首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A technique for prediction of protein membrane toplogy (intra- and extraceullular sidedness) has been developed. Membrane-spanning segments are first predicted using an algorithm based upon multiply aligned amino acid sequences. The compositional differences in the protein segments exposed at each side of the membrane are then investigated. The ratios are calculated for Asn, Asp, Gly, Phe, Pro, Trp, Tyr, and Val, mostly found on the extracellular side, and for Ala, Arg, Cys, and Lys, mostly occurring on the intracellular side. The consensus over these 12 residue distributions is used for sidedness prediction. The method was developed with a set of 42 protein families for which all but one were correctly predicted with the new algorithm. This represents an improvement over previous techniques. The new method, applied to a set of 12 membrane protein families different from the test set and with recently determined topologies, performed well, with 11 of 12 sidedness assignments agreeing with experimental results. The method has also been applied to several membrane protein families for which the topology has yet to be determined. An electronic prediction service is available at the E-mail address tmap@embl-heidelberg.de and on WWW via http://www.emblheidelberg.de.  相似文献   

2.
Yuan Q  Liao Y  Torres J  Tam JP  Liu DX 《FEBS letters》2006,580(13):3192-3200
Coronavirus envelope (E) protein is a small integral membrane protein with multi-functions in virion assembly, morphogenesis and virus-host interaction. Different coronavirus E proteins share striking similarities in biochemical properties and biological functions, but seem to adopt distinct membrane topology. In this report, we study the membrane topology of the SARS-CoV E protein by immunofluorescent staining of cells differentially permeabilized with detergents and proteinase K protection assay. It was revealed that both the N- and C-termini of the SARS-CoV E protein are exposed to the cytoplasmic side of the membranes (N(cyto)C(cyto)). In contrast, parallel experiments showed that the E protein from infectious bronchitis virus (IBV) spanned the membranes once, with the N-terminus exposed luminally and the C-terminus exposed cytoplasmically (N(exo(lum)-)C(cyto)). Intriguingly, a minor proportion of the SARS-CoV E protein was found to be modified by N-linked glycosylation on Asn 66 and inserted into the membranes once with the C-terminus exposed to the luminal side. The presence of two distinct membrane topologies of the SARS-CoV E protein may provide a useful clue to the pathogenesis of SARS-CoV.  相似文献   

3.
4.
5.
    
In the postgenomic era, the transformation of genetic information into biochemical meaning is required. We have analyzed the proteome of the chloroplast outer envelope membrane by an in silico and a proteomic approach. Based on its evolutionary relation to the outer membrane of Gram-negative bacteria, the outer envelope membrane should contain a large number of beta-barrel proteins. We therefore calculated the probability for the existence of beta-sheet, beta-barrel, and hairpin structures among all proteins of the Arabidopsis thaliana genome. According to the existence of these structures, a number of candidates were selected. This protein pool was analyzed by TargetP to discard sequences with signals that would direct the protein to other organelles different from chloroplasts. In addition, the pool was manually controlled for the presence of proteins known to function outside of the chloroplast envelope. The approach developed here can be used to predict the topology of beta-barrel proteins. For the proteomic approach, proteins of highly purified outer envelope membranes of chloroplasts from Pisum sativum were analyzed by ESI-MS/MS mass spectrometry. In addition to the known components, four new proteins of the outer envelope membranes were identified in this study.  相似文献   

6.
We have developed reliability scores for five widely used membrane protein topology prediction methods, and have applied them both on a test set of 92 bacterial plasma membrane proteins with experimentally determined topologies and on all predicted helix bundle membrane proteins in three fully sequenced genomes: Escherichia coli, Saccharomyces cerevisiae and Caenorhabditis elegans. We show that the reliability scores work well for the TMHMM and MEMSAT methods, and that they allow the probability that the predicted topology is correct to be estimated for any protein. We further show that the available test set is biased towards high-scoring proteins when compared to the genome-wide data sets, and provide estimates for the expected prediction accuracy of TMHMM across the three genomes. Finally, we show that the performance of TMHMM is considerably better when limited experimental information (such as the in/out location of a protein's C terminus) is available, and estimate that at least ten percentage points in overall accuracy in whole-genome predictions can be gained in this way.  相似文献   

7.
Membrane proteins represent a significant fraction of all genomes and play key roles in many aspects of biology, but their structural analysis has been hampered by difficulties in large-scale production and crystallisation. To overcome the first of these hurdles, we present here a systematic approach for expression and affinity-tagging which takes into account transmembrane topology. Using a set of bacterial transporters with known topologies, we tested the efficacy of a panel of conventional and Gateway? recombinational cloning vectors designed for protein expression under the control of the tac promoter, and for the addition of differing N- and C-terminal affinity tags. For transporters in which both termini are cytoplasmic, C-terminal oligohistidine tagging by recombinational cloning typically yielded functional protein at levels equivalent to or greater than those achieved by conventional cloning. In contrast, it was not effective for examples of the substantial minority of proteins that have one or both termini located on the periplasmic side of the membrane, possibly because of impairment of membrane insertion by the tag and/or att-site-encoded sequences. However, fusion either of an oligohistidine tag to cytoplasmic (but not periplasmic) termini, or of a Strep-tag II peptide to periplasmic termini using conventional cloning vectors did not interfere with membrane insertion, enabling high-level expression of such proteins. In conjunction with use of a C-terminal Lumio? fluorescence tag, which we found to be compatible with both periplasmic and cytoplasmic locations, these findings offer a system for strategic planning of construct design for high throughput expression of membrane proteins for structural genomics projects.  相似文献   

8.
    
A total of 20%-25% of the proteins in a typical genome are helical membrane proteins. The transmembrane regions of these proteins have markedly different properties when compared with globular proteins. This presents a problem when homology search algorithms optimized for globular proteins are applied to membrane proteins. Here we present modifications of the standard Smith-Waterman and profile search algorithms that significantly improve the detection of related membrane proteins. The improvement is based on the inclusion of information about predicted transmembrane segments in the alignment algorithm. This is done by simply increasing the alignment score if two residues predicted to belong to transmembrane segments are aligned with each other. Benchmarking over a test set of G-protein-coupled receptor sequences shows that the number of false positives is significantly reduced in this way, both when closely related and distantly related proteins are searched for.  相似文献   

9.
N-Glycosylation of eukaryotic membrane proteins is a co-translational event that occurs in the lumen of the endoplasmic reticulum (ER). This process is catalyzed by a membrane-associated oligosaccharyl transferase (OST) complex that transfers a preformed oligosaccharide (Glc3Man9GlcNAc2-) to an asparagine (Asn) side-chain acceptor located within the sequon (-Asn-X-Ser/Thr-). Scanning N-glycosylation mutagenesis experiments, where novel acceptor sites are introduced at unique sites within membrane proteins, have shown that the acceptor sites must be located a minimum distance (12–14 amino acids) away from the luminal membrane surface of the ER in order to be efficiently N-glycosylated. Scanning N-glycosylation mutagenesis can therefore be used to determine membrane protein topology and it can also serve as a molecular ruler to define the ends of transmembrane (TM) segments. Furthermore, since N-glycosylation is a co-translational event, N-glycosylation mutagenesis can be used to identify folding intermediates in membrane proteins that may expose segments to the ER lumen transiently during biosynthesis.  相似文献   

10.
    
Helices in membrane spanning regions are more tightly packed than the helices in soluble proteins. Thus, we introduce a method that uses a simple scale of burial propensity and a new algorithm to predict transmembrane helical (TMH) segments and a positive-inside rule to predict amino-terminal orientation. The method (the topology predictor of transmembrane helical proteins using mean burial propensity [THUMBUP]) correctly predicted the topology of 55 of 73 proteins (or 75%) with known three-dimensional structures (the 3D helix database). This level of accuracy can be reached by MEMSAT 1.8 (a 200-parameter model-recognition method) and a new HMM-based method (a 111-parameter hidden Markov model, UMDHMM(TMHP)) if they were retrained with the 73-protein database. Thus, a method based on a physiochemical property can provide topology prediction as accurate as those methods based on more complicated statistical models and learning algorithms for the proteins with accurately known structures. Commonly used HMM-based methods and MEMSAT 1.8 were trained with a combination of the partial 3D helix database and a 1D helix database of TMH proteins in which topology information were obtained by gene fusion and other experimental techniques. These methods provide a significantly poorer prediction for the topology of TMH proteins in the 3D helix database. This suggests that the 1D helix database, because of its inaccuracy, should be avoided as either a training or testing database. A Web server of THUMBUP and UMDHMM(TMHP) is established for academic users at http://www.smbs.buffalo.edu/phys_bio/service.htm. The 3D helix database is also available from the same Web site.  相似文献   

11.
Analysis of water-soluble derivatives of the Enterococcus hirae 75-kDa membrane-bound penicillin-binding protein 4 (PBP4) has yielded the amino acid sequence of a 32-amino acid polypeptide stretch. This peptide is similar to peptide segments known to occur in the N-terminal domain of high-Mr PBPs of class B. The E. hirae PBP4 probably belongs to the same class. It is anchored in the membrane at the N-terminus of the polypeptide chain.  相似文献   

12.
    
Topology predictions for integral membrane proteins can be substantially improved if parts of the protein can be constrained to a given in/out location relative to the membrane using experimental data or other information. Here, we have identified a set of 367 domains in the SMART database that, when found in soluble proteins, have compartment-specific localization of a kind relevant for membrane protein topology prediction. Using these domains as prediction constraints, we are able to provide high-quality topology models for 11% of the membrane proteins extracted from 38 eukaryotic genomes. Two-thirds of these proteins are single spanning, a group of proteins for which current topology prediction methods perform particularly poorly.  相似文献   

13.
    
S Y Shaw  R A Laursen  M B Lees 《FEBS letters》1989,250(2):306-310
The existence of disulfide crosslinks limits the number of possible folded structures a protein can assume. Thus localization of disulfide and thiol groups is a key to understanding the conformation and orientation of myelin proteolipid protein (PLP) in the myelin membrane. [14C]Carboxamidomethylated PLP was fragmented with chymotrypsin, and the resulting mixture was partially separated by reversed-phase HPLC. Purified 14C-labeled peptides and a disulfide containing peptide were characterized by amino acid analysis. These experiments showed that Cys-32 and Cys-34 are free thiols, and are presumably on the interior of the cell or within the membrane bilayer, and that Cys-200 and Cys-219 are joined by a disulfide bond, and are probably located on the extracellular face of the membrane. Sequence analysis experiments indicate that Cys-5, Cys-6 and Cys-9 are linked by disulfides, probably to other parts of the protein on the extracellular face of the membrane.  相似文献   

14.
在基因组数据中,有20%~30%的产物被预测为跨膜蛋白,本文通过对膜蛋白拓扑结构预测方法进行分析,并评价其结果,为选择更合适的拓扑结构预测方法预测膜蛋白结构。通过对目前已有的拓扑结构预测方法的评价分析,可以为我们在实际工作中提供重要的参考。比如对一个未知拓扑结构的跨膜蛋白序列,我们可以先进行是否含有信号肽的预测,参考Polyphobius和SignalP两种方法,若两种方法预测结果不一致,综合上述对两种方法的评价,Polyphobius预测的综合能力较好,可取其预测的结果,一旦确定含有信号肽,则N端必然位于膜外侧。然后结合序列的长度,判断蛋白是单跨膜还是多重跨膜,即可参照上述评价结果,选择合适的拓扑结构预测方法进行预测。  相似文献   

15.
    
Abstract

Brucella melitensis is a pathogenic bacterium responsible for brucellosis in mammals and humans. Its outer membrane proteins (Omp) control the diffusion of solutes through the membrane, and they consequently have a crucial role in the design of diagnostics and vaccines. Moreover, such proteins have recently revealed their potential for protein-based biomaterials. In the present contribution, the structure of the B. melitensis porin Omp2a is built using the RaptorX threading method. This is a 16-stranded β-barrel with an α-helix on the third loop folding inside the barrel and forming the constriction zone of the channel, a typical feature of general porins such as PhoE and OmpF. The preferential diffusion of cations over anions experimentally observed in anterior studies is evidenced by the presence of distinct clusters of charges in the extracellular loops and in the inner pore. Docking studies support the previously reported hypothesis of Omp2a ability to aid maltotetraose diffusion. The monomer model is then assembled into a homotrimer, stabilized by the L2 loop involved in most of the interface interactions. The stability of the trimer is evaluated in three bilayers: pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and a mixture of 1:1 of POPC/POPE. All-atom molecular dynamics simulations demonstrate the β-barrel-structural stability over time even though a breathing-like motion is observed. Compared to the pure bilayers, the POPC/POPE better preserves the integrity of the protein and its channel. Overall, this work demonstrates the relevancy of the Omp2a model and will help to design new therapeutic agents and bioinspired nanomaterials.  相似文献   

16.
    
When experimental protein NMR data are too sparse to apply traditional structure determination techniques, de novo protein structure prediction methods can be leveraged. Here, we describe the incorporation of NMR restraints into the protein structure prediction algorithm BCL::Fold. The method assembles discreet secondary structure elements using a Monte Carlo sampling algorithm with a consensus knowledge‐based energy function. New components were introduced into the energy function to accommodate chemical shift, nuclear Overhauser effect, and residual dipolar coupling data. In particular, since side chains are not explicitly modeled during the minimization process, a knowledge based potential was created to relate experimental side chain proton–proton distances to Cβ–Cβ distances. In a benchmark test of 67 proteins of known structure with the incorporation of sparse NMR restraints, the correct topology was sampled in 65 cases, with an average best model RMSD100 of 3.4 ± 1.3 Å versus 6.0 ± 2.0 Å produced with the de novo method. Additionally, the correct topology is present in the best scoring 1% of models in 61 cases. The benchmark set includes both soluble and membrane proteins with up to 565 residues, indicating the method is robust and applicable to large and membrane proteins that are less likely to produce rich NMR datasets. Proteins 2014; 82:587–595. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Back-propagation, feed-forward neural networks are used to predict the secondary structures of membrane proteins whose structures are known to atomic resolution. These networks are trained on globular proteins and can predict globular protein structures having no homology to those of the training set with correlation coefficients (C) of 0.45, 0.32 and 0.43 for a-helix, -strand and random coil structures, respectively. When tested on membrane proteins, neural networks trained on globular proteins do, on average, correctly predict (Qi) 62%, 38% and 69% of the residues in the -helix, -strand and random coil structures. These scores rank higher than those obtained with the currently used statistical methods and are comparable to those obtained with the joint approaches tested so far on membrane proteins. The lower success score for -strand as compared to the other structures suggests that the sample of -strand patterns contained in the training set is less representative than those of a-helix and random coil. Our analysis, which includes the effects of the network parameters and of the structural composition of the training set on the prediction, shows that regular patterns of secondary structures can be successfully extrapolated from globular to membrane proteins.Correspondence to: R. Casadio  相似文献   

18.
Tripartite ATP-independent periplasmic ('TRAP') transporters are a novel group of bacterial and archaeal secondary solute uptake systems which possess a periplasmic binding protein, but which are unrelated to ATP-binding cassette (ABC) systems. In addition to the binding protein, TRAP transporters contain two integral membrane proteins or domains, one of which is 40-50 kDa with 12 predicted transmembrane (TM) helices, thought to be the solute import protein, while the other is 20-30 kDa and of unknown function. Using a series of plasmid-encoded beta-lactamase fusions, we have determined the topology of DctQ, the smaller integral membrane protein from the high-affinity C4-dicarboxylate transporter of Rhodobacter capsulatus, which to date is the most extensively characterised TRAP transporter. DctQ was predicted by several topology prediction programmes to have four TM helices with the N- and C-termini located in the cytoplasm. The levels of ampicillin resistance conferred by the fusions when expressed in Escherichia coli were found to correlate with this predicted topology. The data have provided a topological model which can be used to test hypotheses concerning the function of the different regions of DctQ and which can be applied to other members of the DctQ family.  相似文献   

19.
Fujitsuka Y  Chikenji G  Takada S 《Proteins》2006,62(2):381-398
Predicting protein tertiary structures by in silico folding is still very difficult for proteins that have new folds. Here, we developed a coarse-grained energy function, SimFold, for de novo structure prediction, performed a benchmark test of prediction with fragment assembly simulations for 38 test proteins, and proposed consensus prediction with Rosetta. The SimFold energy consists of many terms that take into account solvent-induced effects on the basis of physicochemical consideration. In the benchmark test, SimFold succeeded in predicting native structures within 6.5 A for 12 of 38 proteins; this success rate was the same as that by the publicly available version of Rosetta (ab initio version 1.2) run with default parameters. We investigated which energy terms in SimFold contribute to structure prediction performance, finding that the hydrophobic interaction is the most crucial for the prediction, whereas other sequence-specific terms have weak but positive roles. In the benchmark, well-predicted proteins by SimFold and by Rosetta were not the same for 5 of 12 proteins, which led us to introduce consensus prediction. With combined decoys, we succeeded in prediction for 16 proteins, four more than SimFold or Rosetta separately. For each of 38 proteins, structural ensembles generated by SimFold and by Rosetta were qualitatively compared by mapping sampled structural space onto two dimensions. For proteins of which one of the two methods succeeded and the other failed in prediction, the former had a less scattered ensemble located around the native. For proteins of which both methods succeeded in prediction, often two ensembles were mixed up.  相似文献   

20.
Summary To study structure-function relationships in the outer membrane pore proteins OmpC and PhoE of Escherichia coli K12, we have constructed a series of phoE-ompC hybrid genes in which DNA encoding part of one protein is replaced by the homologous part of the other gene. The hybrid gene products were incorporated normally into the outer membrane, allowing their functional characterization. Combined with previous studies, the present results permit the identification of regions involved in determining functions and properties in which the native PhoE and OmpC proteins differ, such as pore characteristics, receptor activity for phages and binding of monoclonal antibodies. Most of these properties were found to be determined by multiple regions clearly separated in the primary structure. The combined phage and antibody binding data have demonstrated that at least five distinct regions in PhoE and OmpC are exposed at the cell surface. The locations of these regions are in agreement with a previously proposed model for porin topology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号