首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A 6.5 kb cucumber genomic DNA fragment containing the icl gene was introduced into Nicotiana plumbaginifolia and shown to direct isocitrate lyase (ICL) mRNA synthesis in transgenic seedlings upon germination, in a temporally regulated manner. Two putative icl promoter fragments, of 2900 and 572 bp, were subsequently linked to the GUS reporter gene and introduced into N. plumbaginifolia. Both constructs directed GUS expression after transgenic seed germination, and although the 572 bp fragment gave only 1% of the activity of the 2900 bp fragment, it directed expression in the same cotyledon-specific and temporally regulated pattern. Seedlings were transferred to darkness after 18 days growth in the light, to induce a starvation response. The 2900 bp construct was activated by starvation and repressed by exogenous sucrose, whereas the 572 bp construct was not starvation-responsive. To localize the region of the 2900 bp promoter fragment which is responsible for regulation by sucrose, further deletions were make, linked to GUS, and assayed in a cucumber protoplast transient assay system. Constructs with promoters of 2900, 2142 and 1663 bp were activated by starvation and repressed by sucrose, but promoters of 1142 and 572 bp showed no such response. We conclude that the icl gene promoter contains at least two distinct cis-acting elements, one required for the response to sucrose and the other which participates in expression upon seed germination.  相似文献   

3.
The promoter region of the potato proteinase inhibitor II (PI-II) gene was studied to identifycis-acting regulatory sequences involved in sugar response using transgenic tobacco plants. The 5 control region covering an 892 nucleotide sequence upstream from the cap site and a 32 nucleotide untranslated region of the PI-II promoter was able to activate a reporter chloramphenicol acetyltransferase (cat) gene by wounding or by incubating in a sugar-free medium. This wound response was further enhanced by sugar. Hexoses, disaccharides, and some trisaccharides were strong inducers whereas pentoses, deoxy sugars, sugar acids, TCA cycle intermediates, amino acids, and other carbohydrates had little effect on the promoter activity. Deletion of the sequence between-892 and-573 abolished the wound response but not the sugar response. An additional 5 deletion to-453 removed the sugar inducibility. Locations of thecis-acting regulatory elements were further elucidated by 3 deletion analysis. Deletion of the downstream region from-520 did not affect the wound of sugar response of the promoter. However, 3 deletion mutant-574 was unable to respond to sugar but did respond weakly to wounding. Further deletion to-624 abolished both responses. Therefore, it can be concluded that a wound response element is located in between-624 and-574 and that the response is further enhanced by a sugar response element located in the sequence between-573 and-520.  相似文献   

4.
Summary The complete nucleotide sequence (1731 nucleotides) of the gene encoding colicin E7 (cea) of plasmid CoIE7-K317 was determined. This sequence encoded a deduced polypeptide of 576 amino acids of molecular weight 61349 Da. Comparison of the nucleotide and amino acid sequences ofcea E7 with those of other E-group colicins revealed that colicin E7 was closely related to colicin E2, both in gene sequence and in predicted secondary structure of the deduced protein. Judging from the results of cross-immunity tests, we postulated that CoIE7 is probably a proximate ancestor of Co1E2 and Co1E8. Based on results from colicin production tests on cells harboring a 5 end deleted form of thecea E7 gene, we propose, that a previously unknown, non-inducible promoter may be involved in regulation of the constitutive expression of thecea E7 gene.  相似文献   

5.
Genomic clones encoding the plastidic fructose- 1,6-bisphosphate aldolase ofChlamydomonas reinhardtii were isolated and sequenced. The gene contains three introns which are located within the coding sequence for the mature protein. No introns are located within or near the sequence encoding the transit-peptide, in contrast to the genes for plastidic aldolases of higher plants. Neither the number nor the positions of the three introns of theC. reinhardtii aldolase gene are conserved in the plastidic or cytosolic aldolase genes of higher plants and animals. The 5 border sequences of introns in the aldolase gene ofC. reinhardtii exhibit the conserved plant consensus sequence. The 3 acceptor splice sites for introns 1 and 3 show much less similarity to the eukaryotic consensus sequences than do those of intron 2. The plastidic aldolase gene has two tandemly repeated CAAT box motifs in the promoter region. Genomic Southern blots indicate that the gene is encoded by a single locus in theC. reinhardtii genome.  相似文献   

6.
Summary Previous studies have demonstrated that the expression of the -amylase gene is repressed by dietary glucose in Drosophila melanogaster. Here, we show that the -amylase gene of a distantly related species, D. virilis, is also subject to glucose repression. Moreover, the cloned amylase gene of D. virilis is shown to be glucose repressible when it is transiently expressed in D. melanogaster larvae. This cross-species, functional conservation is mediated by a 330-bp promoter region of the D. virilis amylase gene. These results indicate that the promoter elements required for glucose repression are conserved between distantly related Drosophila species. A sequence comparison between the amylase genes of D. virilis and D. melanogaster shows that the promoter sequences diverge to a much greater degree than the coding sequences. The amylase promoters of the two species do, however, share small clusters of sequence similarity, suggesting that these conserved cis-acting elements are sufficient to control the glucose-regulated expression of the amylase gene in the genus Drosophila.Offprint requests to: D.A. Hickey  相似文献   

7.
Chung HJ  Fu HY  Thomas TL 《Planta》2005,220(3):424-433
The carrot (Daucus carota L.) lea-class gene Dc3 is expressed in developing seeds and in vegetative tissues subject to drought and treatment with exogenous abscisic acid (ABA). Cis regulatory elements involved in seed-specific expression and in response to ABA were identified in transgenic tobacco (Nicotiana tabacum L.) using -glucuronidase (GUS) reporter gene constructs containing a series of deletion and orientation mutants of the Dc3 promoter. These experiments demonstrated that the Dc3 promoter is comprised of a proximal promoter region (PPR) and a distal promoter region (DPR). TCGTGT motifs in the DPR in combination with the PPR comprise a novel, bipartite ABA module in the Dc3 gene promoter. The PPR contains cis-acting elements responsible for the developmental regulation of Dc3 expression in seeds. Five similar sequence motifs with the consensus ACACgtGCa were identified in the PPR. Both DPR and PPR interact with common nuclear proteins that are present in embryos and are inducible by ABA in vegetative tissues.  相似文献   

8.
Gómez MD  Beltrán JP  Cañas LA 《Planta》2004,219(6):967-981
END1 was isolated by an immunosubtractive approach intended to identify specific proteins present in the different pea (Pisum sativum L.) floral organs and the genes encoding them. Following this strategy we obtained a monoclonal antibody (mAbA1) that specifically recognized a 26-kDa protein (END1) only detected in anther tissues. Northern blot assays showed that END1 is expressed specifically in the anther. In situ hybridization and immunolocalization assays corroborated the specific expression of END1 in the epidermis, connective, endothecium and middle layer cells during the different stages of anther development. END1 is the first anther-specific gene isolated from pea. The absence of a practicable pea transformation method together with the fact that no END1 homologue gene exists in Arabidopsis prevented us from carrying out END1 functional studies. However, we designed functional studies with the END1 promoter in different dicot species, as the specific spatial and temporal expression pattern of END1 suggested, among other things, the possibility of using its promoter region for biotechnological applications. Using different constructs to drive the uidA (-glucuronidase) gene controlled by the 2.7-kb isolated promoter sequence we have proven that the END1 promoter is fully functional in the anthers of transgenic Arabidopsis thaliana (L.) Heynh., Nicotiana tabacum L. (tobacco) and Lycopersicon esculentum Mill. (tomato) plants. The presence in the –330-bp region of the promoter sequence of three putative CArG boxes also suggests that END1 could be a target gene of MADS-box proteins and that, subsequently, it would be activated by genes controlling floral organ identity.Abbreviations GUS -Glucuronidase - uidA -Glucuronidase gene - Nos Nopaline synthase gene - nptII Neomycin phosphotransferase II gene - SEM Scanning electron microscopy GenBank accession numbers for the END1 cDNA and the END1 promoter: AY 091466 and AY 324651, respectively  相似文献   

9.
Summary A YCp type promoter-probe vector, pVC701, replicable inSaccharomyces cerevisiae andEscherichia coli hosts was constructed. pVC701 has a DNA fragment bearing thePHO5 gene encoding repressible acid phosphatase (rA-Pase; EC 3.1.3.2.) without its promoter region. The clonedPHO5 gene can be expressed by insertion of a DNA fragment having promoter function at theEcoRI site on the 5-flanking region ofPHO5. rAPase activity caused by thePHO5 expression is easily detected by staining the transformant colonies with diazo-coupling reagent. These were confirmed by insertion of aHIS5 DNA fragment ofS. cerevisiae having promoter function at theEcoRI cloning site in conditions of histidine starvation. Numerous DNA fragments exhibiting promoter function were isolated by employing pVC701. Most of them expressed thePHO5 gene constitutively, while one of them conferred galactose-inducible and glucose-repressible expression.  相似文献   

10.
This paper describes the structure of a 9.2-kb repeat unit of DNA, which represents one-secalin gene and spacer sequence located at theSec-1 locus on the short arm of chromosome 1 of rye. The gene units at theSec-1 locus comprise 1.1 kb representing the gene and 8.1 kb of spacer sequence separating the genes. A sequence comparison of nine genes and their promoter regions from theSec-1 locus, reveals that there is greater variation within the coding sequence than there is within the promoter regions. The gene sequence variation is discussed in terms of the size variation seen for the-secalin proteins in rye species. The results include a comparison of promoter sequences from members of the Triticeae to examine the degree of conservation between other seed storage protein genes.  相似文献   

11.
Genomic sequence of the ATP-dependent phosphoeno/pyruvate carboxykinase (CsPCK) gene has been determined first from cucumber. Several putative clones were isolated in three rounds of genomic library screening with designated cDNA probes. These clones were analyzed via restriction digests, Southern hybridization, and nucleotide sequencing to ascertain the structure of theCsPCK gene. Analysis of a selected positive clone (λcscpk-4A) demonstrated that this gene consists of 13 exons and 12 introns, spanning 9 kb in the cucumber genome. Exon 1 contains only 23 nucleotides of the 5′-noncoding region of cucumberPCK cDNA, whereas Exon 2 comprises 12 nucleotides of the S′-noncoding region with an N-terminal PEPCK coding sequence. All the exon-intron junction sequences agree with the GT/AG consensus, except for the 5 donor site of Intron 7, where GC replaces the GT consensus. As with rice (Oryza sativa), cucumber contains only one copy of theCsPCK gene in its haploid genome. The overall number of exons and the structure of this gene are similar to those for bothArabidopsis Chromosome 4 (Atg4)PCK and the rice PCX genes, which contain 13 and 12 exons, respectively. Two additionalArabidopsis PCK genes can be found in the fifth chromosome (Atg5), which contains 9 exons and 8 introns (with 628 and 670 amino acids, respectively) of the PEPCK peptide. TheCsPCK gene promoter has conserved plant-specific as-acting elements within 2 kb of the 5’ flanking region. Several common cis-acting elements of the isocitrate lyase (icl) and malate synthase(ms) gene promoters, identified in theCsPCK gene, are responsible for the sugar response during plant development, especially at germination. These conserved elements are discussed here.  相似文献   

12.
The nucleotide sequence of theGpdh gene from six taxa,D. virilis, D. lummei, D. novamexicana, D. a. americana, D. a. texana andD. ezoana, belonging to thevirilis species group was determined to examine details of evolutionary change in the structure of theGpdh gene. TheGpdh gene is comprised of one 5 non-translated region, eight exons, seven introns and three 3 non-translated regions. Exon/intron organization was identical in all the species examined, but different from that of mammals. Interspecific nucleotide divergence in the entireGpdh gene followed the common pattern: it was low in the exon, high in the intron and intermediate in the non-translated regions. The degree of nucleotide divergence differed within these regions, suggesting that selection exerts constraints differentially on nucleotide change of theGpdh gene. A phylogenetic tree of thevirilis phylad constructed from nucleotide variation of total sequence was consistent with those obtained from other data.Nucleotide sequences for theGpdh gene ofD. lummei, D. novamexicana, D. a. americana, D. a. texana andD. ezoana have been submitted to GenBank with accession numbers D50087, D50088, D50089, D50090 and D50091.  相似文献   

13.
Summary To study the regulatory functions of the ON promoter region, a ppG1b1GUS construct, consisting of 1402 bp 5 flanking sequence ofGlbl, 1919 by GUS coding sequence, and 283 by 3 NOS terminator, was cloned into a binary vector and introduced into tobacco plants byAgrobacterium-mediated transformation. Histochemical GUS assays of To tobacco mature seeds indicate that theGlbl promoter drives GUS expression in ABA treated seeds. Further GUS assays of the T, seeds at different developmental stages revealed that without ABA treatment, theGibl promoter drives GUS expression in immature seeds. The results from both To and T1 tobacco plants indicated thatGlbl-driven GUS expression in tobacco is embryo specific.  相似文献   

14.
The expression of the modified gene for a truncated form of thecryIA(c) gene, encoding the insecticidal portion of the lepidopteran-active CryIA(c) protein fromBacillus thuringiensis var.kurstaki (B.t.k.) HD73, under control of theArabidopsis thaliana ribulose-1,5-bisphosphate carboxylase (Rubisco) small subunitats1A promoter with and without its associated transit peptide was analyzed in transgenic tobacco plants. Examination of leaf tissue revealed that theats1A promoter with its transit peptide sequence fused to the truncated CryIA(c) protein provided a 10-fold to 20-fold increase incryIA(c) mRNA and protein levels compared to gene constructs in which the cauliflower mosaic virus 35S promoter with a duplication of the enhancer region (CaMV-En35S) was used to express the samecryIA(c) gene. Transient expression assays in tobacco protoplasts and the whole plant results support the conclusion that the transit peptide plus untranslated sequences upstream of that region are both required for the increase in expression of the CryIA(c) protein. Furthermore, the CaMV-En35S promoter can be used with theArabidopsis ats1A untranslated leader and transit peptide to increase expression of this protein. While subcellular fractionation revealed that the truncated CryIA(c) protein fused to theats1A transit peptide is located in the chloroplast, the increase in gene expression is independent of targeting of the CryIA(c) protein to the chloroplast. The results reported here provide new insight into the role of 5 untranslated leader sequences and translational fusions to increase heterologous gene expression, and they demonstrate the utility of this approach in the development of insect-resistant crops.  相似文献   

15.
Wang L  An C  Qian W  Liu T  Li J  Chen Z 《Plant cell reports》2004,22(7):513-518
A rice PAL (phenylalanine ammonia-lyase) gene sequence (rPAL-P5), which is highly similar to and likely the same as a previously described rice ZB8PAL gene, including the 5-upstream and exon I coding regions of PAL, was isolated using PCR amplification. The expression of several PALs, including rPAL-P5, was strongly induced following inoculation with Pyricularia oryzae or treatment with a P. oryzae elicitor. To identify the promoter region induced by the P. oryzae elicitor, we constructed and subsequently transformed rPAL-P5 promoter deletion series into rice calli using particle bombardment. Results from both elicitor-inducible reporter gene and gel mobility shift assays demonstrated that the sequence –349 to –256 of the rPAL-P5 promoter includes a cis-element involved in the induction of P. oryzae.Abbreviations CTAB Cetyltrimethylammonium bromide - 2,4-D 2,4-Dichlorophenoxyacetic acid - GUS -Glucuronidase - 4-MU 4-Methylumbelliferone - 4-MUG 4-Methylumbelliferyl glucuronide - NOS Nopaline synthase - PAL Phenylalanine ammonia-lyase Communicated by J.C. Register III  相似文献   

16.
The anther (tapetum)-specific gene BcA9 was isolated from Chinese cabbage, Brassica campestris L. ssp. pekinensis cv. Jangwon, using the Arabidopsis tapetum-specific A9 gene as a probe. The DNA and amino acid sequences of the coding region of the BcA9 gene showed high homology with A9 genes from Arabidopsis and B. napus. However, the DNA sequences of the 5 noncoding (promoter) region were different, except for the sequence from –281 to –89. To test the specific activity of this promoter, a plant expression vector, pGR011, was constructed by fusing the BcA9 promoter and the cytotoxic diphtheria toxin A-chain (DTx-A) gene. Several transgenic plants from cabbage, B. oleracea ssp. capitata, were obtained by way of Agrobacterium-mediated transformation. Southern blot analysis indicated that the tapetum-specific BcA9 promoter and DTx-A gene were successfully integrated into the genome of the transgenic cabbage. Under the control of the BcA9 promoter, expression of the cytotoxic DTx-A gene in the tapetal cells of the transgenic plants resulted in male sterile cabbages. Microscopic examination revealed that pollen grains in anthers of the male sterile cabbages had not developed normally, but the vegetative growth and phenotype showed no difference compared to wild-type plants.Abbreviations At Arabidopsis thaliana - Bc Brassica camepstris - Bn Brassica napus - DTx-A Diphtheria toxin A-chain gene - hpt Hygromycin phosphotransferase - PCR Polymerase chain reaction - SDS Sodium dodecyl sulfate - SSC Sodium chloride-sodium citrate bufferThis revised version was published online September 2003 with corrections to Figure 6.Communicated by I.S. Chung  相似文献   

17.
The maizerab17 gene is expressed in different plant parts in response to ABA and osmotic stress (J. Vilardellet al., Plant Mol Biol 14 (1990) 423–432). Here we demonstrate that 5 upstream sequences of therab17 gene confer the appropriate patterns of expression on the chloramphenicol acetyl transferase (CAT) reporter gene in transgenic tobacco plants, as well as in protoplasts derived from cultured rice cells. Specifically, a CAT construct containing a large 5 upstream fragment ofrab17 (–1330/+29) results in high levels of CAT activity in embryos, leaves and roots of transgenic plants subjected to water stress or ABA treatment. Transient expression assays in rice protoplasts transfected with CAT genes fused torab17 promoter deletions indicate that a 300 bp DNA fragment (–351/–102) is sufficient to confer ABA responsiveness upon the reporter gene. Furthermore, a 100 bp sequence (–219/–102) is capable of conferring ABA responsiveness upon a minimal promoter derived from the 35S CaMV promoter. Gel retardation experiments indicate that maize nuclear proteins bind to this fragment. This region of 100 bp contains a sequence (ACGTGGC) which has been identified as an abscisic acid response element in studies of other ABA-responsive plant genes.  相似文献   

18.
TheLysobacter lactamgenus YK90pcbAB gene encoding -(l--aminoadipyl)-l-cysteinyl-d-valine (ACV) synthetase is located immediately upstream of thepcbC gene in the same orientation in the gene cluster involved in cephalosporin biosynthesis. ThepcbAB gene encodes a large polypeptide composed of 3722 amino acid residues with a molecular mass of 411 593 Da. The predicted amino acid sequence has a high degree of similarity with those of known ACV synthetases from fungi and actinomycetes. Within thepcbAB amino acid sequence, three conserved and repeated domains of about 600 amino acids were identified. The domains also share a high degree of similarity with non-ribosomal peptide synthetases such as gramicidin synthatase 2 ofBacillus brevis. ThepcbAB gene was expressed under the control of thelac promoter inPseudomonas putida. Expression of the gene cluster involved in cephalosporin biosynthesis inP. putida led to the accumulation of -lactam antibiotics. Deletion analysis of an open-reading frame located between thecefE andcefD genes from the gene cluster revealed that it encoded deacetylcephalosporin C synthetase (cefF). From the results presented here and those of previous studies, the genes involved in cephalosporin biosynthesis inL. lactamgenus appear to be clustered in the orderpcb AB-pcbC- cefE-cefF-cefD-bla in the same orientation within a 17-kb region of DNA.  相似文献   

19.
The structure and function of several C1 alleles have been investigated molecularly and the importance of C1 promoter sequences for gene expression was studied using transient transformation assays. The C1 mutants analyzed were the overexpressing allele C1-S, the light-inducible allele c1-p, the null recessive allele c1-n, and the Ds element-induced allele c1-m1. Nucleotide sequence analysis of the alleles revealed a number of differences, predominantly located at the 3 end of the gene. The promoter sequences of the C1 alleles investigated so far (including wild-type and the dominant inhibitor C1-I allele) are almost identical except for two short footprint-like sequences (Box I and Box 11) close to the putative CAAT box. Northern blot experiments and transient expression in particle gun experiments indicate that these sequences may be correlated with the different expression patterns of the alleles in the aleurone of maturing and germinating kernels.  相似文献   

20.
Vacuolar processing enzyme (VPE) is a cysteine protease responsible for the maturation of various vacuolar proteins in higher plants. The Arabidopsis thaliana (L.) Heynh. VPE gene, encoding a VPE homologue, is slowly up-regulated in both local and systemic leaves in response to wounding. To clarify the activation mechanism of VPE, we examined the accumulation of VPE mRNA after hormone treatments or after wounding in wild-type and various mutant plants of Arabidopsis. Both ethylene and jasmonic acid (JA) are known as signal molecules that activate the wound-responsive genes. However, treatment with exogenous JA had little effect on the VPE response, although JA activated the vegetative storage protein (VSP) gene, a typical wound-responsive gene. Wounding activated VPE even in two ethylene-insensitive plants (etr1-1 and ein2-1). Thus, the wound-induced expression of VPE was independent of ethylene and JA. We found that the wound-induced expression of VPE was reduced in two SA-deficient plants (pad4-1 and NahG), while the wound-induced expression of VSP increased in these mutants. Appreciable accumulation of SA was not observed in either the local or systemic leaves after wounding. These results suggest that endogenous SA enhances the wound-induced expression of VPE and attenuates the wound-induced expression of VSP, although SA is not a wound-signal that directly activates these genes.Abbreviations ABA abscisic acid - GST glutathione S-transferase - INA 2,6-dichloroisonicotinic acid - JA jasmonic acid - MeJA methyl jasmonate - PR pathogenesis-related - RBCS Rubisco small subunit - SA salicylic acid - VPE vacuolar processing enzyme - VSP vegetative storage protein  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号