would then be free to add supra‐specific taxon names in ‘common’ species names, such as Discodorididae boholiensis Bergh, 1877 or simply Discodorididae boholiensis. Here we wish to stimulate discussion of a problem that we believe merits wide debate: absence of resolution in phylogenetic reconstruction and its impact on species nomenclature.  相似文献   

9.
An issue arising from recent progress in establishing the placental mammal Tree of Life concerns the nomenclature of high-level clades. Fortunately, there are now several well-supported clades among extant mammals that require unambiguous, stable names. Although the International Code of Zoological Nomenclature does not apply above the Linnean rank of family, and while consensus on the adoption of competing systems of nomenclature does not yet exist, there is a clear, historical basis upon which to arbitrate among competing names for high-level mammalian clades. Here, we recommend application of the principles of priority and stability, as laid down by G.G. Simpson in 1945, to discriminate among proposed names for high-level taxa. We apply these principles to specific cases among placental mammals with broad relevance for taxonomy, and close with particular emphasis on the Afrotherian family Tenrecidae. We conclude that no matter how reconstructions of the Tree of Life change in years to come, systematists should apply new names reluctantly, deferring to those already published and maximizing consistency with existing nomenclature.  相似文献   

10.
Absolute nomenclatural stability is undesirable in phylogenetic classifications because they reflect changing hypotheses of cladistic relationships. De Queiroz and Gauthier's (1990: Syst. Zool. 39, 307–322; 1992: A. Rev. Ecol. Syst. 23, 449–480; 1994: Trends Ecol. Evol. 9, 27–31) alternative to Linnaean nomenclature is concluded to provide stable names for unstable concepts. In terms of communicating either characters shared by species of a named taxon or elements (species) included in a taxon, de Queiroz and Gauthier's system is less stable than the Linnaean system. Linnaean ranks communicate limited information about inclusivity of taxa, but abandonment of ranks results in the loss of such information. As cladistic hypotheses advance, taxa named under de Queiroz and Gauthier's system can change their level of generality radically, from being part of a group to including it, without any indicative change in its spelling. The Linnaean system has been retained by taxonomists because its hierarchic ranks are logically compatible with nested sets of species, monophyletic groups, and characters. Other authors have offered conventions to increase the cladistic information content of Linnaean names or to replace them with names that convey cladistic knowledge in greater detail; de Queiroz and Gauthier sacrifice the meaning of taxon names and categorical ranks in favor of spelling stability.  相似文献   

11.
Overviews are provided for traditional and phylogenetic nomenclature. In traditional nomenclature, a name is provided with a type and a rank. In the rankless phylogenetic nomenclature, a taxon name is provided with an explicit phylogenetic definition, which attaches the name to a clade. Linnaeus’s approach to nomenclature is also reviewed, and it is shown that, although the current system of nomenclature does use some Linnaean conventions (e.g., certain rank-denoting terms, binary nomenclature), it is actually quite different from Linnaean nomenclature. The primary differences between traditional and phylogenetic nomenclature are reviewed. In phylogenetic nomenclature, names are provided with explicit phylogenetic definitions, whereas in traditional nomenclature names are not explicitly defined. In phylogenetic nomenclature, a name remains attached to a clade regardless of how future changes in phylogeny alter the clade’s content; in traditional nomenclature a name is not “married” to any particular clade. In traditional nomenclature, names must be assigned ranks (an admittedly arbitrary process), whereas in phylogenetic nomenclature there are no formal ranks. Therefore, in phylogenetic nomenclature, the name itself conveys no hierarchical information, and the name conveys nothing regarding set exclusivity. It is concluded that the current system is better able to handle new and unexpected changes in ideas about taxonomic relationships. This greater flexibility, coupled with the greater information content that the names themselves (i.e., when used outside the context of a given taxonomy or phytogeny) provide, makes the current system better designed for use by all users of taxon names.  相似文献   

12.
The proposal to implement a phylogenetic nomenclatural system governed by the PhyloCode), in which taxon names are defined by explicit reference to common descent, has met with strong criticism from some proponents of phylogenetic taxonomy (taxonomy based on the principle of common descent in which only clades and species are recognized). We examine these criticisms and find that some of the perceived problems with phylogenetic nomenclature are based on misconceptions, some are equally true of the current rank-based nomenclatural system, and some will be eliminated by implementation of the PhyloCode. Most of the criticisms are related to an overriding concern that, because the meanings of names are associated with phylogenetic pattern which is subject to change, the adoption of phylogenetic nomenclature will lead to increased instability in the content of taxa. This concern is associated with the fact that, despite the widespread adoption of the view that taxa are historical entities that are conceptualized based on ancestry, many taxonomists also conceptualize taxa based on their content. As a result, critics of phylogenetic nomenclature have argued that taxonomists should be free to emend the content of taxa without constraints imposed by nomenclatural decisions. However, in phylogenetic nomenclature the contents of taxa are determined, not by the taxonomist, but by the combination of the phylogenetic definition of the name and a phylogenetic hypothesis. Because the contents of taxa, once their names are defined, can no longer be freely modified by taxonomists, phylogenetic nomenclature is perceived as limiting taxonomic freedom. We argue that the form of taxonomic freedom inherent to phylogenetic nomenclature is appropriate to phylogenetic taxonomy in which taxa are considered historical entities that are discovered through phylogenetic analysis and are not human constructs.  相似文献   

13.
Naming of uncultured Bacteria and Archaea is often inconsistent with the International Code of Nomenclature of Prokaryotes. The recent practice of proposing names for higher taxa without designation of lower ranks and nomenclature types is one of the most important inconsistencies that needs to be addressed to avoid nomenclatural instability. The Code requires names of higher taxa up to the rank of class to be derived from the type genus name, with a proposal pending to formalise this requirement for the rank of phylum. Designation of nomenclature types is crucial for providing priority to names and ensures their uniqueness and stability. However, only legitimate names proposed for axenic cultures can be used for this purpose. Candidatus names reserved for taxa lacking cultured representatives may be granted this right if recent proposals to use genome sequences as type material are endorsed, thereby allowing the Code to be fully applied to lineages represented by metagenome-assembled genomes (MAGs) or single amplified genomes (SAGs). Genome quality standards need to be considered to ensure unambiguous assignment of type material. Here, we illustrate the recommended practice by proposing nomenclature type material for four major uncultured prokaryotic lineages based on high-quality MAGs in accordance with the Code.  相似文献   

14.
Coast GM  Schooley DA 《Peptides》2011,32(3):620-631
The nomenclature currently in use for insect neuropeptide and peptide hormone families is reviewed and suggestions are made as to how it can be rationalized. Based upon this review, a number of conventions are advanced as a guide to a more rationale nomenclature. The scheme that is put forward builds upon the binomial nomenclature scheme proposed by Raina and Gäde in 1988 [100], when just over 20 insect neuropeptides had been identified. Known neuropeptides and peptide hormones are assigned to 32 structurally distinct families, frequently with overlapping functions. The names given to these families are those that are currently in use, and describe a biological function, homology to known invertebrate/vertebrate peptides, or a conserved structural motif. Interspecific isoforms are identified using a five-letter code to indicate genus and species names, and intraspecific isoforms are identified by Roman or Arabic numerals, with the latter used to signify the order in which sequences are encoded on a prepropeptide. The proposed scheme is sufficiently flexible to allow the incorporation of novel peptides, and could be extended to other arthropods and non-arthropod invertebrates.  相似文献   

15.
A proposal is made for a system of nomenclature of the more common unconjugated and conjugated bile acids. Acceptable trivial names for bile acids are tabulated, and guidelines are proposed for using these existing trivial names as roots to create acceptable semi-systematic names for other bile acids, as well as for new natural bile acids that will be discovered in the future. The term alpha-hyocholic is recommended to replace hyocholic, and beta-hyocholic to replace omega-muricholic. The term murideoxycholic acid is recommended for 3 alpha,6 beta-dihydroxy-5 beta-cholan-24-oic acid. Proposals are also made for bile acids with epimeric hydroxy groups, for unsaturated bile acids, and for bile acids with oxo- and/or hydroxy-oxo- substituents on the nucleus and/or on the side chain. For conjugated bile acids, the term "aminoacyl amidates" is recommended to replace "amidates" for bile acids conjugated in N-acyl linkage with amino acids. Nomenclature for other types of conjugates (sulfates, glucuronides, glucosides) is included as well as abbreviations. It is recommended that the historic tradition of naming a newly discovered bile acid after the species from which it was isolated be abandoned, and that in the future such a bile acid should be named using the principles contained in this paper.  相似文献   

16.
17.
Linnaean binomial nomenclature is logically incompatible with the phylogenetic nomenclature of de Queiroz and Gauthier (1992, Annu. Rev. Ecol. Syst. 23:449-480): The former is based on the concept of genus, thus making this rank mandatory, while the latter is based on phylogenetic definitions and requires the abandonment of mandatory ranks. Thus, if species are to receive names under phylogenetic nomenclature, a different method must be devised to name them. Here, 13 methods for naming species in the context of phylogenetic nomenclature are contrasted with each other and with Linnaean binomials. A fundamental dichotomy among the proposed methods distinguishes those that retain the entire binomial of a preexisting species name from those that retain only the specific epithet. Other relevant issues include the stability, uniqueness, and ease of pronunciation of species names; their capacity to convey phylogenetic information; and the distinguishability of species names that are governed by a code of phylogenetic nomenclature both from clade names and from species names governed by the current codes. No method is ideal. Each has advantages and drawbacks, and preference for one option over another will be influenced by one's evaluation of the relative importance of the pros and cons for each. Moreover, sometimes the same feature is viewed as an advantage by some and a drawback by others. Nevertheless, all of the proposed methods for naming species in the context of phylogenetic nomenclature provide names that are more stable than Linnaean binomials.  相似文献   

18.
In systematic biology homology hypotheses are typically based on points of similarity and tested using congruence, of which the two stages have come to be distinguished as “primary” versus “secondary” homology. Primary homology is often regarded as prior to logical test, being a kind of background assumption or prior knowledge. Similarity can, however, be tested by more detailed studies that corroborate or weaken previous homology hypotheses before the test of congruence is applied. Indeed testing similarity is the only way to test the homology of characters, as congruence only tests their states. Traditional homology criteria include topology, special similarity, function, ontogeny and step‐counting (for example, transformation in one step versus two via loss and gain). Here we present a method to compare quantitatively the ability of such criteria, and competing homology schema, to explain morphological observations. We apply the method to a classic and difficult problem in the homology of male spider genital sclerites. For this test case topology performed better than special similarity or function. Primary homologies founded on topology resulted in hypotheses that were globally more parsimonious than those based on other criteria, and therefore yielded a more coherent and congruent nomenclature of palpal sclerites in theridiid spiders than prior attempts. Finally, we question whether primary homology should be insulated as “prior knowledge” from the usual issues and demands that quantitative phylogenetic analyses pose, such as weighting and global versus local optima. © The Willi Hennig Society 2007.  相似文献   

19.
20.
We outline the potentially important role of dispersal in linking diversity patterns at different spatial and temporal scales, and the resulting potential to link hypotheses explaining macroscale patterns of diversity. We do this by proposing a possible mechanism linking climate to diversity patterns: we argue that climate, via effects of continuity of habitat availability in space and time, mediates a dispersal–ecological specialization trade‐off at the metacommunity level that leads to latitudinal trends in dispersal ability, ecological specialization, range sizes, speciation and species richness, ultimately driving the latitudinal diversity gradient. This trade‐off constitutes a possible mechanism for the strong macroscale correlation between climate and species richness that is consistent with recent ideas about niche conservatism and gradient lengths, as well as other leading hypotheses. We present an overview of predictions derived from our ideas. Of these, some have already been tested and supported and others are still open to debate or need testing. Together they provide a unique set of predictions that allows falsification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号