首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thampatty BP  Li H  Im HJ  Wang JH 《Gene》2007,386(1-2):154-161
Tendinopathy is accompanied by inflammation, tendon matrix degradation, or both. Inflammatory cytokine IL-1beta, which is a potent inflammatory mediator, is likely present within the tendon. The purpose of this study was to determine the biological impact of IL-1beta on tendon fibroblasts by assessing the expression of cPLA(2), COX-2, PGE(2) and its receptors (EPs), collagen type-I, and MMPs. We also studied the role of the p38 MAPK pathway in IL-1beta-induced catabolic effects. We found that IL-1beta increased the expression levels of cPLA(2) and COX-2, and also increased the secretion of PGE(2). Induction of MMPs, such as MMP-1 and MMP-3 at the mRNA level, was also observed after stimulation with IL-1beta. Furthermore, the presence of IL-1beta significantly decreased the level of collagen type-I mRNA in tendon fibroblasts. These effects were found to be mediated by selective upregulation of EP(4) receptor, which is a member of G-protein-coupled receptor that transduces the PGE(2) signal. Blocking EP(4) receptor by a specific chemical inhibitor abolished IL-1beta-induced catabolic effects. These results suggest that IL-1beta-induced catabolic action on tendon fibroblasts occurs via the upregulation of two key inflammatory mediators, cPLA(2) and COX-2, which are responsible for the synthesis of PGE(2). IL-1beta further stimulates the expression of EP(4) receptor, suggesting positive feedback regulation which may lead to accelerated catabolic processes in tendon fibroblasts. Studies using pathway-specific chemical inhibitors suggest that the p38 MAPK pathway is the key signaling cascade transducing IL-1beta-mediated catabolic effects. Collectively, our findings suggest that the EP(4) receptor mediates the IL-1beta-induced catabolic metabolism via the p38 MAPK pathway in human tendon fibroblasts and may play a major role in the tendon's degenerative changes often seen in the later stages of tendinopathy.  相似文献   

2.
SW982 cells are characterized by expression of inflammatory cytokine and matrix metalloproteinase (MMP) genes and by their response to dexamethasone at different cell densities. They express genes encoding interleukin (IL)-1 beta; IL-6; transforming growth factor-beta; intercellular adhesion molecule-1; cycloxygenase (COX)-2; and MMPs, including MMP-1, MMP-2, MMP-13, and MT1-MMP; tissue inhibitor of metalloproteinase-2; and a disintegrin and metalloproteinase with thrombospondin motifs-4. Expression of all the genes examined was induced with 2 ng/ml IL-1 beta at low cell density. The cells, however, failed to express tumor necrosis factor-alpha, COX-1, and MMP-9, regardless of the presence of IL-1 beta. Dexamethasone significantly reduced IL-1 beta, IL-6, COX-2, and MMP-1 expression at high cell density. The results suggest that SW982 cells are a useful tool for studying the expression of inflammatory cytokine or MMP genes.  相似文献   

3.
Microdialysis studies indicate that mechanical loading of human tendon tissue during exercise or training can affect local synthesis and degradation of type I collagen. Degradation of collagen and other extracellular matrix proteins is controlled by an interplay between matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). However, it is unknown whether local levels of MMPs and TIMPs are affected by tendon loading in humans in vivo. In the present experiment, six healthy young men performed 1 h of uphill (3%) treadmill running. Dialysate was collected from microdialysis probes (placed in the peritendinous tissue immediately anterior to the Achilles tendon) before, immediately after, 1 day after, and 3 days after an exercise bout. MMP-2 and MMP-9 were measured in dialysate by gelatin zymography, and amounts were quantified by densitometry in relation to total protein in the dialysate. TIMP-1 and TIMP-2 were analyzed by reverse gelatin zymography and semiquantitated visually. Pro-MMP-9 increased markedly after exercise and remained high for 3 days after exercise. Pro-MMP-2 dropped from the basal level immediately after exercise and remained low 1 day after exercise but was slightly elevated 3 days after exercise. The MMP-2 inhibitory activity of TIMP-1 was clearly elevated 1 and 3 days after exercise, and the MMP-2 inhibitory activity of TIMP-2 rose 1 day after loading. The present findings demonstrate enhanced interstitial amounts of MMPs and TIMPs after exercise in the human peritendinous tissue in vivo, and the magnitude and time pattern of these changes may well indicate that MMPs and TIMPs are playing a role in extracellular matrix adaptation to exercise in tendon tissue.  相似文献   

4.
We examined the regulation of matrix metalloproteinase (MMP) production by mitogen-activated protein kinases and cyclooxygenases (COXs) in fibroblast-like synoviocytes (FLSCs). IL-1beta and TNF-alpha stimulated FLSC extracellular signal-regulated kinase (ERK) activation as well as MMP-1 and -13 release. Pharmacologic inhibitors of ERK inhibited MMP-1, but not MMP-13 expression. Whereas millimolar salicylates inhibited both ERK and MMP-1, nonsalicylate COX and selective COX-2 inhibitors enhanced stimulated MMP-1 release. Addition of exogenous PGE(1) or PGE(2) inhibited MMP-1, reversed the effects of COX inhibitors, and inhibited ERK activation, suggesting that COX-2 activity tonically inhibits MMP-1 production via ERK inhibition by E PGs. Exposure of FLSCs to nonselective COX and selective COX-2 inhibitors in the absence of stimulation resulted in up-regulation of MMP-1 expression in an ERK-dependent manner. Moreover, COX inhibition sufficient to reduce PGE levels increased ERK activity. Our data indicate that: 1) ERK activation mediates MMP-1 but not MMP-13 release from FLSCs, 2) COX-2-derived E PGs inhibit MMP-1 release from FLSCs via inhibition of ERK, and 3) COX inhibitors, by attenuating PGE inhibition of ERK, enhance the release of MMP-1 by FLSC.  相似文献   

5.
Interleukin-1 (IL-1) plays key roles in altering cartilage matrix turnover. This turnover is regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs). In the present study, we examined the effect of IL-1beta on cell proliferation, alkaline phosphatase (ALPase) activity, and the expression of MMPs, and TIMPs in chondrocytes derived from normal human femoral cartilage. The cells were cultured in Dulbecco's modified Eagle's medium containing 15% fetal bovine serum and 0, 1, 10, or 100 U/ml of IL-1beta for up to 28 days. The level of expression of MMPs and TIMPs was estimated by determining mRNA levels using real-time PCR and by determining protein levels using an enzyme-linked immunosorbent assay. Cell proliferation decreased in the presence of IL-1beta after day 21 of culture. ALPase activity decreased significantly in the presence of IL-1beta after day 10 of culture. The expression of MMP-1, -2, and -3 increased markedly in the presence of IL-1beta after day 21 of culture. MMP-13 expression increased markedly in the presence of IL-1beta on day 1 of culture, but decreased markedly after day 7. The expression of TIMP-1 increased significantly after day 14 of culture. The expression of TIMP-2 decreased significantly on day 1, but increased significantly from day 3 to day 14 of culture. These results suggest that IL-1beta may stimulate cartilage matrix turnover by increasing mainly MMP-13 production by the cells.  相似文献   

6.
7.
Integrin alpha(4)beta(1) on the surface of T lymphocytes interacts with vascular cell adhesion molecule-1 (VCAM-1) and fibronectin during migration of lymphocytes from the blood to sites of inflammation. Migrating lymphocytes actively modify their environment through a number of mechanisms including proteolysis of the extracellular matrix by matrix metalloproteinases (MMP) synthesized by the cells. In this study, expression of MMP upon alpha(4)beta(1)-mediated adhesion of leukocytes to two major ligands, the IIICS-1 domain of fibronectin and VCAM-1, has been examined. Adhesion of T lymphoblastoid Jurkat cells to the CS-1 peptide induced expression of mRNA for two MMPs, gelatinase A (MMP-2) and gelatinase B (MMP-9). As evaluated by relative RT-PCR and Northern blot analyses, the level of mRNA was upregulated about 4- to 5-fold for both MMPs compared to control cells maintained in suspension. With time, both enzymes were detected in conditioned media and inside the cells, and their identities were verified by Western blotting and gelatin zymography. Adhesion of Jurkat cells to the second major alpha(4)beta(1) ligand, VCAM-1, upregulated mRNA for MMP-2 (3.5-fold) and failed to induce expression of mRNA for MMP-9. Accordingly, only MMP-2 protein was detected in conditioned media of cells adherent to VCAM-1. Occupancy of alpha(4)beta(1) on the surface of suspended cells with soluble CS-1 peptide or VCAM-1 did not upregulate synthesis and release of MMPs. A similar pattern of induction of MMPs after adhesion to CS-1 and VCAM-1 was observed in T lymphocytes isolated from human blood. These results demonstrate that adhesion of T lymphocytes through alpha(4)beta(1) to different ligands, which bind to similar or overlapping sites in the integrin, induces intracellular events leading to distinct patterns of MMPs biosynthesis.  相似文献   

8.
Aortic smooth muscle cell release of matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2) has been implicated in aortic aneurysm pathogenesis, but proximal modulation of release is poorly understood. Extracellular nucleotides regulate vascular smooth muscle cell metabolism in response to physiochemical stresses, but nucleotide modulation of MMP and/or TIMP release has not been reported. We hypothesized that nucleotides modulate MMP-2 and TIMP-2 release from human aortic smooth muscle cells (HASMCs) via distinct purinergic receptors and signaling pathways. We exposed HASMCs to exogenous ATP and other nucleotides with and without interleukin-1beta (IL-1beta). HASMCs were pretreated in some experiments with apyrase, which degrades ATP, and inhibitors of ERK1/2, JNK, and p38 MAPK. MMP-2 and TIMP-2 released into supernatant were assessed using ELISA and Western blotting. ATP, adenosine, and UTP significantly stimulated MMP-2 release in the presence of IL-1beta (300 nM ATP: 181 +/- 22%, P = 0.003; 30 microm adenosine: 244 +/- 150%, P = 0.001; and 200 microm UTP: 153 +/- 40%, P = 0.015; vs. 100% constitutive). ATP also stimulated MMP-2 release in the absence of IL-1beta (100 microm ATP: 148 +/- 38% vs. 100% constitutive). Apyrase significantly reduced ATP-stimulated MMP-2 release (apyrase + 500 nM ATP: 59 +/- 3% vs. 124 +/- 7% with 500 nM ATP). Rank-order agonist potency for MMP-2 release was consistent with ATP activation of PAY and PAY receptors. ATP induced phosphorylation of intracellular JNK, and inhibition of the JNK pathway blocked ATP-stimulated MMP-2 release, indicating signaling via this pathway. Nucleotides are thus novel stimulants of MMP-2 release from HASMCs and may provide a mechanistic link between physiochemical stress in the aorta and aneurysms, especially in the context of inflammation.  相似文献   

9.
In addition to their stimulating function on osteoclastic bone resorption, bone resorptive factors may regulate proteinases and related factors in osteoblastic cells to degrade bone matrix proteins. This study investigated the regulation of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) by bone resorptive factors in the cultures of mouse osteoblastic MC3T3-E1 cells, mouse primary osteoblastic (POB) cells, and neonatal mouse calvariae. Expression of either MMP-2, -3, -9, -11, -13, and -14 or TIMP-1, -2, and -3 was detected in MC3T3-E1 cells and POB cells. When the bone resorptive factors parathyroid hormone, 1,25-dihydroxyvitamin D(3), prostaglandin E(2), interleukin-1beta (IL-1beta), and tumor necrosis factor-alpha (TNF-alpha) were added to the cell cultures, MMP-13 mRNA levels were found predominantly to increase by all resorptive factors in the three cultures. mRNA levels of either MMP-3 and -9 or TIMP-1 and -3 were found to increase mainly by the cytokines IL-1beta and TNF-alpha. BB94, a nonselective MMP inhibitor, neutralized the (45)Ca release stimulated by these resorptive factors to an extent similar to that of calcitonin, strongly suggesting that bone resorptive factors function at least partly through MMP formation. We propose that MMP-13 mRNA expression in osteoblastic cells may play an important role in stimulating matrix degradation by both systemic and local resorptive factors, whereas either MMP-3 and -9 or TIMP-1 and -3 might modulate matrix degradation by local cytokines only.  相似文献   

10.
Differences in the aggregation and release of growth factors including matrix metalloproteinases (MMPs) after loss of ovarian hormones could contribute to an exaggerated response to injury in arteries of ovariectomized animals. Therefore, experiments were designed to compare aggregation, dense granular ATP release, expression of MMPs (MMP-2, MMP-9, and MMP-14) and tissue inhibitors of metalloproteinase (TIMP-1 and TIMP-2) in circulating platelets from sexually mature (7 mo old) gonadally intact and ovariectomized (4 wk) female pigs. Numbers of circulating platelets did not change after ovariectomy, but the percentage of reticulated platelets increased significantly. Platelet aggregation and dense granular ATP secretion also increased significantly with ovariectomy. In platelet lysates, active MMP-2 increased, whereas MMP-14 significantly decreased, after ovariectomy; the expression of TIMP-1, TIMP-2, and P-selectin did not change. These results suggest that platelet turnover, aggregation, and ATP secretion increase with ovariectomy. Also, ovarian hormones selectively regulate the expression and activity of MMPs in porcine platelets. Increased platelet aggregation and activity of MMP-2 would alter platelet-platelet and platelet-vessel wall interactions, contributing to an exaggerated response to injury with loss of ovarian hormones.  相似文献   

11.
Oncostatin M (OSM) stimulates cartilage degradation in rheumatoid arthritis (RA) by inducing matrix metalloproteinases (MMPs) and aggrecanases (ADAMTS; a disintegrin and metalloproteinase with thrombospondin motif). Transforming growth factor beta (TGF-beta1) induces cartilage repair in joints but in excessive amounts, promotes inflammation. OSM and TGF-beta1 also induce tissue inhibitor of metalloproteinase-3 (TIMP-3), an important natural inhibitor of MMPs, aggrecanases, and tumor necrosis factor alpha converting enzyme (TACE), the principal proteases involved in arthritic inflammation and cartilage degradation. We studied cartilage protective mechanisms of the antiinflammatory cytokine, interleukin-4 (IL-4). IL-4 strongly (MMP-13 and TIMP-3) or minimally (ADAMTS-4) suppressed OSM-induced gene expression in chondrocytes. IL-4 did not affect OSM-stimulated phosphorylation of extracellular signal-regulated kinases (ERKs), protein 38 (p38), c-Jun N-terminal kinase (JNK) and Stat1. Lack of additional suppression with their inhibitors suggested that MMP-13, ADAMTS-4, and TIMP-3 inhibition was independent of these mediators. IL-4 also downregulated TGF-beta1-induced TIMP-3 gene expression, Smad2, and JNK phosphorylation. Additional suppression of TIMP-3 RNA by JNK inhibitor suggests JNK implication. The cartilage protective effects of IL-4 in animal models of arthritis may be due to its inhibition of MMPs and ADAMTS-4 expression. However, suppression of TIMP-3 suggests caution for using IL-4 as a cartilage protective therapy.  相似文献   

12.
Interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) are typical proinflammatory cytokines that influence various cellular functions, including metabolism of the extracellular matrix. We examined the roles of IL-1beta and TNF-alpha in basement membrane formation in an in vitro model of alveolar epithelial tissue composed of alveolar epithelial cells and pulmonary fibroblasts. Formation of the basement membrane by immortalized rat alveolar type II epithelial (SV40-T2) cells, which ordinarily do not form a continuous basement membrane, was dose-dependently upregulated in the presence of 2 ng/ml IL-1beta or 5 ng/ml TNF-alpha. IL-1beta or TNF-alpha alone induced increased secretion of type IV collagen, laminin-1, and nidogen-1/entactin, all of which contributed to this upregulation. In contrast, while SV40-T2 cells cultured with a fibroblasts-embedded type I collagen gel were able to form a continuous basement membrane, they failed to form a continuous basement membrane in the presence of IL-1beta or TNF-alpha. Fibroblasts treated with IL-1beta or TNF-alpha secreted matrix metalloproteinase (MMP)-9 and MMP-2, and these MMPs inhibited basement membrane formation and degraded the basement membrane architecture. Neither IL-1beta- nor TNF-alpha-treated SV40-T2 cells increased the secretion of MMP-9 and MMP-2. These results suggest that IL-1beta participates in basement membrane formation in two ways. One is the induction of MMP-2 and MMP-9 secretion by fibroblasts, which inhibits basement membrane formation, and the other is induction of basement membrane component secretion from alveolar epithelial cells to enhance basement membrane formation.  相似文献   

13.
Because matrix metalloproteinases (MMPs) play roles in inflammatory tissue injury, we asked whether MMP secretion by gastric epithelial cells may contribute to gastric injury in response to signals involved in Helicobacter pylori-induced inflammation and/or cyclooxygenase inhibition. Tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and epidermal growth factor (EGF) stimulated gastric cell MMP-1 secretion, indicating that MMP-1 secretion occurs in inflammatory as well as non-inflammatory situations. MMP-1 secretion required activation of the MAPK Erk and subsequent protein synthesis but was down-regulated by the alternate MAPK, p38. In contrast, secretion of MMP-13 was stimulated by TNF-alpha/IL-1beta but not EGF and was Erk-independent and mediated by p38. MMP-13 secretion was more rapid (peak, 6 h) than MMP-1 (peak > or =30 h) and only partly depended on protein synthesis, suggesting initial release of a pre-existing MMP-13 pool. Therefore, MMP-1 and MMP-13 secretion are differentially regulated by MAPKs. MMP-1 secretion was regulated by E prostaglandins (PGEs) in an Erk-dependent manner. PGEs enhanced Erk activation and MMP-1 secretion in response to EGF but inhibited Erk and MMP-1 when TNF-alpha and IL-1beta were the stimuli, indicating that the effects of PGEs on gastric cell responses are context-dependent. These data show that secretion of MMPs is differentially regulated by MAPKs and suggest mechanisms through which H. pylori infection and/or cyclooxygenase inhibition may induce epithelial cell signaling to contribute to gastric ulcerogenesis.  相似文献   

14.
Excessive mechanical load is thought to be responsible for the onset of osteoarthrosis (OA), but the mechanisms of cartilage destruction caused by mechanical loads remain unknown. In this study we applied a high magnitude cyclic tensile load to cultured chondrocytes using a Flexercell strain unit, which produces a change in cell morphology from a polygonal to spindle-like shape, and examined the protein level of cartilage matrixes and the gene expression of matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs) and proinflammatory cytokines such as IL-1beta and TNF-alpha. Toluidine blue staining, type II collagen immunostaining, and an assay of the incorporation of [35S]sulfate into proteoglycans revealed a decrease in the level of cartilage-specific matrixes in chondrocyte cultures subjected to high magnitude cyclic tensile load. PCR-Southern blot analysis showed that the high magnitude cyclic tensile load increased the mRNA level of MMP-1, MMP-3, MMP-9, IL-1beta, TNF-alpha and TIMP-1 in the cultured chondrocytes, while the mRNA level of MMP-2 and TIMP-2 was unchanged. Moreover, the induction of MMP-1, MMP-3 and MMP-9 mRNA expression was observed in the presence of cycloheximide, an inhibitor of protein synthesis. These findings suggest that excessive mechanical load directly changes the metabolism of cartilage by reducing the matrix components and causing a quantitative imbalance between MMPs and TIMPs.  相似文献   

15.
Fibroblast migration, proliferation, extracellular matrix protein synthesis and degradation, all of which play important roles in inflammation, are themselves induced by various growth factors and cytokines. Less is known about the interaction of these substances on lung fibroblast function in pulmonary fibrosis. The goal of this study was to investigate the effects of PDGF alone and in combination with IL-1beta and TNF-alpha on the production of human lung fibroblast matrix metalloproteinases, proliferation, and the chemotactic response. The assay for MMPs activity against FITC labeled type I and IV collagen was based on the specificity of the enzyme cleavage of collagen. Caseinolytis and gelatinolytic activities of secreted proteinases were analyzed by zymography. Fibronectin in conditioned media was measured using human lung fibronectin enzyme immunoassay. Cell proliferation was measured by 3H-Thymidine incorporation assay. Cell culture supernatants were tested for PGE2 content by ELISA. Chemotactic activity was measured using the modified Boyden chamber. Matrix metalloproteinase assay indicated that IL-1beta, TNF-alpha and PDGF induced intestitial collagenase (MMP-1) production. MMP assay also indicated that IL-1beta and TNF-alpha had inhibitory effects on MMP-2,9(gelatinaseA,B) production. Casein zymography confirmed that IL-1beta stimulated stromlysin (matrix metalloproteinase 3; MMP-3) and gelatin zymography demonstrated that TNF-alpha induced MMP-9 production in human lung fibroblast, whereas PDGF alone did not. PDGF in combination with IL-1beta and TNF-alpha induced MMP-3 and MMP-9 activity, as demonstrated by zymography. PDGF stimulated lung fibroblast proliferation in a concentration-dependent manner, whereas IL-1beta and TNF-alpha alone had no effect. In contrast, the proliferation of human lung fibroblasts by PDGF was inhibited in the presence of IL-1beta and TNF-alpha, and this inhibition was not a consequence of any elevation of PGE2. PDGF stimulated fibroblast chemotaxis in a concentration-dependent manner, and this stimulation was augmented by combining PDGF with IL-1beta and TNF-alpha. These findings suggested that PDGF differentially regulated MMPs production in combination with cytokines, and further that MMP assay and zymography had differential sensitivity for detecting MMPs. The presence of cytokines with PDGF appears to modulate the proliferation and chemotaxis of human lung fibroblasts.  相似文献   

16.
Located within the perisinusoidal space and surrounded by extracellular matrix, hepatic stellate cells (HSC) undergo phenotypic trans-differentiation called "myofibroblastic activation" in liver fibrogenesis. This study investigated the regulation of interleukin-1 (IL-1alpha) on expression of matrix metalloproteinases (MMPs) by HSC grown in three-dimensional extracellular matrix and the role of MMPs in HSC activation. To recapitulate the in vivo "quiescent" state of HSC, the isolated rat HSC were grown in three-dimensional Matrigel or type I collagen. Stimulation with IL-1alpha caused robust induction of pro-MMP-9 (the precursor of matrix metalloproteinase-9) when HSC were cultured in these matrices. IL-1alpha induced a conversion of the pro-MMP-9 to the active form only when the cells were in type I collagen. In collagen lattices, IL-1alpha provoked activation of HSC with induction of MMP-13, MMP-3, and breakdown of the matrix. The HSC activation was completely prevented by a treatment of the cells with tissue inhibitor of metalloproteinase-1 or deprivation of MMP-9. Once fully activated, HSC failed to express MMP-9 and showed attenuated induction of MMP-13 and MMP-3. Further, we demonstrated colocalization of alpha-smooth muscle actin and MMP-9 in a subpopulation of HSC in human fibrotic liver tissues. Thus, this study provides a novel model to enlighten the role of MMPs, particularly that of MMP-9, in HSC activation regulated by a specific cytokine in liver fibrogenesis.  相似文献   

17.
We have previously documented that rat IL-2-activated NK (A-NK) cells produce matrix metalloproteinase-2 (MMP-2) and MMP-9. In this study, we describe mouse A-NK cell-derived MMPs, including MT-MMPs, and also TIMPs. RT-PCR analysis from cDNA of mouse A-NK cells revealed mRNA for MMP-2, MMP-9, MMP-11, MMP-13, MT1-MMP, MT2-MMP, TIMP-1, and TIMP-2. MMP-2 and MMP-9 expression was confirmed by gelatin zymography. Moreover, we report for the first time that MT-MMPs are expressed by NK cells, i.e., large granular lymphocytes as determined by both RT-PCR and Western blots. TIMP-1 expression was detected as a 29-kDa protein in Western blots. It is intriguing that TIMP-2 protein from A-NK cells was also detected as a 29-kDa protein, which is clearly different from the previously reported molecular mass of 21 kDa in mouse and human cells. In addition, inhibition of MMPs by BB-94, a selective inhibitor of MMP, significantly inhibited the ability of mouse A-NK cells to migrate through Matrigel, a model basement membrane. Taken together, these findings suggest that A-NK cells may therefore use multiple MMPs in various cellular functions, including degradation of various extracellular matrix molecules as they extravasate from blood vessels and accumulate within cancer metastases following their adoptive transfer.  相似文献   

18.
The carbohydrate polymer, hyaluronan, is a major component of the extracellular matrix in animal tissues. Exogenous hyaluronan has been used to treat osteoarthritis (OA), a degenerative joint disease involving inflammatory changes. The underlying mechanisms of hyaluronan in OA are not fully understood. Pro-inflammatory interleukin (IL)-1β downregulates peroxisome proliferator-activated receptor gamma (PPARγ), and increases expression of matrix metalloproteinases (MMPs) which are responsible for the degeneration of articular cartilage. The effects of low- and high-molecular-weight hyaluronan (oligo-HA and HMW-HA) on the inflammatory genes were determined in human SW-1353 chondrosarcoma cells. HMW-HA antagonized the effects of IL-1β by increasing PPARγ and decreasing cyclooxygenase (COX)-2, MMP-1, and MMP-13 levels. It promoted Akt, but suppressed mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NFκB) signaling, indicating anti-inflammatory effects. In contrast, the cells had overall opposite responses to oligo-HA. In conclusion, HMW-HA and oligo-HA exerted differential inflammatory responses via PPARγ in IL-1β-treated chondrosarcoma cells.  相似文献   

19.
The function of cyclophilin C-associated protein (CyC-AP) on expression of extracellular matrix and matrix metalloproteinases (MMPs) was studied in CyC-AP-null mice. Fibronectin showed increased expression of the 53- and 29-kDa fragments in skin and wounds from CyC-AP-null mice. Type I collagen had an initial degraded pattern in the skin of CyC-AP-null mice, which did not occur in wild-type mice. MMP-3, MMP-13, MMP-14, and tumor necrosis factor-alpha (TNFalpha) had a higher expression in CyC-AP-null skin. During wound healing, MMP-13 and TNFalpha were stimulated to an even higher level, suggesting they are regulated by multiple factors. To understand the regulatory mechanisms of the up-regulated MMPs, the direct effects of TNFalpha, IL-1beta, 45-kDa fibronectin fragment (FN-45), and the 70-kDa fibronectin fragments (FN-70) on the expression of MMPs were studied. MMP-13 expression increased significantly in both CyC-AP-null and wild-type dermal fibroblasts after treatment with IL-1beta or with TNFalpha. However, MMP-13 expression did not increase in CyC-AP-null fibroblasts but did increase only in wild-type fibroblasts after FN-45 and FN-70 treatment. MMP-3 activation was induced by FN-45 and did not show a difference between CyC-AP-null and wild-type fibroblasts, suggesting different regulatory pathways for FN-45 on MMP-13 and MMP-3 expression. Our data are the first to demonstrate that deletion of CyC-AP can abolish fibronectin fragment-induced MMP-13 expression through an unknown mechanism. CyC-AP is an important factor for the regulation of MMP-13 expression.  相似文献   

20.
Vascular smooth muscle (VSM) cell migration is a critical step in the development of a neointima after angioplasty. Matrix metalloproteinases (MMPs) degrade the basement membrane and extracellular matrix, facilitating VSM cell migration. Recently, we demonstrated that nitric oxide (NO) inhibits interleukin-1 beta (IL-1 beta)-stimulated MMP-9 induction in rat aortic VSM cells. In this study, we examined the hypothesis that NO inhibits MMP-9 induction by attenuating superoxide generation and extracellular signal-regulated kinase (ERK) activation. Stimulation of VSM cells with IL-1 beta significantly (P < 0.05) increased superoxide production, ERK activation, and MMP-9 induction. Pretreatment of VSM cells with the NO donor DETA NONOate significantly (P < 0.05) decreased IL-1 beta-stimulated superoxide generation. In addition, pretreatment of VSM cells with a specific ERK pathway inhibitor, PD-98059, or DETA NONOate inhibited IL-1 beta-stimulated ERK activation and MMP-9 induction. Direct exposure of VSM cells to increased superoxide levels by treatment with xanthine/xanthine oxidase increased ERK activation and MMP-9 induction, whereas pretreatment of cells with PD-98059 significantly (P < 0.05) inhibited xanthine/xanthine oxidase-stimulated ERK activation and MMP-9 induction. We conclude that NO inhibits IL-1 beta-stimulated MMP-9 induction by inhibiting superoxide generation and subsequent ERK activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号