首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eight genes (atpI, atpB, atpE(1), atpE(2), atpE(3), atpF, atpH, and atpA) upstream of and contiguous with the previously described genes atpG, atpD, and atpC were cloned from chromosomal DNA of Acetobacterium woodii. Northern blot analysis revealed that the eleven atp genes are transcribed as a polycistronic message. The atp operon encodes the Na(+)-F(1)F(0)-ATPase of A. woodii, as evident from a comparison of the biochemically derived N termini of the subunits with the amino acid sequences deduced from the DNA sequences. The molecular analysis revealed that all of the F(1)F(0)-encoding genes from Escherichia coli have homologs in the Na(+)-F(1)F(0)-ATPase operon from A. woodii, despite the fact that only six subunits were found in previous preparations of the enzyme from A. woodii. These results unequivocally prove that the Na(+)-ATPase from A. woodii is an enzyme of the F(1)F(0) class. Most interestingly, the gene encoding the proteolipid underwent quadruplication. Two gene copies (atpE(2) and atpE(3)) encode identical 8-kDa proteolipids. Two additional gene copies were fused to form the atpE(1) gene. Heterologous expression experiments as well as immunolabeling studies with native membranes revealed that atpE(1) encodes a duplicated 18-kDa proteolipid. This is the first demonstration of multiplication and fusion of proteolipid-encoding genes in F(1)F(0)-ATPase operons. Furthermore, AtpE(1) is the first duplicated proteolipid ever found to be encoded by an F(1)F(0)-ATPase operon.  相似文献   

2.
The Na(+)-F(1)F(0)-ATPase operon of Acetobacterium woodii was recently shown to contain, among eleven atp genes, those genes that encode subunit a and b, a gene encoding a 16-kDa proteolipid (subunit c(1)), and two genes encoding 8-kDa proteolipids (subunits c(2) and c(3)). Because subunits a, b, and c(1) were not found in previous enzyme preparations, we re-determined the subunit composition of the enzyme. The genes were overproduced, and specific antibodies were raised. Western blots revealed that subunits a, b, and c(1) are produced and localized in the cytoplasmic membrane. Membrane protein complexes were solubilized by dodecylmaltoside and separated by blue native-polyacrylamide gel electrophoresis, and the ATPase subunits were resolved by SDS-polyacrylamide gel electrophoresis. N-terminal sequence analyses revealed the presence of subunits a, c(2), c(3), b, delta, alpha, gamma, beta, and epsilon. Biochemical and immunological analyses revealed that subunits c(1), c(2), and c(3) are all part of the c-oligomer, the first of a F(1)F(0)-ATPase that contains 8- and 16-kDa proteolipids.  相似文献   

3.
The ATP synthase of Propionigenium modestum encloses a rotary motor involved in the production of ATP from ADP and inorganic phosphate utilizing the free energy of an electrochemical Na(+) ion gradient. This enzyme clearly belongs to the family of F(1)F(0) ATP synthases and uses exclusively Na(+) ions as the physiological coupling ion. The motor domain, F(0), comprises subunit a and the b subunit dimer which are part of the stator and the subunit c oligomer acting as part of the rotor. During ATP synthesis, Na(+) translocation through F(0) proceeds from the periplasm via the stator channel (subunit a) onto a Na(+) binding site of the rotor (subunit c). Upon rotation of the subunit c oligomer versus subunit a, the occupied rotor site leaves the interface with the stator and the Na(+) ion can freely dissociate into the cytoplasm. Recent experiments demonstrate that the membrane potential is crucial for ATP synthesis under physiological conditions. These findings support the view that voltage generates torque in F(0), which drives the rotation of the gamma subunit thus liberating tightly bound ATP from the catalytic sites in F(1). We suggest a mechanochemical model for the transduction of transmembrane Na(+)-motive force into rotary torque by the F(0) motor that can account quantitatively for the experimental data.  相似文献   

4.
The Na(+) F(1)F(0) ATP synthase operon of the anaerobic, acetogenic bacterium Acetobacterium woodii is unique because it encodes two types of c subunits, two identical 8 kDa bacterial F(0)-like c subunits (c(2) and c(3)), with two transmembrane helices, and a 18 kDa eukaryal V(0)-like (c(1)) c subunit, with four transmembrane helices but only one binding site. To determine whether both types of rotor subunits are present in the same c ring, we have isolated and studied the composition of the c ring. High-resolution atomic force microscopy of 2D crystals revealed 11 domains, each corresponding to two transmembrane helices. A projection map derived from electron micrographs, calculated to 5 A resolution, revealed that each c ring contains two concentric, slightly staggered, packed rings, each composed of 11 densities, representing 22 transmembrane helices. The inner and outer diameters of the rings, measured at the density borders, are approximately 17 and 50 A. Mass determination by laser-induced liquid beam ion desorption provided evidence that the c rings contain both types of c subunits. The stoichiometry for c(2)/c(3) : c(1) was 9 : 1. Furthermore, this stoichiometry was independent of the carbon source of the growth medium. These analyses clearly demonstrate, for the first time, an F(0)-V(0) hybrid motor in an ATP synthase.  相似文献   

5.
The membrane energetics of the intestinal pathogen Vibrio cholerae involves both H(+) and Na(+) as coupling ions. The sequence of the c subunit of V. cholerae F(0)F(1) ATPase suggested that this enzyme is H(+) specific, in contrast to the results of previous studies on the Na(+)-dependent ATP synthesis in closely related Vibrio spp. Measurements of the pH gradient and membrane potential in membrane vesicles isolated from wild-type and DeltaatpE mutant V. cholerae show that the F(1)F(0) ATPase of V. cholerae is an H(+), not Na(+), pump, confirming the bioinformatics assignments that were based on the Na(+)-binding model of S. Rahlfs and V. Müller (FEBS Lett. 404:269-271, 1999). Application of this model to the AtpE sequences from other bacteria and archaea indicates that Na(+)-specific F(1)F(0) ATPases are present in a number of important bacterial pathogens.  相似文献   

6.
Na+ transport through the F0 domain of Na(+)-F1F0-ATPases involves the combined action of subunits c and a but the residues involved in Na+ liganding in subunit a are unknown. As a first step towards the identification of these residues, we have cloned and sequenced the gene encoding subunit a of the Na(+)-F1F0-ATPase of Acetobacterium woodii. This is the second sequence available now for this subunit from Na(+)-F1F0-ATPases. A comparison of subunit a from Na(+)-F1F0-ATPases with those from H(+)-translocating enzymes unraveled structural similarity in a C-terminal segment including the ultimate and penultimate transmembrane helix. Seven residues are conserved in this region and, therefore, likely to be involved in Na+ liganding.  相似文献   

7.
8.
Cell suspensions of Acetobacterium woodii prepared from cultures grown on fructose plus caffeate catalyzed caffeate reduction with electrons derived from molecular hydrogen. Hydrogen-dependent caffeate reduction was strictly Na(+) dependent with a K(m) for Na(+) of 0.38 mM; Li(+) could substitute for Na(+). The sodium ionophore ETH2120, but not protonophores, stimulated hydrogen-dependent caffeate reduction by 280%, indicating that caffeate reduction is coupled to the buildup of a membrane potential generated by primary Na(+) extrusion. Caffeate reduction was coupled to the synthesis of ATP, and again, ATP synthesis coupled to hydrogen-dependent caffeate reduction was strictly Na(+) dependent and abolished by ETH2120, but not by protonophores, indicating the involvement of a transmembrane Na(+) gradient in ATP synthesis. The ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) abolished ATP synthesis, and at the same time, hydrogen-dependent caffeate reduction was inhibited. This inhibition could be relieved by ETH2120. These experiments are fully compatible with a chemiosmotic mechanism of ATP synthesis with Na(+) as the coupling ion during hydrogen-dependent caffeate reduction by A. woodii.  相似文献   

9.
10.
The most prominent residue of subunit a of the F(1)F(o) ATP synthase is a universally conserved arginine (aR227 in Propionigenium modestum), which was reported to permit no substitution with retention of ATP synthesis or H(+)-coupled ATP hydrolysis activity. We show here that ATP synthases with R227K or R227H mutations in the P.modestum a subunit catalyse ATP-driven Na(+) transport above or below pH 8.0, respectively. Reconstituted F(o) with either mutation catalysed 22Na(+)(out)/Na(+)(in) exchange with similar pH profiles as found in ATP-driven Na(+) transport. ATP synthase with an aR227A substitution catalysed Na(+)-dependent ATP hydrolysis, which was completely inhibited by dicyclohexylcarbodiimide, but not coupled to Na(+) transport. This suggests that in the mutant the dissociation of Na(+) becomes more difficult and that the alkali ions remain therefore permanently bound to the c subunit sites. The reconstituted mutant enzyme was also able to synthesise ATP in the presence of a membrane potential, which stopped at elevated external Na(+) concentrations. These observations reinforce the importance of aR227 to facilitate the dissociation of Na(+) from approaching rotor sites. This task of aR227 was corroborated by other results with the aR227A mutant: (i) after reconstitution into liposomes, F(o) with the aR227A mutation did not catalyse 22Na(+)(out)/Na(+)(in) exchange at high internal sodium concentrations, and (ii) at a constant (Delta)pNa(+), 22Na(+) uptake was inhibited at elevated internal Na(+) concentrations. Hence, in mutant aR227A, sodium ions can only dissociate from their rotor sites into a reservoir of low sodium ion concentration, whereas in the wild-type the positively charged aR227 allows the dissociation of Na(+) even into compartments of high Na(+) concentration.  相似文献   

11.
The motor domain of A1A0 ATPases is composed of only two subunits, the stator subunit I and the rotor subunit c. Recent studies on the molecular biology of the A0 domains revealed the surprising finding that the gene encoding subunit c underwent several multiplication events leading to rotor subunits comprising 2, 3, or even 13 hairpin domains suggesting multimeric in different stoichiometry as well as monomeric rotors. The number of ion translocating groups per rotor ranges from 13 to 6. Furthermore, as deduced from the gene sequences H(+)-as well as Na(+)-driven rotors are found in archaea. Features previously thought to be distinctive for A0, F0 or V0 are all found in A0 suggesting that the differences encountered in the three classes of ATPases today emerged already very early in evolution. The extraordinary features and exceptional structural and functional variability in the rotor of A1A0 ATPases may have arisen as an adaptation to different cellular needs and the extreme physicochemical conditions in the early history of life.  相似文献   

12.
Satoh M  Koyama N 《Anaerobe》2005,11(1-2):115-121
The structural genes for A and B subunits of the V-type Na(+)-ATPase from a facultatively anaerobic alkaliphile (Amphibacillus sp.), strain M-12, were cloned and sequenced. Transformation of Escherichia coli with the genes overexpressed two proteins, which crossreacted with an antiserum against A and B subunits of the V-type Na(+)-ATPase from Enterococcus hirae. The deduced amino acid sequence (594 amino acids; Mr, 66,144) of A subunit of the M-12 enzyme exhibited 73%, 51%, 49% and 53% identities with those of V-type ATPases from E. hirae, Thermus thermophilus, Neurospora crassa and Drosophila melanogaster, respectively. The amino acid sequence (458 amino acids; Mr, 51,308) of B subunit of the M-12 enzyme was 74%, 53%, 52% and 54% identical with those of the ATPases from E. hirae, T. thermophilus, N. crassa and D. melanogaster, respectively. The fact indicates that the amino acid sequences of A and B subunits of the M-12 enzyme exhibit significantly higher homologies with those of the E. hirae Na(+)-ATPase as compared with those of the H(+)-ATPases from T. thermophilus, N. crassa and D. melanogaster.  相似文献   

13.
Kinetics of phosphorylation of Na+/K(+)-ATPase by protein kinase C   总被引:5,自引:0,他引:5  
The kinetics of phosphorylation of an integral membrane enzyme, Na+/K(+)-ATPase, by calcium- and phospholipid-dependent protein kinase C (PKC) were characterized in vitro. The phosphorylation by PKC occurred on the catalytic alpha-subunit of Na+/K(+)-ATPase in preparations of purified enzyme from dog kidney and duck salt-gland and in preparations of duck salt-gland microsomes. The phosphorylation required calcium (Ka approximately 1.0 microM) and was stimulated by tumor-promoting phorbol ester (12-O-tetradecanoylphorbol 13-acetate) in the presence of a low concentration of calcium (0.1 microM). PKC phosphorylation of Na+/K(+)-ATPase was rapid and plateaued within 30 min. The apparent Km of PKC for Na+/K(+)-ATPase as a substrate was 0.5 microM for dog kidney enzyme and 0.3 microM for duck salt-gland enzyme. Apparent substrate inhibition of PKC activity was observed at concentrations of purified salt-gland Na+/K(+)-ATPase greater than 1.0 microM. Phosphorylation of purified kidney and salt-gland Na+/K+ ATPases occurred at both serine and threonine residues. The 32P-phosphopeptide pattern on 15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis after hydroxylamine cleavage of pure 32P-phosphorylated alpha subunit was the same for the two sources of enzyme, which suggests that the phosphorylation sites are similar. The results indicate that Na+/K(+)-ATPase may serve as a substrate for PKC phosphorylation in intact cells and that the Na+/K(+)-ATPase could be a useful in vitro model substrate for PKC interaction with integral membrane proteins.  相似文献   

14.
The nqr operon from Vibrio cholerae, encoding the entire six-subunit, membrane-associated, Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR), was cloned under the regulation of the P(BAD) promoter. The enzyme was successfully expressed in V. cholerae. To facilitate molecular genetics studies of this sodium-pumping enzyme, a host strain of V. cholerae was constructed in which the genomic copy of the nqr operon was deleted. By using a vector containing a six-histidine tag on the carboxy terminus of the NqrF subunit, the last subunit in the operon, the recombinant enzyme was readily purified by affinity chromatography in a highly active form from detergent-solubilized membranes of V. cholerae. The recombinant enzyme has a high specific activity in the presence of sodium. NADH consumption was assessed at a turnover number of 720 electrons per second. When purified using dodecyl maltoside (DM), the isolated enzyme contains approximately one bound ubiquinone, whereas if the detergent LDAO is used instead, the quinone content of the isolated enzyme is negligible. Furthermore, the recombinant enzyme, purified with DM, has a relatively low rate of reaction with O(2) (10-20 s(-1)). In steady state turnover, the isolated, recombinant enzyme exhibits up to 5-fold stimulation by sodium and functions as a primary sodium pump, as reported previously for Na(+)()-NQR from other bacterial sources. When reconstituted into liposomes, the recombinant Na(+)-NQR generates a sodium gradient and a Delta Psi across the membrane. SDS-PAGE resolves all six subunits, two of which, NqrB and NqrC, contain covalently bound flavin. A redox titration of the enzyme, monitored by UV-visible spectroscopy, reveals three n = 2 redox centers and one n = 1 redox center, for which the presence of three flavins and a 2Fe-2S center can account. The V. cholerae Na(+)-NQR is well-suited for structural studies and for the use of molecular genetics techniques in addressing the mechanism by which NADH oxidation is coupled to the pumping of Na(+) across the membrane.  相似文献   

15.
The oxaloacetate decarboxylase Na(+) pump consists of subunits alpha, beta and gamma, and contains biotin as the prosthetic group. The peripheral alpha subunit catalyzes the carboxyltransfer from oxaloacetate to the prosthetic biotin group to yield the carboxybiotin enzyme. Subsequently, this is decarboxylated in a Na(+)-dependent reaction by the membrane-bound beta subunit. The decarboxylation is coupled to Na(+) translocation from the cytoplasm into the periplasm, and consumes a periplasmically derived proton. The gamma subunit contains a Zn(2+) metal ion which may be involved in the carboxyltransfer reaction. It is proposed to insert with its N-terminal alpha-helix into the membrane and to form a complex with the alpha subunit with its water-soluble C-terminal domain. The beta subunit consists of nine transmembrane alpha-helices, a segment (IIIa) which inserts from the periplasm into the membrane but does not penetrate it, and connecting hydrophilic loops. The most highly conserved regions of the molecule are segment IIIa and transmembrane helix VIII. Functionally important residues are D203 (segment IIIa), Y229 (helix IV) and N373, G377, S382 and R389 (helix VIII). The polar of these amino acids may constitute a network of ionizable groups which promotes the translocation of Na(+) and the oppositely oriented translocation of H(+) across the membrane. Evidence indicates that two Na(+) ions are bound simultaneously to subunit beta with D203 and S382 acting as binding sites. Sodium ion binding from the cytoplasm to both sites elicits decarboxylation of carboxybiotin possibly with the consumption of the proton extracted from S382 and delivered via Y229 to the carboxylated prosthetic group. A conformational change exposes the bound Na(+) ions toward the periplasm. With H(+) entering from the periplasm, the hydroxyl group of S382 is regenerated, and as a consequence, the Na(+) ions are released into this compartment. After switching back to the original conformation, Na(+) pumping continues.  相似文献   

16.
The whole-cell voltage-clamp technique was used in rat cardiac myocytes to investigate the kinetics of ADP binding to phosphorylated states of Na,K-ATPase and its effects on presteady-state Na(+)-dependent charge movements by this enzyme. Ouabain-sensitive transient currents generated by Na,K-ATPase functioning in electroneutral Na(+)-Na(+) exchange mode were measured at 23 degrees C with pipette ADP concentrations ([ADP]) of up to 4.3 mM and extracellular Na(+) concentrations ([Na](o)) between 36 and 145 mM at membrane potentials (V(M)) from -160 to +80 mV. Analysis of charge-V(M) curves showed that the midpoint potential of charge distribution was shifted toward more positive V(M) both by increasing [ADP] at constant Na(+)(o) and by increasing [Na](o) at constant ADP. The total quantity of mobile charge, on the other hand, was found to be independent of changes in [ADP] or [Na](o). The presence of ADP increased the apparent rate constant for current relaxation at hyperpolarizing V(M) but decreased it at depolarizing V(M) as compared to control (no added ADP), an indication that ADP binding facilitates backward reaction steps during Na(+)-Na(+) exchange while slowing forward reactions. Data analysis using a pseudo three-state model yielded an apparent K(d) of approximately 6 mM for ADP binding to and release from the Na,K-ATPase phosphoenzyme; a value of 130 s(-1) for k(2), a rate constant that groups Na(+) deocclusion/release and the enzyme conformational transition E(1) approximately P --> E(2)-P; a value of 162 s(-1)M(-1) for k(-2), a lumped second-order V(M)-independent rate constant describing the reverse reactions; and a Hill coefficient of approximately 1 for Na(+)(o) binding to E(2)-P. The results are consistent with electroneutral release of ADP before Na(+) is deoccluded and released through an ion well. The same approach can be used to study additional charge-moving reactions and associated electrically silent steps of the Na,K-pump and other transporters.  相似文献   

17.
The Kdp system is a three-subunit member of the E1-E2 family of transport ATPases. There is sequence homology of the 72 kDa KdpB protein, the largest subunit of Kdp, with the other members of this family. The predicted structure of the 21 kDa KdpC subunit resembles that of the beta subunit of the Na+,K(+)-ATPase, suggesting that these subunits may have a similar function. The 59 kDa KdpA subunit has no known homologue; it is very hydrophobic and is predicted to cross the membrane 10-12 times. Genetic studies implicate this subunit in the binding of K+. As the binding site must be close to the beginning of the transmembrane channel, we suggest that KdpA also forms most or all of the latter. KdpA may have evolved from a K+/H+ antiporter that was recruited by the KdpB precursor to achieve the high affinity and specificity for K+, and the activation of transport by low turgor pressure characteristic of Kdp. Turgor pressure controls the expression of Kdp. This action is dependent on the 70 kDa KdpD and 23 kDa KdpE proteins. We are in the process of sequencing these genes. KdpE is homologous to the smaller protein of other members of a family of pairs of regulatory proteins implicated in control of a variety of bacterial processes such as porin synthesis, phosphate regulon expression, nitrogen metabolism, chemotaxis and nodule formation.  相似文献   

18.
Tetrodotoxin-resistant (TTX-R) Na(+) channels are 1,000-fold less sensitive to TTX than TTX-sensitive (TTX-S) Na(+) channels. On the other hand, TTX-R channels are much more susceptible to external Cd(2+) block than TTX-S channels. A cysteine (or serine) residue situated just next to the aspartate residue of the presumable selectivity filter "DEKA" ring of the TTX-R channel has been identified as the key ligand determining the binding affinity of both TTX and Cd(2+). In this study we demonstrate that the binding affinity of Cd(2+) to the TTX-R channels in neurons from dorsal root ganglia has little intrinsic voltage dependence, but is significantly influenced by the direction of Na(+) current flow. In the presence of inward Na(+) current, the apparent dissociation constant of Cd(2+) ( approximately 200 microM) is approximately 9 times smaller than that in the presence of outward Na(+) current. The Na(+) flow-dependent binding affinity change of Cd(2+) block is true no matter whether the direction of Na(+) current is secured by asymmetrical chemical gradient (e.g., 150 mM Na(+) vs. 150 mM Cs(+) on different sides of the membrane, 0 mV) or by asymmetrical electrical gradient (e.g., 150 mM Na(+) on both sides of the membrane, -20 mV vs. 20 mV). These findings suggest that Cd(2+) is a pore blocker of TTX-R channels with its binding site located in a multiion, single-file region near the external pore mouth. Quantitative analysis of the flow dependence with the flux-coupling equation reveals that at least two Na(+) ions coexist with the blocking Cd(2+) ion in this pore region in the presence of 150 mM ambient Na(+). Thus, the selectivity filter of the TTX-R Na(+) channels in dorsal root ganglion neurons might be located in or close to a multiion single-file pore segment connected externally to a wide vestibule, a molecular feature probably shared by other voltage-gated cationic channels, such as some Ca(2+) and K(+) channels.  相似文献   

19.
We have used admittance analysis together with the black lipid membrane technique to analyze electrogenic reactions within the Na(+) branch of the reaction cycle of the Na(+)/K(+)-ATPase. ATP release by flash photolysis of caged ATP induced changes in the admittance of the compound membrane system that are associated with partial reactions of the Na(+)/K(+)-ATPase. Frequency spectra and the Na(+) dependence of the capacitive signal are consistent with an electrogenic or electroneutral E(1)P <--> E(2)P conformational transition which is rate limiting for a faster electrogenic Na(+) dissociation reaction. We determine the relaxation rate of the rate-limiting reaction and the equilibrium constants for both reactions at pH 6.2-8.5. The relaxation rate has a maximum value at pH 7.4 (approximately 320 s(-1)), which drops to acidic (approximately 190 s(-1)) and basic (approximately 110 s(-1)) pH. The E(1)P <--> E(2)P equilibrium is approximately at a midpoint position at pH 6.2 (equilibrium constant approximately 0.8) but moves more to the E(1)P side at basic pH 8.5 (equilibrium constant approximately 0.4). The Na(+) affinity at the extracellular binding site decreases from approximately 900 mM at pH 6.2 to approximately 200 mM at pH 8.5. The results suggest that during Na(+) transport the free energy supplied by the hydrolysis of ATP is mainly used for the generation of a low-affinity extracellular Na(+) discharge site. Ionic strength and lyotropic anions both decrease the relaxation rate. However, while ionic strength does not change the position of the conformational equilibrium E(1)P <--> E(2)P, lyotropic anions shift it to E(1)P.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号