首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Soybean seed coat peroxidase (SBP) was immobilized on various polyaniline-based polymers (PANI), activated with glutaraldehyde. The most reduced polymer (PANIG2) showed the highest immobilization capacity (8.2 mg SBP?g?1 PANIG2). The optimum pH for immobilization was 6.0 and the maximum retention was achieved after a 6-h reaction period. The efficiency of enzyme activity retention was 82%. When stored at 4°C, the immobilized enzyme retained 80% of its activity for 15 weeks as evidenced by tests performed at 2-week intervals. The immobilized SBP showed the same pH-activity profile as that of the free SBP for pyrogallol oxidation but the optimum temperature (55°C) was 10°C below that of the free enzyme. Kinetic analysis show that the Km was conserved while the specific Vmax dropped from 14.6 to 11.4 µmol min?1 µg?1, in agreement with the immobilization efficiency. Substrate specificity was practically the same for both enzymes. Immobilized SBP showed a greatly improved tolerance to different organic solvents; while free SBP lost around 90% of its activity at a 50% organic solvent concentration, immobilized SBP underwent only 30% inactivation at a concentration of 70% acetonitrile. Taking into account that immobilized HRP loses more than 40% of its activity at a 20% organic solvent concentration, immobilized SBP performed much better than its widely used counterpart HRP.  相似文献   

2.
Soybean seed coat peroxidase (SBP; EC 1.11.1.7) was immobilised on its natural support, soybean seed coats, anticipating its use in phenol removal. Periodate and glutaraldehyde chemistries were assayed. Periodate failed to immobilise any SBP, whereas glutaraldehyde was effective. The optimum concentration of glutaraldehyde was found to be 1%. Immobilisation shifted the optimum pH for phenol removal from 4.0 to 6.0. Treated seed coat retained its activity over a 4-week period, and reusability assays showed that treated seed coats could be reused once for phenol removal. Polyethylene glycol (PEG) increased the stability of phenol degradation activity. In addition, the phenolic polymer was adsorbed on to seed coats, thus making removal of the polymeric product easier.  相似文献   

3.
Soybean seed coat peroxidase (SBP; EC 1.11.1.7) was immobilised on its natural support, soybean seed coats, anticipating its use in phenol removal. Periodate and glutaraldehyde chemistries were assayed. Periodate failed to immobilise any SBP, whereas glutaraldehyde was effective. The optimum concentration of glutaraldehyde was found to be 1%. Immobilisation shifted the optimum pH for phenol removal from 4.0 to 6.0. Treated seed coat retained its activity over a 4-week period, and reusability assays showed that treated seed coats could be reused once for phenol removal. Polyethylene glycol (PEG) increased the stability of phenol degradation activity. In addition, the phenolic polymer was adsorbed on to seed coats, thus making removal of the polymeric product easier.  相似文献   

4.
Soybean seed coat peroxidase (SBP) is a valuable enzyme having a broad variety of applications in analytical chemistry, biochemistry, and food processing. In the present study, the sscp gene (Gene ID: 548068) was optimized based on the preferred codon usage of Escherichia coli, synthesized, and expressed in E. coli BL21(DE3). SDS-PAGE and western blot analysis of this expressed protein revealed that its molecular weight is approximately 39?kDa. The effects of induction temperature, concentration of isopropyl-β-D-thiogalactoside and hemin, induction time, expression time were optimized to enhance SBP production with a maximum activity of 11.23?U/mL (8.64?U/mg total protein). Furthermore, the kinetics of enzyme-catalyzed reactions of recombinant protein was determined. When 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) was used as substrate, optimum reaction temperature and pH of the enzyme were 85°C and 5.0, respectively. The effects of metal ions on the enzymatic reaction were also further investigated. The SBP was successfully expressed in E. coli BL21(DE3) which would provide a more efficient production strategy for industrial applications of SBP.  相似文献   

5.

Background and Aims

Hourglass cells (HGCs) are prominent cells in the soybean seed coat, and have potential use as ‘phytofactories’ to produce specific proteins of interest. Previous studies have shown that HGCs initiate differentiation at about 9 d post-anthesis (dpa), assuming their characteristic morphology by 18 dpa. This study aims to document the structural changes in HGCs during this critical period, and to relate these changes to the concurrent development of a specific soybean peroxidase (SBP) encoded by the Ep gene.

Methods

Pods were collected from plants at specific growth stages. Fresh material was processed for analysis of Ep peroxidase activity. Tissues were processed for scanning and transmission electron microscopy, as well as extracted for western blotting. A null variety lacking expression of Ep peroxidase was grown as a control.

Key Results and Conclusions

At 9 dpa, HGCs are typical undifferentiated plant cells, but from 12–18 dpa they undergo rapid changes in their internal and external structure. By 18 dpa, they have assumed the characteristic hourglass shape with thick cell walls, intercellular air spaces and large central vacuoles. By 45 dpa, all organelles in HGCs have been degraded. Additional observations indicate that plasmodesmata connect all cell types. SBP activity and SBP protein are detectable in the HGC before they are fully differentiated (approx. 18 dpa). In very early stages, SBP activity appears localized in a vacuole as previously predicted. These results increase our understanding of the structure and development of the HGC and will be valuable for future studies aimed at protein targeting to components of the HGC endomembrane systems.  相似文献   

6.
Reanalysis of the tryptic digests of soybean seed coat peroxidase (SBP) and its carboxyamidated peptide derivatives in the light of more complete sequence data has thrown light on the diglycosylated tryptic peptides, TP13 (Leu[183-205]Arg) and TP15 (Cys[208-231]Arg). Matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analyses indicate that although all potential sites carry some glycan substituents, not all sites are fully occupied. Tryptic glycopeptide TP13, carrying two N-glycosylation consensus sequons (Asn185 and Asn197), occurs mainly (85-90%) as the diglycosylated species, the remainder (10-15%) being monoglycosylated. In contrast, tryptic peptide TP15, also with two N-glycosylation sites (Asn211 and Asn216), is primarily monoglycosylated (approximately 90%), with the remainder (10%) being diglycosylated. No non-glycosylated TP13 or TP15 was observed. Some artifacts are noted in the reactions of N-terminal cysteine residues and aspartate/asparagines residues in glycopeptide TP15. Mapping the glycans onto the crystal structure of SBP shows that these are asymmetrically distributed on the molecule, occurring primarily on the substrate-channel face of the enzyme. In contrast, the glycans of HRP, isozyme c, are more uniformly distributed over the enzyme surface.  相似文献   

7.
Soybean seed coat peroxidase (SBP) is a peroxidase with extraordinary stability and catalytic properties. It belongs to the family of class III plant peroxidases that can oxidize a wide variety of organic and inorganic substrates using hydrogen peroxide. Because the plant enzyme is a heterogeneous glycoprotein, SBP was produced recombinant in Escherichia coli for the present crystallographic study. The three-dimensional structure of SBP shows a bound tris(hydroxymethyl)aminomethane molecule (TRIS). This TRIS molecule has hydrogen bonds to active site residues corresponding to the residues that interact with the small phenolic substrate ferulic acid in the horseradish peroxidase C (HRPC):ferulic acid complex. TRIS is positioned in what has been described as a secondary substrate-binding site in HRPC, and the structure of the SBP:TRIS complex indicates that this secondary substrate-binding site could be of functional importance. SBP has one of the most solvent accessible delta-meso haem edge (the site of electron transfer from reducing substrates to the enzymatic intermediates compound I and II) so far described for a plant peroxidase and structural alignment suggests that the volume of Ile74 is a factor that influences the solvent accessibility of this important site. A contact between haem C8 vinyl and the sulphur atom of Met37 is observed in the SBP structure. This interaction might affect the stability of the haem group by stabilisation/delocalisation of the porphyrin pi-cation of compound I.  相似文献   

8.
种子扩散是植物更新和扩大分布区的一种重要途径。鼠类采取不同的种子扩散和贮藏策略,以应对食物短缺,同时也促进了植物种子扩散。为应对鼠类对植物种子的过度取食,种子进化出了一系列物理、化学等防御特征。其中种壳厚度作为一种物理防御策略,是影响鼠类贮藏行为和种子命运的关键因素。本研究拟通过去除天然栓皮栎(Quercus variabilis)种子的外壳,再在种仁外包被1、2、4、6不同层数的聚乙烯薄膜,模拟种壳厚度,准确控制种壳厚度。2020年10月—2021年1月,在四川都江堰森林生境中释放人工种壳包被的种子,研究人工种壳厚度对鼠类介导的种子扩散和命运的影响。结果表明:(1)鼠类优先扩散种壳较薄(1层薄膜包被)的人工种子;随着种壳厚度的增加,扩散速率逐渐降低,种壳最厚(6层薄膜包被)的种子扩散最慢(P < 0.001);(2)鼠类喜好分散贮藏1层、2层薄膜包被的种子;当种壳厚度增加至包被4层、6层薄膜时,分散贮藏比例显著降低(P < 0.05);(3)鼠类偏好集中贮藏4层薄膜包被的种子(P < 0.05);(4)不同种壳厚度的种子扩散距离无显著差异(P > 0.05);(5)种壳较薄(1层薄膜包被)的种子分散贮藏率在3 m范围内比例较高。采用聚乙烯薄膜包被是模拟种子外壳的可行方法,并可用于评估种壳厚度对鼠类种子贮藏行为和种子命运的影响等相关研究。  相似文献   

9.
Mechanical damage is one of the causes of great loss in the quality of soybean seeds during harvest and processing. Considerable interest exists in the lignin since its deposition in the seed coat tissue provides mechanical resistance and protects the cell against microorganisms. In addition, peroxidases might be involved in the oxidation of cinnamyl alcohols prior to their polymerization during lignin formation. Thus, the aim of the present work was to analyze the lignin contents and peroxidases activities of six Brazilian soybean cultivars (Savana, Paranagoiana, FT-10, Santa Rosa, Doko and Paraná) and their relationships with the mechanical damage. Results showed that the lignin content and peroxidase activity in the seed coat significantly differed among the soybean cultivars. Cultivars Doko and Paraná had the highest contents of lignin and peroxidases activities while the other cultivars had lowest lignin contents and enzyme activities. Lignin content and peroxidase activity may be reasonable indicators of resistance to mechanical damage in soybean seeds.  相似文献   

10.
Thermal and conformational stability of seed coat soybean peroxidase   总被引:3,自引:0,他引:3  
Kamal JK  Behere DV 《Biochemistry》2002,41(29):9034-9042
Soybean peroxidase (SBP) obtained from the soybean seed coats belongs to class III of the plant peroxidase superfamily. Detailed circular dichroism and steady state fluorescence studies have been carried out to monitor thermal as well as denaturant-induced unfolding of SBP and apo-SBP. Melting of secondary and tertiary structures of SBP occurs with characteristic transition midpoints, T(m), of 86 and 83.5 degrees C, respectively, at neutral pH. Removal of heme resulted in greatly decreased thermal stability of the protein (T(m) = 38 degrees C). The deltaG degrees (H2O) determined from guanidine hydrochloride-induced denaturation at 25 degrees C and at neutral pH is 43.3 kJ mol(-1) for SBP and 9.0 kJ mol(-1) for apo-SBP. Comparison with the reported unfolding data of the homologous enzyme, horseradish peroxidase (HRP-C), showed that SBP exhibits significantly high thermal and conformational stability. We show that this enhanced structural stability of SBP relative to HRP-C arises due to the unique nature of their heme binding. A stronger heme-apoprotein affinity probably due to the interaction between Met37 and the C8 heme vinyl substituent contributes to the unusually high structural stability of SBP.  相似文献   

11.
The pigmented seed coats of several soybean (Glycine max (L.) Merr.) plant introductions and isolines have unusual defects that result in cracking of the mature seed coat exposing the endosperm and cotyledons. It has previously been shown that the T (tawny) locus that controls the color of trichomes on stems and leaves also has an effect on both the structure and pigmentation of the seed coat. Distribution of pigmentation on the seed coat is controlled by alleles of the I (inhibitor) locus. It was also found that total seed coat proteins were difficult to extract from pigmented seed coats with i T genotypes because they have procyanidins that exhibit tannin properties. We report that the inclusion of poly-L-proline in the extraction buffer out-competes proteins for binding to procyanidins. Once this problem was solved, we examined expression of the proline-rich cell wall proteins PRP1 and PRP2 in pigmented genotypes with the dominant T allele. We found that both homozygous i T and i t genotypes have reduced soluble PRP1 levels. The epistatic interaction of the double recessive genotype at both loci is necessary to produce the pigmented, defective seed coat phenotype characteristic of seed coats with the double recessive i and t alleles. This implies a novel effect of an enzyme in the flavonoid pathway on seed coat structure in addition to its effect on flavonoids, anthocyanidins, and proanthocyanidins. No soluble PRP1 polypeptides were detectable in pigmented seed coats (i T genotypes) of isolines that also display a net-like pattern of seed coat cracking, known as the Net defect. PRP2 was also absent in one of the these lines. However, both PRP1 and PRP2 cytoplasmic mRNAs were found in the Net-defective seed coats. Together with in vitro translation studies, these results suggest that the absence of soluble PRP polypeptides in the defective Net lines is post-translational and could be due to a more rapid or premature insolubilization of PRP polypeptides within the cell wall matrix.  相似文献   

12.
In this paper the effect of cutinase on the degradation of cotton seed coat is analyzed. Fourier transform infrared (FT-IR) microspectroscopy was applied to study the changes of chemical compositions in cotton seed coat epidermal layer and gas chromatography/mass spectrometry (GC/MS) was used to analyse cutinase depolymerization of cotton seed coat. Based on these arguments the ability of cutinase to degrade aliphatic components in cotton seed coat was verified. Positive effect of cutinase on degradation of cotton seed coat was observed with the combination of alkaline pectinase or xylanase. The removal of aliphatic components by cutinase enables other enzymes to penetrate into the inner of cotton seed coat. Cutinase can potentially improve the degradation of cotton seed coat during cotton fabric bio-scouring process.  相似文献   

13.
In red wheat, reddish-brown pigments accumulate in testa of mature seeds. Half-cut wheat seeds were immersed in p-dimethylaminocinnamaldehyde (DMACA) reagent that stains flavanol structures blue. Testa of 10–40 days after flowering (DAF) in red wheat (“Norin 61” and “Satonosora”) seeds were stained blue and the reagent color changed to blue with 10–25 DAF seeds. No blue staining was observed in white wheat (“Tamaizumi”) seeds during maturation. “Norin 61” seed coats at 10 DAF contained dihydroquercetin, dihydromyricetin, (+)-catechin, procyanidin B3, and prodelphinidin B3, which were identified by HPLC-diode array detector and LC-MS/MS analyses. These five components began accumulating 7 DAF, reached maxima at 10 or 15 DAF, and then decreased in red wheat seeds, but were not detected in white wheat seeds. These results suggest that flavanol and proanthocyanidins are possible precursors of the reddish-brown pigments of red wheat seeds, and are converted to insoluble compounds as the seeds mature.  相似文献   

14.
Zeng CL  Wang JB  Liu AH  Wu XM 《Annals of botany》2004,93(5):555-566
BACKGROUND AND AIMS: Seed coat morphology is known to be an excellent character for taxonomic and evolutionary studies, thus understanding its structure and development has been an important goal for biologists. This research aimed to identify the developmental differences of seed coats between amphidiploids and their putative parents in Brassica. METHODS: Scanning electron microscope (SEM) studies were carried out on six species (12 accessions), three amphidiploids and their three diploid parents. KEY RESULTS: Twelve types of basic ornamentation patterns were recognized during the whole developmental process of the seed coat. Six types of seed coat patterns appeared in three accessions of Brassica rapa, five types in B. oleracea, B. nigra and B. carinata, seven types in B. napus, and eight types in B. juncea. There was less difference among seed coat patterns of the three accessions of B. rapa. The reticulate and blister types were two of the most common patterns during the development of seeds in the six species, the blister-pimple and the pimple-foveate patterns were characteristic of B. rapa, and the ruminate of B. oleracea and B. nigra. The development of seed coat pattern in amphidiploids varied complicatedly. Some accessions showed intermediate patterns between the two putative parents, while others resembled only one of the two parents. CONCLUSIONS: The variation in the patterns of seed coat development could be used to provide a new and more effective way to analyse the close relationship among amphidiploids and their ancestral parents.  相似文献   

15.
Seed coat soybean peroxidase (SBP) belongs to class III of the plant peroxidase superfamily that includes the classical peroxidase, namely horseradish peroxidase (HRP). We have measured the catalytic activity (k(cat)) and catalytic efficiency (k(cat)/K(M)) of SBP and that of HRP-C for the oxidation of ABTS [2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonate)] by hydrogen peroxide at 25 degrees C. We observed that the k(cat) and k(cat)/K(M) values for SBP are much higher than those for HRP-C at all pH values, rendering SBP a more potent peroxidase. This is attributed to the relatively more solvent exposed delta-meso heme edge in SBP. We observed that the maximum catalytic activity and conformational stability of SBP is at pH approximately 5.5. A pH maximum of 5.0 for the catalytic activity of SBP has recently been reported. Estimation of secondary structural elements at various pH values indicated that there is a maximal reduction of beta-strands and beta-turns at pH 5.5 causing the heme to be further exposed to the solvent and increasing the overall conformational flexibility of the protein.  相似文献   

16.
国产藜科14种植物种皮微形态特征比较研究   总被引:1,自引:0,他引:1  
应用扫描电子显微镜和光学显微镜观察了中国产藜科(Chenopodiaceae)5族10属14种植物的种子形态和种皮微形态结构。观察结果表明:供试的14种藜科植物的种子多为卵形和圆形,少数为双凸镜形;种皮表面都具有网状纹饰,包括浅网纹、负网纹和穴状网纹。种皮可分为膜质和壳质2类,其中,膜质型种皮表面不光滑,除网状纹饰外,还有瘤状或褶皱状等纹饰,网眼无规则,纹饰排列无序,猪毛菜族(Salsoleae C.A.Mey.)的松叶猪毛菜(Salsola laricifolia Turcz.ex Litv.)及樟味藜族(Camphorosmeae Moq.)的地肤〔Kochia scoparia(L.)Schrad.〕、全翅地肤(K.krylovii Litv.)、黑翅地肤(K.melanoptera Bunge)、雾冰藜〔Bassia dasyphylla(Fisch.et Mey.)O.Kuntze〕、钩刺雾冰藜〔B.hyssopifolia(Pall.)O.Kuntze〕、樟味藜(Camphorosma monspeliaca L.)、兜藜(Panderia turkestanica Iljin.)和棉藜(Kirilowia eriantha Bunge)均属此类;壳质型种皮表面近光滑,网眼规则,排列整齐有序,少数为不规则浅穴,网脊平而不明显或凹陷,滨藜族(Atripliceae C.A.Mey.)的滨藜〔Atriplex patens(Litv.)Iljin.〕、碱蓬族(Suaedeae Reich.)的角果碱蓬〔Suaeda corniculata(C.A.Mey.)Bunge〕、纵翅碱蓬〔S.pterantha(Kar.et Kir.)Bunge〕和异子蓬(Borszczowia aralocaspica Bunge)以及藜族(Chenopodieae C.A.Mey.)的刺藜(Chenopodium aristatum L.)均属此类。各族之间种皮微形态结构也有一定的区别。根据种皮微形态,地肤属(Kochia Roth)与雾冰藜属(Bassia All.)的关系较近,属的界限和部分种类的亲缘关系需要进一步界定。藜科植物种皮表面大部分凹凸不平,这种结构可能与荒漠干旱生境下吸收和保留水分有关。  相似文献   

17.
鸢尾属部分种种子微形态特征与系统演化关系   总被引:3,自引:0,他引:3  
王玲  卓丽环 《植物研究》2006,26(3):286-290
用HITACHI S-520型扫描电子显微镜对鸢尾属植物10个种及1变种、1外类群的种子微形态进行观察、比较分析,探讨了鸢尾属植物部分种种子微形态特征分类学意义及系统演化关系。结果表明:鸢尾属植物种子表面微形态特征具有种的稳定性,与分布区无关;同一种的种子凹、凸面微形态差异很大,同一类群比较时应选择相同部位观察。所研究的鸢尾种都为网状(网纹或负网纹)文饰,种间差异明显,微形态特征可用于鸢尾属间、属下系的等级划分,但不适于种下等级鉴别。研究给出了鸢尾属植物种子表面纹饰的系统进化关系,证明了种子表面微形态对鸢尾属植物分类及系统演化关系具有重要意义。  相似文献   

18.
19.
Summary The R gene of soybean is involved in anthocyanin synthesis in the seed coat, and its r-m allele conditions a variegated distribution of black spots and/or concentric rings of pigment superimposed on an otherwise brown seed coat. We describe an unusual feature of r-m that causes expression at the R locus to switch between active and inactive phases both somatically and germinally. Non-heritable somatic changes of the allele produce single plants containing mixtures of seed with different coat colors (black+striped or brown+striped). Heritable changes of the r-m allele are manifested in progeny plants which produce all black seed or all brown seed. Surprisingly, subsequent generations from revertant sublines show continued instability of the allele such that brown revertants (r*/r*) or homozygous black seed revertants (R*/R*) can give rise to striped or striped+black-seeded plants. Thus, the revertants produced by the r-m allele are not stable but interconvert between all three forms (R*, r*, and r-m) at detectable frequencies. Mutability of the r-m allele in a different genetic background has also been found after inter-crossing various soybean genotypes.  相似文献   

20.
Lithium aluminum deuteride reduction released aliphatic monomers from the inner seed coat fraction but not from the outer seed coat fraction of mature apples. These monomers were identified by GC/MS and the results indicate that the inner coat of apple seed contains a cutin polymer with the major monomer acids being 18-hydroxyoctadec-9-enoic (31%), 9,10-epoxy-18-hydroxyoctadecanoic (28%) and 9,10,18-trihydroxyoctadecanoic (20 %). The monomer composition of this seed coat cuticular polymer was very similar in seeds taken from freshly harvested fruit and in those taken from fruit which had been stored at 4° for 6 months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号