首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
17β-estradiol induces the synthesis of massive amounts of the hepatic mRNA encoding the Xenopus laevis egg yolk precursor protein, vitellogenin. Vitellogenin mRNA exhibits a half life of approx. 500 h when 17β-estradiol is present, and 16 h after removal of 17β-estradiol from the culture medium. We recently reported that Xenopus liver contains a protein, which is induced by 17β-estradiol and binds with a high degree of specificity to a binding site in a segment of the 3′-untranslated region (3′-UTR) of vitellogenin mRNA implicated in 17β-estradiol stabilization of vitellogenin mRNA. To determine if this mRNA binding protein was specific to this system, or if it was present elsewhere, and regulated by other steroids, we examined the tissue distribution and androgen regulation of this protein. Substantial amounts of the vitellogenin 3′-UTR binding protein were found in several Xenopus tissues including testis, ovary and muscle. In the absence of hormone treatment, lung and intestine contained minimal levels of the mRNA binding protein. Testosterone administration induced the vitellogenin 3′-UTR RNA binding protein in several tissues. Additionally, we found a homologous mRNA binding protein in MCF-7, human breast cancer cells. Although the MCF-7 cell protein was not induced by 17β-estradiol, the MCF-7 cell mRNA binding protein appears to be closely related to the Xenopus protein since: (i) the human and Xenopus proteins elicit gel shifted bands with the same electrophoretic mobility using the vitellogenin mRNA 3′-UTR binding site; (ii) The human and Xenopus proteins exhibit similar binding specificity for the vitellogenin 3′-UTR RNA binding site; and (iii) RNA from MCF-7 cells is at least as effective as RNA from control male Xenopus liver in blocking the binding of the Xenopus and human proteins to the vitellogenin mRNA 3′-UTR binding site. Its broad tissue distribution and regulation by both 17β-estradiol and testosterone suggests that this mRNA binding protein may play a significant role in steroid hormone regulation of mRNA metabolism in many vertebrate cells.  相似文献   

4.
5.
6.
The Notch signaling pathway plays an important role in many cell-fate decisions during development. Here we investigate the regulation and function of the conserved gene XNAP, which is a member of the Delta-Notch synexpression group in Xenopus. XNAP encodes a small protein with two C-terminal tandem ankyrin repeats which is expressed in the neurectoderm and in the presomitic mesoderm in a pattern that resembles that of other component of the Notch pathway. When a myc-tag form of XNAP is overexpressed in Xenopus or Hela cells, XNAP protein is detected both in the nucleus and the cytoplasm. In embryos and in animal cap assays, XNAP expression is activated, perhaps directly, by the Notch pathway and this activation appears to be Su(H) dependent. Overexpression of XNAP in embryos decreases Notch signaling, which leads to an increase in the number of primary neurons that form within the domains of the neural plate where neurogenesis normally occurs. In culture Hela cells, XNAP overexpression interferes with ICD activation of a Notch regulated reporter gene. Together, these data indicate that XNAP is a novel target of the Notch pathway that may, in a feedback loop, modulate its activity.  相似文献   

7.
The iroquois (iro) genes encode evolutionary conserved homeoproteins that participate in many developmental processes [reviewed in Development 128 (2001) 2847]. In Xenopus, the Iro protein Xiro1 is a repressor, required during gastrulation for neural plate formation, that downregulates Bmp4. During neurulation, Xiro1 participates in the pattering of the neuroectoderm. In this work, we report the cloning and pattern of expression of XCoREST, another gene repressed by Xiro1. During Xenopus development, XCoREST is expressed in territories in which neurogenesis takes place.  相似文献   

8.
Mechanosensory hair cells are essential for audition in vertebrates, and in many species, have the capacity for regeneration when damaged. Regeneration is robust in the fish lateral line system as new hair cells can reappear after damage induced by waterborne aminoglycoside antibiotics, platinum-based drugs, and heavy metals. Here, we characterize the loss and reappearance of lateral line hair cells induced in zebrafish larvae treated with copper sulfate using diverse molecular markers. Transgenic fish that express green fluorescent protein in different cell types in the lateral line system have allowed us to follow the regeneration of hair cells after different damage protocols. We show that conditions that damage only differentiated hair cells lead to reappearance of new hair cells within 24 h from nondividing precursors, whereas harsher conditions are followed by a longer recovery period that is accompanied by extensive cell division. In order to characterize the cell population that gives rise to new hair cells, we describe the expression of a neural stem cell marker in neuromasts. The zebrafish sox2 gene is strongly expressed in neuromast progenitor cells, including those of the migrating lateral line primordium, the accessory cells that underlie the hair cells in neuromasts, and in interneuromastic cells that give rise to new neuromasts. Moreover, we find that most of the cells that proliferate within the neuromast during regeneration express this marker. Thus, our results describe the dynamics of hair cell regeneration in zebrafish and suggest the existence of at least two mechanisms for recovery of these cells in neuromasts.  相似文献   

9.
目的:利用CRISPR/Cas9技术对K562细胞系JAK2基因进行编辑,构建JAK2基因敲除的K562细胞系。方法:使用CRISPR在线设计工具,针对JAK2基因设计sgRNA,构建Cas9-sgRNA共表达质粒。使用第二代慢病毒包装系统包装慢病毒并感染K562细胞,提取细胞基因组DNA,Sanger测序和TA克隆检测基因编辑活性。无限稀释法将编辑阳性的细胞接种于96孔板并扩培得到单克隆细胞株,提取基因组DNA,Sanger测序和TA克隆分析敲除JAK2单克隆细胞的基因型。结果:成功构建靶向敲除JAK2基因的lentiCRISPRv2-sgRNA3-1质粒。优化方案得到低细胞毒性高转染效率的感染K562细胞慢病毒量。CRISPR/Cas9系统成功在JAK2基因sgRNA3-1识别位点发挥基因组编辑活性,获得纯合敲除JAK2基因细胞株K562-JAK2~(-/-)(两个等位分别发生移码突变,预期编码没有功能的JAK2蛋白)。结论:CRIAPR/Cas9系统通过慢病毒感染方式获得JAK2基因纯合敲除的K562细胞株,该细胞模型可用于研究在慢性髓系白血病中JAK2基因的作用,为构建K562敲除其他基因细胞系提供实验依据,为探究造血分化机制的研究奠定实验基础。  相似文献   

10.
Quarto N 《Gene》2002,290(1-2):53-61
Latent transforming growth factor β binding protein-1 (LTBP-1) is important in regulating the localization and activation of transforming growth factor β. In this paper is reported the isolation of the full-length Xenopus LTBP-1 cDNA from screening a neurula embryo cDNA library. Sequence analysis of XLTBP-1 cDNA revealed an open reading frame of 4518 bp encoding a 1398 amino acid protein with a molecular mass of 154.1 kDa and an isoelectric point of 4.65. The Xenopus XLTBP-1 shares 61 and 65% amino acid identity with the mouse and human LTBP-1, respectively. It contains 17 epidermal growth factor-like motifs and four eight-cysteine repeats (8-Cys). RNase protection assay revealed that XLTBP-1 is a maternal and zygotic gene, while whole-mount in situ hybridization analysis performed on embryos at different stages showed that during early Xenopus development, XLTBP-1 mRNA is expressed in the Spemann organizer, prechordal and chordal mesoderm, and later on in the organizer derived tissues. These findings suggest an important role for XLTBP-1 in embryo axis formation.  相似文献   

11.
weaver mice have a severe hypoplasia of the cerebellum with an almost complete loss of the midline granule cells. Recent genetic studies of weaver mice have identified a mutation resulting in an amino acid substitution (G156S) in the pore of the inwardly rectifying potassium channel subunit Kir 3.2. When expressed in Xenopus oocytes the weaver mutation alters channel selectivity from a potassium-selective to a nonspecific cation-selective pore. In this study we confirm by cell-attached patch-clamp recording that the mutation produces a non-selective cation channel. We also demonstrate that the cell death induced by weaver expression may be prevented by elimination of calcium from the extracellular solution as well as by coexpression with the wild-type Kir 3.2 allele, or other members of the Kir 3.0 subfamily. These results suggest that the weaver defect in Kir 3.2 may cause cerebellar cell death by cell swelling and calcium overload. Cells which express the weaver subunit, but which normally survive, may do so because of heteromeric subunit assembly with wild-type subunits of the Kir 3.0 subfamily.  相似文献   

12.
Axin is encoded by the fused locus in mice and is required for normal vertebrate axis formation. It has recently been shown that axin associates with the adenomatous polyposis coli gene product (APC), β-catenin and glycogen synthase kinase-3 (GSK-3) in a complex that appears to regulate the level of cytoplasmic β-catenin. We have identified the Xenopus homologue of axin through its interaction with GSK-3β. Xenopus axin (Xaxin) is expressed maternally and throughout early development with a low level of ubiquitous expression. Xaxin also shows remarkably high expression in the anterior mesencephalon adjacent to the forebrain–midbrain boundary.  相似文献   

13.
Monoclonal antibodies are useful probes for analyzing cells at the molecular level at various developmental stages. Although identification of the genes encoding tissue- and stage-specific antigens could be informative for further molecular analysis, gene cloning is usually a time-consuming step, particularly when a monoclonal antibody is the only probe available. We describe here an immunocytochemical method for preliminary and immediate analysis of the regulation of antigen-coding genes. mRNAs purified from stage 27 and 38 Xenopus tadpoles were fractionated by size and injected into newt oocytes, from which frozen sections were prepared for immunostaining with tissue-specific monoclonal antibodies. Both of the antigens we tested, which are early markers for differentiating epidermal cells of Xenopus tadpoles, were detected in mRNA injected oocytes, but not in control oocytes. Immunostaining for each of the antigens showed that their relative levels in stage 27 and 38 tadpole tissue were reflected in those oocytes injected with mRNA purified from tadpoles of the respective stages. We suggest that this oocyte translation system combined with immuaostaining provides for rapid analysis of changes in levels of antigen coding mRNAs throughout development.  相似文献   

14.
Recent findings show an unexpected conservation of genes involved in vertebrate and insect eye development. The Drosophila homeobox gene sine oculis is crucial for eye development. Its murine homologue, Six3 is expressed in the anterior neural plate, a region which is involved in lens induction in Xenopus. To examine whether Six3 participates in the process of eye formation, mouse Six3 was ectopically expressed in fish embryos. The results show that Six3 is sufficient to promote ectopic lens formation in the area of the otic vesicle and that retinal tissue is not a prerequisite for ectopic lens differentiation. Our findings suggest a conserved function for Six3 in metazoan eye development.  相似文献   

15.
The directional migration of many cell populations occurs as a coherent group. An amenable model is provided by the posterior lateral line in zebrafish, which is formed by a cohesive primordium that migrates from head to tail and deposits future neuromasts at intervals. We found that prior to the onset of migration, the compact state of the primordium is not fully established, as isolated cells with lateral line identity are present caudal to the main primordium. These isolated cells are retained in position such that they fuse with the migrating primordium as it advances, and later contribute to the leading zone and terminal neuromasts. We found that the isolated lateral line cells are positioned by two antagonistic cues: Fgf signalling attracts them towards the primordium, which counteracts Sdf1α/Cxcr4b-mediated caudal attraction. These findings reveal a novel chemotactic role for Fgf signalling in which it enables the coalescence of the lateral line primordium from an initial fuzzy pattern into a compact group of migrating cells.  相似文献   

16.
T-box genes are conserved in all animal species. We have identified two members of the T-box gene family from the zebrafish, Danio rerio. Zf-tbr1 and zf-tbx3 share high amino acid identity with human, murine, chick and Xenopus orthologs and are expressed in specific regions during zebrafish development.  相似文献   

17.
18.
Recent advances in analyzing wnt signaling have provided evidence that frizzled proteins can function as wnt receptors. We have identified Xfz3, a Xenopus frizzled family member. The amino acid sequence is 89% identical to the product of the murine gene Mfz3, and is predicted to be a serpentine receptor with seven transmembrane domains. Xfz3 is a maternal mRNA with low levels of expression until the end of gastrulation. The expression level increases significantly from neurulation onward. Whole-mount in situ hybridization analysis shows that expression of Xfz3 is highly restricted to the central nervous system. High levels of expression are detected in the anterior neural folds. Low levels of expression are also detected in the optic and otic vesicles, as well as in the pronephros anlage. In addition, Xfz3 mRNA is concentrated in a large band in the midbrain. Overexpression of Xfz3 blocks neural tube closure, resulting in embryos with either bent and strongly reduced anteroposterior axis in a dose-dependent manner. However, it does not affect gastrulation, the expression and localization of organizer-specific genes such as goosecoid, chordin and noggin. Therefore, Xfz3 is not involved in early mesodermal patterning. Injection of RNA encoding GFP-tagged Xfz3 shows that overexpressed proteins can be detected on the cell surface until at least late neurula stage, suggesting that they can exert an effect after gastrulation. Our expression data and functional analyses suggest that the Xfz3 gene product has an antagonizing activity in the morphogenesis during Xenopus development.  相似文献   

19.
The zebrafish sensory lateral line system has emerged as a powerful model for the mechanistic study of collective cell migration and morphogenesis. Recent work has uncovered the details of a signaling network involving the Wnt/β-catenin, Fgf and Delta-Notch pathways that patterns the migrating lateral line primordium into distinct regions. Cells within these regions exhibit different fundamental behaviors that together orchestrate normal lateral line morphogenesis. In this review, we summarize the signaling network that patterns the migrating lateral line primordium and describe how this patterning coordinates crucial morphogenic cell behaviors.  相似文献   

20.
Xenopus laevis shows a sexual dimorphism of the electrophoretic pattern of Harderian gland (HG) proteins. The male pattern displays three protein fractions whose molecular sizes are approx. 205, 180 and 78 kDa, respectively, and which are absent in the female pattern. Conversely, the female pattern displays two protein fractions of approx. 190 and 76 kDa, respectively. This sexual dimorphism led us to hypothesize a sex steroid control of the HG. Administration of 17β-oestradiol to male Xenopus converts the male protein pattern into the female one, while the administration of testosterone to the female has no effect. In this respect neither Northern analysis nor the RNase-protection assay performed using a 213 bp encoding for the androgen-binding domain reveals the presence of an androgen receptor mRNA in Xenopus HG. Conversely, Northern analysis has shown an oestrogen receptor mRNA whose size is approx. 6.5 kb and the RNase-protection assay performed by using a 197 bp encoding for the oestrogen-binding domain has also displayed the presence of an oestrogen receptor mRNA in the female HG but not in the male one. In addition, the oestrogen administration to male Xenopus induces the appearance of an oestrogen receptor mRNA. Androgen administration to female toad is ineffective. Taken together, all these findings suggest that in Xenopus laevis oestrogens are involved into the HG physiology. The appearance of an oestrogen receptor mRNA in the oestradiol treated males supports the hypothesis of the occurrence of autoinduction of oestrogen receptor mRNA expression in the HG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号