首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brain morphogenesis depends on the maintenance of boundaries between populations of non-intermingling cells. We used molecular markers to characterize a boundary within the optic lobe of the Drosophila brain and found that Slit and the Robo family of receptors, well-known regulators of axon guidance and neuronal migration, inhibit the mixing of adjacent cell populations in the developing optic lobe. Our data suggest that Slit is needed in the lamina to prevent inappropriate invasion of Robo-expressing neurons from the lobula cortex. We show that Slit protein surrounds lamina glia, while the distal cell neurons in the lobula cortex express all three Drosophila Robos. We examine the function of these proteins in the visual system by isolating a novel allele of slit that preferentially disrupts visual system expression of Slit and by creating transgenic RNA interference flies to inhibit the function of each Drosophila Robo in a tissue-specific fashion. We find that loss of Slit or simultaneous knockdown of Robo, Robo2 and Robo3 causes distal cell neurons to invade the lamina, resulting in cell mixing across the lamina/lobula cortex boundary. This boundary disruption appears to lead to alterations in patterns of axon navigation in the visual system. We propose that Slit and Robo-family proteins act to maintain the distinct cellular composition of the lamina and the lobula cortex.  相似文献   

2.
Qian L  Liu J  Bodmer R 《Current biology : CB》2005,15(24):2271-2278
Basic aspects of heart morphogenesis involving migration, cell polarization, tissue alignment, and lumen formation may be conserved between Drosophila and humans, but little is known about the mechanisms that orchestrate the assembly of the heart tube in either organism. The extracellular-matrix molecule Slit and its Robo-family receptors are conserved regulators of axonal guidance. Here, we report a novel role of the Drosophila slit, robo, and robo2 genes in heart morphogenesis. Slit and Robo proteins specifically accumulate at the dorsal midline between the bilateral myocardial progenitors forming a linear tube. Manipulation of Slit localization or its overexpression causes disruption in heart tube alignment and assembly, and slit-deficient hearts show disruptions in cell-polarity marker localization within the myocardium. Similar phenotypes are observed when Robo and Robo2 are manipulated. Rescue experiments suggest that Slit is secreted from the myocardial progenitors and that Robo and Robo2 act in myocardial and pericardial cells, respectively. Genetic interactions suggest a cardiac morphogenesis network involving Slit/Robo, cell-polarity proteins, and other membrane-associated proteins. We conclude that Slit and Robo proteins contribute significantly to Drosophila heart morphogenesis by guiding heart cell alignment and adhesion and/or by inhibiting cell mixing between the bilateral compartments of heart cell progenitors and ensuring proper polarity of the myocardial epithelium.  相似文献   

3.
4.
Space-filling neurons extensively sample their receptive fields with fine dendritic branches. In this study we show that a member of the conserved Robo receptor family, Robo, and its ligand Slit regulate the dendritic differentiation of space-filling neurons. Loss of Robo or Slit function leads to faster elongating and less branched dendrites of the complex and space-filling class IV multi-dendritic dendrite-arborization (md-da) neurons in the Drosophila embryonic peripheral nervous system, but not of the simpler class I neurons. The total dendrite length of Class IV neurons is not modified in robo or slit mutant embryos. Robo mediates this process cell-autonomously. Upon Robo over-expression in md-da neurons the dendritic tree is simplified and time-lapse analysis during larval stages indicates that this is due to reduction in the number of newly formed branches. We propose that Slit, through Robo, provides an extrinsic signal to coordinate the growth rate and the branching level of space-filling neurons, thus allowing them to appropriately cover their target field.  相似文献   

5.
Cell interactions involving Notch signaling are required for the demarcation of tissue boundaries in both invertebrate and vertebrate development. Members of the Fringe gene family encode beta-1,3 N-acetyl-glucosaminyltransferases that function to refine the spatial localization of Notch-receptor signaling to tissue boundaries. In this paper we describe the isolation and characterization of the zebrafish (Danio rerio) homologue of the lunatic fringe gene (lfng). Zebrafish lfng is generally expressed in equivalent structures to those reported for the homologous chick and mouse genes. These sites include expression along the A-P axis of the neural tube, within the lateral plate mesoderm, in the presomitic mesoderm and the somites and in specific rhombomeres of the hindbrain; however, within these general expression domains species-specific differences in lfng expression exist. In mouse, Lfng is expressed in odd-numbered rhombomeres, whereas in zebrafish, expression occurs in even-numbered rhombomeres. In contrast to reports in both mouse and chicken embryos showing a kinematic cyclical expression of Lfng mRNA in the presomitic paraxial mesoderm, we find no evidence for a cyclic pattern of expression for the zebrafish lfng gene; instead, the zebrafish lfng is expressed in two static stripes within the presomitic mesoderm. Nevertheless, in zebrafish mutants affecting the correct formation of segment boundaries in the hindbrain and somites, lfng expression is aberrant or lost.  相似文献   

6.
Rajagopalan S  Vivancos V  Nicolas E  Dickson BJ 《Cell》2000,103(7):1033-1045
On each side of the midline of the Drosophila CNS, axons are organized into a series of parallel pathways. Here we show that the midline repellent Slit, previously identified as a short-range signal that regulates midline crossing, also functions at long range to pattern these longitudinal pathways. In this long-range function, Slit signals through the receptors Robo2 and Robo3. Axons expressing neither, one, or both of these receptors project in one of three discrete lateral zones, each successively further from the midline. Loss of robo2 or robo3 function repositions axons closer to the midline, while gain of robo2 or robo3 function shifts axons further from the midline. Local cues further refine the lateral position. Together, these long- and short-range guidance cues allow growth cones to select with precision a specific longitudinal pathway.  相似文献   

7.
The Slit glycoproteins and their Roundabout (Robo) receptors regulate migration and growth of many types of cells including human cancer cells. However, little is known about the expression and roles of Slit/Robo in human ovarian cancer. Herein, we examined the expression of Slit/Robo in human normal and malignant ovarian tissues and its potential participation in regulating migration and proliferation of human ovarian cancer cells using two ovarian cancer cell lines, OVCAR-3 and SKOV-3. We demonstrated that Slit2/3 and Robo1 were immunolocalized primarily in stromal cells in human normal ovaries and in cancer cells in many histotypes of ovarian cancer tissues. Protein expression of Slit2/3 and Robo1/4 was also identified in OVCAR-3 and SKOV-3 cells. However, recombinant human Slit2 did not significantly affect SKOV-3 cell migration, and OVCAR-3 and SKOV-3 cell proliferation. Slit2 also did not induce ERK1/2 and AKT1 phosphorylation in OVCAR-3 and SKOV-3 cells. The current findings indicate that three major members (Slit2/3 and Robo1) of Slit/Robo family are widely expressed in the human normal and malignant ovarian tissues and in OVCAR-3 and SKOV-3 cells. However, Slit/Robo signaling may not play an important role in regulating human ovarian cancer cell proliferation and migration.  相似文献   

8.
Gonadotropin-releasing hormone (GnRH) neurons are born in the nasal placode and migrate along olfactory and vomeronasal axons to reach the forebrain and settle in the hypothalamus, where they control reproduction. The molecular cues that guide their migration have not been fully identified, but are thought to control either cell movement directly or the patterning of their axonal substrates. Using genetically altered mouse models we show that the migration of GnRH neurons is directly modulated by Slit2 and Robo3, members of the axon guidance Slit ligand and Robo receptor families. Mice lacking Slit2 or Robo3 have a reduced number of GnRH neurons in the forebrain, but a normal complement of their supporting axons, pointing to a direct role for these molecules in GnRH neuron migration.  相似文献   

9.
The bipotential Ganglion Mother Cells, or GMCs, in the Drosophila CNS asymmetrically divide to generate two distinct post-mitotic neurons. Here, we show that the midline repellent Slit (Sli), via its receptor Roundabout (Robo), promotes the terminal asymmetric division of GMCs. In GMC-1 of the RP2/sib lineage, Slit promotes asymmetric division by down regulating two POU proteins, Nubbin and Mitimere. The down regulation of these proteins allows the asymmetric localization of Inscuteable, leading to the asymmetric division of GMC-1. Consistent with this, over-expression of these POU genes in a late GMC-1 causes mis-localization of Insc and symmetric division of GMC-1 to generate two RP2s. Similarly, increasing the dosage of the two POU genes in sli mutant background enhances the penetrance of the RP2 lineage defects whereas reducing the dosage of the two genes reduces the penetrance of the phenotype. These results tie a cell-non-autonomous signaling pathway to the asymmetric division of precursor cells during neurogenesis.  相似文献   

10.
Slit/Robo signals were initially found to play an essential role in nerve development as axonal guidance molecules. In recent years, with in-depth study, the role of Slit/Robo in other life activities, such as tumor development, angiogenesis, cell migration, and bone homeostasis, has gradually been revealed. Bone is an organ with an active metabolism. Bone resorption and bone formation are closely related through precise spatiotemporal coordination. There is much evidence that slit, as a new bone coupling factor, can regulate bone formation and resorption. For example, Slit3 can promote bone formation and inhibit bone resorption through Robo receptors, which has excellent therapeutic potential in metabolic bone diseases. Although the conclusions of some studies are contradictory, they all affirm the vital role of Slit/Robo signaling in regulating bone metabolism. This paper reviews the research progress of Slit/Robo signaling in bone metabolism, briefly discusses the contradictions in the existing research, and puts forward the research direction of Slit/Robo in the field of bone metabolism in the future.  相似文献   

11.
Coevolution is important for the maintenance of the interaction between a ligand and its receptor during evolution. The interaction between axon guidance molecule Slit and its receptor Robo is critical for the axon repulsion in neural tissues, which is evolutionarily conserved from planarians to humans. However, the mechanism of coevolution between Slit and Robo remains unclear. In this study, we found that coordinated amino acid changes took place at interacting sites of Slit and Robo by comparing the amino acids at these sites among different organisms. In addition, the high level correlation between evolutionary rate of Slit and Robo was identified in vertebrates. Furthermore, the sites under positive selection of slit and robo were detected in the same lineage such as mosquito and teleost. Overall, our results provide evidence for the coevolution between Slit and Robo.  相似文献   

12.
Glial cells are pivotal players during the development and function of complex nervous systems. In Drosophila, recent genetic analyses have revealed several genes that control differentiation and function of CNS glial cells and their interactions with neurons can be studied in detail at the CNS midline, where it is essential for the correct establishment of the commissural axon pattern.  相似文献   

13.
韩哲  杨雪松  耿建国  王丽京 《生命科学》2010,(10):1020-1024
分泌型糖蛋白Slit及其受体Roundabout(Robo)最初是作为一类重要的发育中神经元轴突导向分子而被发现的。目前为止对Slit/Robo信号对神经系统发育过程中轴突吸引或排斥的导向功能研究比较多,而对在发育中生长方式与其非常相似的血管发生过程中研究比较少。现有研究提示两者在发育过程中可能存在共同的信号调控机制,是Slit/Robo信号通路在血管新生中充当着重要的角色。该文就Slit/Robo信号对血管内皮细胞迁移的调节、对血管新生的作用及其可能介导的信号通路进行综述,以期进一步推动Slit/Robo信号通路在血管发生中的研究。  相似文献   

14.
In Drosophila, Slit at the midline activates Robo receptors on commissural axons, thereby repelling them out of the midline into distinct longitudinal tracts on the contralateral side of the central nervous system. In the vertebrate spinal cord, Robo1 and Robo2 are expressed by commissural neurons, whereas all three Slit homologs are expressed at the ventral midline. Previous analysis of Slit1;Slit2 double mutant spinal cords failed to reveal a defect in commissural axon guidance. We report here that when all six Slit alleles are removed, many commissural axons fail to leave the midline, while others recross it. In addition, Robo1 and Robo2 single mutants show guidance defects that reveal a role for these two receptors in guiding commissural axons to different positions within the ventral and lateral funiculi. These results demonstrate a key role for Slit/Robo signaling in midline commissural axon guidance in vertebrates.  相似文献   

15.
The bone marrow (BM) niche is essential for lifelong hematopoietic stem cell (HSC) maintenance, proliferation and differentiation. Several BM cell types, including osteoblast lineage cells (OBC), mesenchymal stem cells (MSC) and endothelial cells (EC) have been implicated in supporting HSC location and function, but the relative importance of these cell types and their secreted ligands remain controversial. We recently found that the cell surface receptors Robo4 and CXCR4 cooperate to localize HSC to BM niches. We hypothesized that Slit2, a putative ligand for Robo4, cooperates with the CXCR4 ligand SDF1 to direct HSC to specific BM niche sites. Here, we have isolated OBC, MSC and EC by flow cytometry and determined their frequency within the bone marrow and the relative mRNA levels of Slit2, SDF1 and Robo4. We found that expression of Slit2 and SDF1 were dynamically regulated in MSC and OBC-like populations following radiation, while Robo4 expression was restricted to EC. Radiation also significantly affected the cellularity and frequency of both the non-adherent and adherent cells within the BM stroma. These data support a physiological role for Slit2 in regulating the dynamic function of Robo-expressing cells within BM niches at steady state and following radiation.  相似文献   

16.
17.
Longitudinal axons transmit all signals between the brain and spinal cord. Their axon tracts through the brain stem are established by a simple set of pioneer axons with precise trajectories parallel to the floor plate. To identify longitudinal guidance mechanisms in vivo, the overall role of floor plate tissue and the specific roles of Slit/Robo signals were tested. Ectopic induction or genetic deletion of the floor plate diverted longitudinal axons into abnormal trajectories. The expression patterns of the diffusible cues of the Slit family were altered in the floor plate experiments, suggesting their involvement in longitudinal guidance. Genetic tests of Slit1 and Slit2, and the Slit receptors Robo1 and Robo2 were carried out in mutant mice. Slit1;Slit2 double mutants had severe longitudinal errors, particularly for ventral axons, including midline crossing and wandering longitudinal trajectories. Robo1 and Robo2 were largely genetically redundant, and neither appeared to specify specific tract positions. However, combined Robo1 and Robo2 mutations strongly disrupted each pioneer tract. Thus, pioneer axons depend on long-range floor plate cues, with Slit/Robo signaling required for precise longitudinal trajectories.  相似文献   

18.
This review focuses on the effect of gonadal steroid hormones, androgen and estrogen, on dendrites in the adult rat central nervous system (CNS). Four hormone-responsive nuclei are considered: The spinal nucleus of the bulbocavernosus (SNB), the medial nucleus of the amygdala (MeA), the ventromedial nucleus of the hypothalamus (VMN), and the CA1 region of the dorsal hippocampus. Particular emphasis is placed on the mode of hormone action in each nucleus. In the SNB, VMN, and hippocampus, hormones appear to mediate their effects indirectly, via cells other than those that display morphological plasticity. In the MeA, estrogen and/or androgen appears to act primarily on those cells whose dendrites are modulated by the hormone. Importantly, increasing levels of gonadal hormones do not simply result in increases in dendritic parameters. In the VMN, high levels of estrogen associated with proestrus increase dendritic spine density in one subset of cells and reduce spine density in another subset. The pyramidal cells of dorsal CA1 also undergo phasic changes in dendritic spine and synapse density across the estrous cycle. The estrogen-induced excitatory synapses connect with preexisting axonal boutons that also form synapses with other CA1 cells, thereby increasing the divergence of excitatory afferents to dorsal CA1. These findings indicate that gonadal steroids have a profound impact on the morphology of dendrites and patterns of synaptic connectivity. Consequently, the experimental manipulation of hormone levels is a powerful tool to study structure-function relationships in the mammalian brain.  相似文献   

19.
The Slit protein acts through the Roundabout receptor as a paracrine chemorepellent in axon guidance and as an inhibitor in leukocyte chemotaxis, but its role in epithelial cell motility and morphogenesis remains largely unexplored. We report that nontransformed epithelial cells and cancerous cells empower the Slit-2/Robo1 signaling system to limit outward migration in response to motogenic attractants and to remain positionally confined within their primitive location. Short hairpin RNA-mediated depletion of SLIT-2 or ectopic expression of a soluble decoy Robo enhance hepatocyte growth factor (HGF)-induced migration, matrix invasion, and tubulogenesis, concomitantly with the up-regulation of Cdc-42 and the down-modulation of Rac-1 activities. Accordingly, autocrine overexpression or exogenous administration of Slit-2 prevent HGF-triggered motile responses, reduce Cdc-42 activation, and stimulate Rac-1. This antimigratory activity of Slit-2 derives from the inhibition of actin-based protrusive forces and from an increased adhesive strength of cadherin-mediated intercellular contacts. These results disclose a novel function for Slit and Robo in the inhibition of growth factor-mediated epithelial cell motility and morphogenesis, invoking a critical role for both molecules as natural antagonists of neoplastic invasive growth.  相似文献   

20.
Simpson JH  Bland KS  Fetter RD  Goodman CS 《Cell》2000,103(7):1019-1032
Slit is secreted by midline glia in Drosophila and functions as a short-range repellent to control midline crossing. Although most Slit stays near the midline, some diffuses laterally, functioning as a long-range chemorepellent. Here we show that a combinatorial code of Robo receptors controls lateral position in the CNS by responding to this presumptive Slit gradient. Medial axons express only Robo, intermediate axons express Robo3 and Robo, while lateral axons express Robo2, Robo3, and Robo. Removal of robo2 or robo3 causes lateral axons to extend medially; ectopic expression of Robo2 or Robo3 on medial axons drives them laterally. Precise topography of longitudinal pathways appears to be controlled by a combination of long-range guidance (the Robo code determining region) and short-range guidance (discrete local cues determining specific location within a region).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号