首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Platelet-activating factor (PAF)-dependent transacetylase (TA) is an enzyme that transfers an acetyl group from PAF to acceptor lipids such as lysophospholipids and sphingosine. This enzyme is distributed in membrane and cytosol of the cells. We previously revealed that TA purified from rat kidney membrane showed an amino acid sequence similarity to that of bovine PAF-acetylhydrolase (AH) (II). In the present study, we purified TA from the rat kidney cytosol and analyzed its amino acid sequence. The amino acid sequence of the cytosolic TA is similar to that of bovine PAF-AH (II) and membrane TA. To clarify the relationship between TA and PAF-AH (II), we isolated cDNA of rat PAF-AH (II). The predicted amino acid sequence of rat PAF-AH (II) from isolated cDNA included all the sequences found in TAs purified from the membrane and cytosolic TAs. In addition, monoclonal antibody to recombinant PAF-AH (II) cross-reacted with both cytosolic and membrane TAs. Consistent with sequence identity, recombinant PAF-AH (II) showed TA activity, whereas recombinant PAF-AH Ib, which is a different subtype of intracellular PAF-AHs, did not possess TA activity. Analysis of a series of site-directed mutant PAF-AH (II) proteins showed that TA activity was decreased, whereas PAF-AH activity was not affected in C120S and G2A mutant proteins. Thus, Cys(120) and Gly(2) are implicated in the catalysis of TA reaction in this enzyme. Furthermore, the transfer of acetate from PAF to endogenous acceptor lipids was significantly increased in a time-dependent manner in CHO-K1 cells transfected with PAF-AH (II) gene. These results demonstrate that PAF-AH (II) can function, as a TA in intact cells, and PAF-AH (II) and TA are the same enzyme.  相似文献   

2.
Tumour necrosis factor alpha (TNFalpha) induces platelet-activating factor (PAF) synthesis in many inflammatory cells. Here, we investigate the possibility that TNFalpha stimulates PAF synthesis in rat adipocytes and preadipocytes and that phosphoinositide 3-kinase (PI3K) and extracellular signal-regulated kinase 1/2 (ERK1/2) are implicated in this process. Primary cultures were incubated with [3H]lyso-PAF and stimulated by TNFalpha in the presence or absence of wortmannin. We found that, although both cultures synthesized PAF at a similar basal rate, TNFalpha-induced PAF synthesis in adipocytes was 7-fold higher than in preadipocytes. This suggested a maturation of PAF-TNFalpha interrelationship during adipocyte differentiation. Wortmannin enhanced TNFalpha-dependent PAF synthesis in adipocytes but not in preadipocytes, indicating the negative control by PI3K in mature cells. PAF increase was due to the regulation of its biosynthesis since PAF-acetylhydrolase (PAF-AH) activity was TNFalpha- and wortmannin-independent. Our hypothesis is that PAF mediates TNFalpha inflammatory effects in both adipocytes and preadipocytes and that this pathway is enhanced during adipocyte differentiation, a mechanism which is highly active during the development of obesity.  相似文献   

3.
Human plasma PAF-AH (platelet-activating factor-acetylhydrolase) is a Ca(2)+-independent phospholipase A2 of hematopoietic origin associated with LDL and HDL; it degrades PAF and oxidizes phospholipids. We show that human macrophages synthesize PAF-AH as a premedial Golgi precursor containing high mannose N-linked glycans. Secreted PAF-AH possesses a molecular mass of approximately 55 kDa and contains mature N-linked glycans. Secreted PAF-AH activity (90 +/- 4% of the total) bound to a wheat germ lectin column and could be eluted with N-acetylglucosamine, whereas digestion with N-acetylneuraminidase II completely abolished enzyme absorption. Tunicamycin significantly reduced cell-associated PAF-AH activity and inhibited enzyme secretion; but it did not alter the ratio of secreted to cell-associated enzyme (1.8 at 6 h and 3.1 at 24 h), suggesting that glycosylation is not essential for PAF-AH secretion. Digestion of cell-associated PAF-AH or secreted PAF-AH with peptide N-glycosidase F affected neither catalytic activity nor its resistance to proteolysis with trypsin or proteinase K; in addition, it did not affect PAF-AH association with LDL, but significantly increased its association with HDL. We suggest that macrophage-derived PAF-AH contains heterogeneous asparagine-conjugated sugar chain(s) involving sialic acid, which hinders its association with HDL but does not influence the secretion, catalytic activity, or resistance of PAF-AH to proteases.  相似文献   

4.
Although red blood cells account for about 30% of total PAF-AH activity found in the blood, the physiological function of this enzyme is unknown. To understand the role and regulatory mechanism of this enzyme, we purified it from easily obtainable pig red blood cells. PAF-AH activity was mainly found in the soluble fraction of the red blood cells. Two peaks of enzyme activity appeared with increasing concentration of imidazole on column chromatography on nickel-nitroacetic acid (Ni-NTA) resin. We called these peaks of small and large enzyme activities fractions X and Y, respectively, and then further purified the enzymes by sequential chromatofocusing on Mono P and gel filtration on TSK G-3000. In the final preparation from fraction Y, two proteins bands corresponding to 26 kDa and 28 kDa were related to enzyme activity. Determination of the partial amino acid sequences of the proteins of 26 kDa and 28 kDa revealed that these proteins were identical to alpha(1) and alpha(2), respectively, both of which are catalytic subunits of Type I intracellular PAF-AH. On Western analysis, the 26 kDa and 28 kDa protein bands cross-reacted with specific monoclonal antibodies to alpha(1) and alpha(2), respectively. Since the apparent molecular weight of the natural enzyme was estimated to be about 60 kDa, the enzyme activity in fraction Y was thought to be that of a heterodimer consisting of alpha(1) and alpha(2). On the other hand, the enzyme activity in fraction X was thought to be that of a homodimer consisting of alpha(2). Other blood cells such as polymorphonuclear leukocytes and platelets only contained the alpha(2)/alpha(2) homodimer. It has been reported that the alpha(1)/alpha(2) heterodimer is poorly expressed in adult animals except for in the spermatogonium. Taken altogether, these results suggest that high expression of the alpha(1)/alpha(2) heterodimer is important for the physiological function of mature red blood cells.  相似文献   

5.
We have previously identified two enzyme activities that transfer the acetyl group from platelet-activating factor (PAF) in a CoA-independent manner to lysoplasmalogen or sphingosine in HL-60 cells, endothelial cells, and a variety of rat tissues. These were termed as PAF:lysoplasmalogen (lysophospholipid) transacetylase and PAF:sphingosine transacetylase, respectively. In the present study, we have solubilized and purified this PAF-dependent transacetylase 13,700-fold from rat kidney membranes (mitochondrial plus microsomal membranes) based on the PAF:lysoplasmalogen transacetylase activity. The mitochondria and microsomes were prepared and washed three times, then solubilized with 0.04% Tween 20 at a detergent/protein (w/w) ratio of 0.1. The solubilized fractions from mitochondria and microsomes were combined and subjected to sequential column chromatographies on DEAE-Sepharose, hydroxyapatite, phenyl-Sepharose, and chromatofocusing. The enzyme was further purified by native-polyacrylamide gel electrophoresis (PAGE) and affinity gel matrix in which the competitive inhibitor of the enzyme, 1-O-hexadecyl-2-N-methylcarbamyl-sn-glycero-3-phosphoethanolamine was covalently attached to the CH-Sepharose. On SDS-PAGE, the purified enzyme showed a single homogeneous band with an apparent molecular mass of 40 kDa. The purified enzyme catalyzed transacetylation of the acetyl group not only from PAF to lysoplasmalogen forming plasmalogen analogs of PAF, but also to sphingosine producing N-acetylsphingosine (C2-ceramide). In addition, this enzyme acted as a PAF-acetylhydrolase in the absence of lipid acceptor molecules. These results suggest that PAF-dependent transacetylase is an enzyme that modifies the cellular functions of PAF through generation of other diverse lipid mediators.  相似文献   

6.
Treatment of intact adipocytes with either or both insulin and adrenaline stimulated membrane cyclic AMP phosphodiesterase activity only in the endoplasmic reticulum subfraction. The cyclic GMP-inhibited cyclic AMP phosphodiesterase activity was also found in this fraction. Quantitative Western blotting using a specific polyclonal antibody, raised against the homogeneous 'dense-vesicle' cyclic AMP phosphodiesterase from rat liver, identified a single 63 kDa species which was localized in the adipocyte endoplasmic reticulum fraction. The ability of adrenaline to stimulate adipocyte membrane cyclic AMP phosphodiesterase was shown to be mediated via beta-adrenoceptors and not alpha 1-adrenoceptors. Membrane cyclic AMP phosphodiesterase was stimulated by glucagon but not by vasopressin, A23187 or 12-O-tetradecanoylphorbol 13-acetate (TPA). Treatment of adipocytes with either chloroquine or dansyl cadaverine failed to affect the ability of insulin to stimulate cyclic AMP phosphodiesterase activity. Treatment of an isolated adipocyte endoplasmic reticulum membrane fraction with purified protein kinase A increased its cyclic AMP phosphodiesterase activity some 2-fold. When this fraction was treated with purified protein kinase A and [32P]ATP, label was incorporated into a 63 kDa protein which was specifically immunoprecipitated with the antiserum against the liver 'dense-vesicle' cyclic AMP phosphodiesterase.  相似文献   

7.
Min JH  Wilder C  Aoki J  Arai H  Inoue K  Paul L  Gelb MH 《Biochemistry》2001,40(15):4539-4549
Platelet-activating factor acetylhydrolases (PAF-AHs) are a group of enzymes that hydrolyze the sn-2 acetyl ester of PAF (phospholipase A(2) activity) but not phospholipids with two long fatty acyl groups. Our previous studies showed that membrane-bound human plasma PAF-AH (pPAF-AH) accesses its substrate only from the aqueous phase, which raises the possibility that this enzyme can hydrolyze a variety of lipid esters that are partially soluble in the aqueous phase. Here we show that pPAF-AH has broad substrate specificity in that it hydrolyzes short-chain diacylglycerols, triacylglycerols, and acetylated alkanols, and displays phospholipase A(1) activity. On the basis of all of the substrate specificity results, it appears that the minimal structural requirement for a good pPAF-AH substrate is the portion of a glyceride derivative that includes an sn-2 ester and a reasonably hydrophobic chain in the position occupied by the sn-1 chain. In vivo, pPAF-AH is bound to high and low density lipoproteins, and we show that the apparent maximal velocity for this enzyme is not influenced by lipoprotein binding and that the enzyme hydrolyzes tributyroylglycerol as well as the recombinant pPAF-AH does. Broad substrate specificity is also observed for the structurally homologous PAF-AH which occurs intracellularly [PAF-AH(II)] as well as for the PAF-AH from the lower eukaryote Physarum polycephalum although pPAF-AH and PAF-AH(II) tolerate the removal of the sn-3 headgroup better than the PAF-AH from P. polycephalum does. In contrast, the intracellular PAF-AH found in mammalian brain [PAF-AH(Ib) alpha 1/alpha 1 and alpha 2/alpha 2 homodimers] is more selectively operative on compounds with a short acetyl chain although this enzyme also displays significant phospholipase A(1) activity.  相似文献   

8.
Platelet activating factor (PAF) is immediately degraded and inactivated in the bloodstream by plasma PAF acetylhydrolase (PAF-AH). Although plasma PAF-AH-like activity was secreted in vitro from various cell types such as macrophages and hepatocytes, the exact cellular source(s) of this enzyme activity in vivo remains unclear. There is a naturally-occurring missense mutation (V279F) in the plasma PAF-AH gene in the Japanese population which results in complete loss of the enzyme activity. We analyzed 52 Japanese who had received an allogeneic bone marrow transplant and maintained donor-derived hematopoiesis. Ten recipients had chimeric plasma PAF-AH genotypes between the donor-derived peripheral blood leukocytes and the recipient-derived epithelial cells of buccal mucosa. Multiple regression analysis demonstrated that PAF-AH activity in plasma depended on the donor's genotype (standardized regression coefficient = 0.68, P < 0.0001), but not on the recipient's genotype (p = 0.48). One recipient who was a V279F homozygote in leukocytes and wild type homozygote in buccal mucosa had undetectable PAF-AH activity in plasma. We conclude that most of the PAF-AH activity in human plasma originates from hematopoietic lineage cells.  相似文献   

9.
Platelet-activating factor acetylhydrolase (PAF-AH)   总被引:4,自引:0,他引:4  
Platelet-activating factor (PAF) is one of the most potent lipid messengers involved in a variety of physiological events. The acetyl group at the sn-2 position of its glycerol backbone is essential for its biological activity, and its deacetylation induces loss of activity. The deacetylation reaction is catalyzed by PAF-acetylhydrolase (PAF-AH). A series of biochemical and enzymological evaluations revealed that at least three types of PAF-AH exist in mammals, namely the intracellular types I and II and a plasma type. Type I PAF-AH is a G-protein-like complex consisting of two catalytic subunits (alpha1 and alpha2) and a regulatory beta subunit. The beta subunit is a product of the LIS1 gene, mutations of which cause type I lissencephaly. Recent studies indicate that LIS1/beta is important in cellular functions such as induction of nuclear movement and control of microtubule organization. Although substantial evidence is accumulating supporting the idea that the catalytic subunits are also involved in microtubule function, it is still unknown what role PAF plays in the process and whether PAF is an endogenous substrate of this enzyme. Type II PAF-AH is a single polypeptide and shows significant sequence homology with plasma PAF-AH. Type II PAF-AH is myristoylated at the N-terminus and like other N-myristoylated proteins is distributed in both the cytosol and membranes. Plasma PAF-AH is also a single polypeptide and exists in association with plasma lipoproteins. Type II PAF-AH as well as plasma PAF-AH may play a role as a scavenger of oxidized phospholipids which are thought to be involved in diverse pathological processes, including disorganization of membrane structure and PAF-like proinflammatory action. In this review, we will focus on the structures and possible biological functions of intracellular PAF-AHs.  相似文献   

10.
Platelet-activating factor (PAF) is an important mediator of cell loss following diverse pathophysiological challenges, but the manner in which PAF transduces death is not clear. Both PAF receptor-dependent and -independent pathways are implicated. In this study, we show that extracellular PAF can be internalized through PAF receptor-independent mechanisms and can initiate caspase-3-dependent apoptosis when cytosolic concentrations are elevated by approximately 15 pM/cell for 60 min. Reducing cytosolic PAF to less than 10 pM/cell terminates apoptotic signaling. By pharmacological inhibition of PAF acetylhydrolase I and II (PAF-AH) activity and down-regulation of PAF-AH I catalytic subunits by RNA interference, we show that the PAF receptor-independent death pathway is regulated by PAF-AH I and, to a lesser extent, by PAF-AH II. Moreover, the anti-apoptotic actions of PAF-AH I are subunit-specific. PAF-AH I alpha1 regulates intracellular PAF concentrations under normal physiological conditions, but expression is not sufficient to reduce an acute rise in intracellular PAF levels. PAF-AH I alpha2 expression is induced when cells are deprived of serum or exposed to apoptogenic PAF concentrations limiting the duration of pathological cytosolic PAF accumulation. To block PAF receptor-independent death pathway, we screened a panel of PAF antagonists (CV-3988, CV-6209, BN 52021, and FR 49175). BN 52021 and FR 49175 accelerated PAF hydrolysis and inhibited PAF-mediated caspase 3 activation. Both antagonists act indirectly to promote PAF-AH I alpha2 homodimer activity by reducing PAF-AH I alpha1 expression. These findings identify PAF-AH I alpha2 as a potent anti-apoptotic protein and describe a new means of pharmacologically targeting PAF-AH I to inhibit PAF-mediated cell death.  相似文献   

11.
PAF-like activity in the endometrium increased from days 2-4 to day 12 and day 20 in both cyclic and pregnant cows. There was an increase in platelet aggregation induced by PAF-like activity in the endometrium of pregnant animals on day 20 as compared to cyclic animals at the same point in time. Two major bands of PAF-R protein at 67 kDa and 97 kDa were detected by Western blot analysis. PAF-R was localized mainly in luminal and glandular epithelium of the endometrium, but the staining was markedly increased in the endometrium of pregnant cows on day 20 compared to cyclic animals on the same day. The purified PAF-AH from the endometrium is similar to in plasma. In cyclic cattle, no changes in PAF-AH activity of endometrium were observed, whereas a decrease in enzyme activity occurred in pregnant cows on day 20 as compared to cyclic animals on the same day. We suggest that the bovine endometrium produces PAF-like activity, expresses the PAF-R and possesses a PAF-AH activity which varies during pregnancy.  相似文献   

12.
Breast cancer is primarily classified into ductal and lobular types, as well as into noninvasive and invasive cancer. Invasive cancer involves lymphatic and hematogenous metastasis. In breast cancer patients with distant metastases, a neutrophil-derived serine protease; cathepsin G (Cat G), is highly expressed in breast cancer cells. Cat G induces cell migration and multicellular aggregation of MCF-7 human breast cancer cells; however, the mechanism is not clear. Recently, platelet-activating factor (PAF)-acetylhydrolase (PAF-AH), the enzyme responsible for PAF degradation, was reported to be overexpressed in some tumor types, including pancreatic and breast cancers. In this study, we investigated whether PAF-AH is involved in Cat G-induced aggregation and migration of MCF-7 cells. We first showed that Cat G increased PAF-AH activity and elevated PAFAH1B2 expression in MCF-7 cells. The elevated expression of PAFAH1B2 was also observed in human breast cancer tissue specimens by immunohistochemical analysis. Furthermore, knockdown of PAFAH1B2 in MCF-7 cells suppressed the cell migration and aggregation induced by low concentrations, but not high concentrations, of Cat G. Carbamoyl PAF (cPAF), a nonhydrolyzable PAF analog, completely suppressed Cat G-induced migration of MCF-7 cells. In addition, PAF receptor (PAFR) inhibition induced cell migration of MCF-7 cells even in the absence of Cat G, suggesting that Cat G suppresses the activation of PAFR through enhanced PAF degradation due to elevated expression of PAFAH1B2 and thereby induces malignant phenotypes in MCF-7 cells. Our findings may lead to a novel therapeutic modality for treating breast cancer by modulating the activity of Cat G/PAF signaling.  相似文献   

13.
PAF-like activity in the endometrium increased from days 2-4 to day 12 and day 20 in both cyclic and pregnant cows. There was an increase in platelet aggregation induced by PAF-like activity in the endometrium of pregnant animals on day 20 as compared to cyclic animals at the same point in time. Two major bands of PAF-R protein at 67 kDa and 97 kDa were detected by Western blot analysis. PAF-R was localized mainly in luminal and glandular epithelium of the endometrium, but the staining was markedly increased in the endometrium of pregnant cows on day 20 compared to cyclic animals on the same day. The purified PAF-AH from the endometrium is similar to in plasma. In cyclic cattle, no changes in PAF-AH activity of endometrium were observed, whereas a decrease in enzyme activity occurred in pregnant cows on day 20 as compared to cyclic animals on the same day. We suggest that the bovine endometrium produces PAF-like activity, expresses the PAF-R and possesses a PAF-AH activity which varies during pregnancy.  相似文献   

14.
The GLUT4-containing vesicles purified from rat adipocyte contain many protein species of unknown identity, some of which are likely to play a critical role in the trafficking of GLUT4. Presently, we describe an 85-kDa protein in GLUT4-vesicles of rat adipocytes as a potential GLUT4 traffic regulatory protein. MALDI-TOF MS, RT-PCR, gene cloning, protein sequence analysis, and immunoreactivity assay have identified this protein as N-acetylated alpha-linked acidic dipeptidase (NAALADase) expressed in rat adipocytes. NAALADase in rat adipocytes was mostly membrane-associated and colocalized in discrete GLUT4-compartments with enrichment in putative GLUT4-sorting endosomes (G4G(L)). Total cell lysates of adipocytes exhibited NAALADase activity. Next, we treated rat adipocytes with 2-[phosphonomethy]pentanedionic acid (2-PMPA), a potent NAALADase inhibitor, and studied its effect on the distribution of GLUT4 and 3-O-methyl glucose (3OMG) flux. In 2-PMPA-treated adipocytes, there was a significant reduction (by 40%) in the insulin-stimulated GLUT4 translocation to the plasma membrane. The 3OMG flux in insulin-stimulated adipocytes was also delayed (51% of control) by 2-PMPA treatment, indicating that 2-PMPA impairs insulin-stimulated GLUT4 recruitment and the uptake of glucose. It is suggested that NAALADase may function as a regulator required for the insulin-stimulated GLUT4 vesicle movement and/or its exocytosis, thus may regulate insulin-induced GLUT4 recruitment in rat adipocytes.  相似文献   

15.
Platelet-activating factor-acetylhydrolase (PAF-AH) is a lipoprotein-associated phospholipase A2 capable of hydrolyzing platelet-activating factor (PAF) and oxidatively modified phospholipids. We studied the plasma- and lipoprotein-associated PAF-AH activity in patients with primary hypercholesterolemia. Thirty-eight unrelated patients with heterozygous familial hypercholesterolemia (HeteroFH), five patients with homozygous FH (HomoFH), and 33 patients with primary non-FH hypercholesterolemia (NonFH) participated in the study. In all patient groups the plasma PAF-AH activity was significantly elevated compared with 33 normolipidemic controls, the HomoFH having the highest and the NonFH patients showing the lowest enzyme activity. Gradient ultracentrifugation studies showed that this increase is not only due to the elevation in the plasma LDL but also to the increase in the PAF-AH activity associated with each LDL subfraction, being more profound in the small-dense LDL-5. Unlike LDL, no difference in the HDL-associated PAF-AH activity was observed among all groups. Consequently, an altered distribution of enzyme activity among apolipoprotein B (apoB)- and apolipoprotein A-I (apoA-I)-containing lipoproteins is observed in hypercholesterolemic patients, resulting in a significant decrease in the ratio of the HDL-associated PAF-AH to the total plasma enzyme activity compared with controls. This reduction is proportional to the increase of the plasma LDL-cholesterol (LDL-C) levels and consequently to the severity of the hypercholesterolemia. Thus, the ratio of HDL-associated PAF-AH-total plasma enzyme activity may be useful as a potential marker of atherogenicity in subjects with primary hypercholesterolemia.  相似文献   

16.
Mounting ambiguity persists around the functional role of the plasma form of platelet-activating factor acetylhydrolase (PAF-AH). Because PAF-AH hydrolyzes PAF and related oxidized phospholipids, it is widely accepted as an anti-inflammatory enzyme. On the other hand, its actions can also generate lysophosphatidylcholine (lysoPC), a component of bioactive atherogenic oxidized LDL, thus allowing the enzyme to have proinflammatory capabilities. Presence of a canonical lysoPC receptor has been seriously questioned for a multitude of reasons. Animal models of inflammation show that elevating PAF-AH levels is beneficial and not deleterious and overexpression of PAF receptor (PAF-R) also augments inflammatory responses. Further, many Asian populations have a catalytically inert PAF-AH that appears to be a severity factor in a range of inflammatory disorders. Correlation found with elevated levels of PAF-AH and CVDs has led to the design of a specific PAF-AH inhibitor, darapladib. However, in a recently concluded phase III STABILITY clinical trial, use of darapladib did not yield promising results. Presence of structurally related multiple ligands for PAF-R with varied potency, existence of multi-molecular forms of PAF-AH, broad substrate specificity of the enzyme and continuous PAF production by the so called bi-cycle of PAF makes PAF more enigmatic. This review seeks to address the above concerns.  相似文献   

17.
Platelet Activating Factor (PAF) is a potent mediator of inflammation whose biological activity depends on the acetyl group esterified at the sn-2 position of the molecule. PAF-acetylhydrolase (PAF-AH), a secreted calcium-independent phospholipase A(2), is known to inactivate PAF by formation of lyso-PAF and acetate. However, PAF-AH deficient patients are not susceptible to the biological effects of inhaled PAF in airway inflammation, suggesting that other enzymes may regulate extracellular levels of PAF. We therefore examined the hydrolytic activity of the recently described human group X secreted phospholipase A(2) (hGX sPLA(2)) towards PAF. Among different sPLA(2)s, hGX sPLA(2) has the highest affinity towards phosphatidylcholine (PC), the major phospholipid of cellular membranes and plasma lipoproteins. Our results show that unlike group IIA, group V, and the pancreatic group IB sPLA(2), recombinant hGX sPLA(2) can efficiently hydrolyze PAF. The hydrolysis of PAF by hGX sPLA(2) rises abruptly when the concentration of PAF passes through its critical micelle concentration suggesting that the enzyme undergoes interfacial binding and activation to PAF. In conclusion, our study shows that hGX sPLA(2) may be a novel player in PAF regulation during inflammatory processes.  相似文献   

18.
Platelet-activating factor (PAF) is one of the most potent lipid mediators involved in inflammatory events. The acetyl group at the sn-2 position of its glycerol backbone is essential for its biological activity. Deacetylation induces the formation of the inactive metabolite lyso-PAF. This deacetylation reaction is catalyzed by PAF-acetylhydrolase (PAF-AH), a calcium independent phospholipase A2 that also degrades a family of PAF-like oxidized phospholipids with short sn-2 residues. Biochemical and enzymological evaluations revealed that at least three types of PAF-AH exist in mammals, namely the intracellular types I and II and a plasma type. Many observations indicate that plasma PAF AH terminates signals by PAF and oxidized PAF-like lipids and thereby regulates inflammatory responses. In this review, we will focus on the potential of PAF-AH as a modulator of diseases of dysregulated inflammation.  相似文献   

19.
Platelet-activating factor (PAF), the potent phospholipid mediator of inflammation, is involved in atherosclerosis. Platelet-activating factor-acetylhydrolase (PAF-AH), the enzyme that inactivates PAF bioactivity, possesses both acetylhydrolase and transacetylase activities. In the present study, we measured acetylhydrolase and transacetylase activities in human atherogenic aorta and nonatherogenic mammary arteries. Immunohistochemistry analysis showed PAF-AH expression in the intima and the media of the aorta and in the media of mammary arteries. Acetylhydrolase and transacetylase activities were (mean +/- SE, n = 38): acetylhydrolase of aorta, 2.8 +/- 0.5 pmol/min/mg of tissue; transacetylase of aorta, 3.3 +/- 0.7 pmol/min/mg of tissue; acetylhydrolase of mammary artery, 1.4 +/- 0.3 pmol/min/mg of tissue (P < 0.004 as compared with acetylhydrolase of aorta); transacetylase of mammary artery, 0.8 +/- 0.2 pmol/min/mg of tissue (P < 0.03 as compared with acetylhydrolase of mammary artery). Lyso-PAF accumulation and an increase in PAF bioactivity were observed in the aorta of some patients. Reverse-phase HPLC and electrospray ionization mass spectrometry analysis revealed that 1-O-hexadecyl-2 acetyl-sn glycero-3-phosphocholine accounted for 60% of the PAF bioactivity and 1-O-hexadecyl-2-butanoyl-sn-glycerol-3-phosphocholine for 40% of the PAF bioactivity. The nonatherogenic properties of mammary arteries may in part be due to low PAF formation regulated by PAF-AH activity. In atherogenic aortas, an imbalance between PAF-AH and transacetylase activity, as well as lyso-PAF accumulation, may lead to unregulated PAF formation and to progression of atherosclerosis.  相似文献   

20.
Human macrophages secret platelet-activating factor acetylhydrolase   总被引:2,自引:0,他引:2  
When monocytes mature to macrophages, their ability to accumulate the pro-inflammatory lipid autacoid, platelet-activating factor (PAF), is markedly decreased (Elstad, M. R. Stafforini, D. M., McIntyre, T. M., Prescott, S. M., and Zimmerman, G. A. (1989) J. Biol. Chem. 264, 8467-8470) in conjunction with a 260-fold increase in the activity of intracellular PAF acetylhydrolase (PAF-AH). We now demonstrate that macrophages also secrete PAF-AH and that the secreted enzyme is biochemically and immunologically identical to the human plasma PAF-AH. It is sensitive to the same active-site-directed inhibitors, has the same electrophoretic mobility, is associated with lipoprotein particles, and transfers between low density lipoprotein and high density lipoprotein in a pH-dependent manner like the plasma PAF-AH. In addition, both activities hydrolyze oxidatively fragmented phospholipids and PAF. These data indicate that macrophages are a cellular source of the plasma PAF-AH. Thus, macrophages secrete an enzyme that inactivates lipid mediators at sites of inflammation and in plasma. These changes during the maturation of monocytes to macrophages may serve to limit the acute inflammatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号