首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Assembly and processing of procollagen type III in chick embryo blood vessels   总被引:10,自引:0,他引:10  
The processing of [3H]proline-labeled procollagen III in excised chick embryo blood vessels was found to differ significantly from that of procollagen I in the same tissue. While first the amino propeptides and then the carboxyl propeptides were fairly rapidly cleaved from procollagen I, only the carboxyl propeptides were split off procollagen III, leaving pN-collagen III. This intermediate, which is only slowly converted to collagen III by loss of amino propeptides, was characterized by its sedimentation properties, isolation of the amino propeptide, and reaction with purified antibodies that are specific against bovine amino propeptide III. It is interchain disulfide-linked, both through the amino propeptide and the carboxyl ends of the collagen chains. The conversion of procollagen III to pN-collagen III either in blood vessels, or after isolation by a carboxyl procollagen peptidase obtained from chick tendon fibroblast cultures, is inhibited by 50 mM arginine. Underhydroxylated procollagen III was isolated from blood vessels treated with alpha, alpha'-dipyridyl. Its amino propeptides reacted with the above antibodies but were not linked to each other. In contrast, its carboxyl propeptides were interchain disulfide-bridged, supporting previous suggestions that the carboxyl propeptides play a role in the assembly of procollagen trimer.  相似文献   

2.
Folding of carboxyl domain and assembly of procollagen I   总被引:3,自引:0,他引:3  
An early form of procollagen I was found in acetic acid extracts of radioactively labeled chick embryo skull bones. It resembled native procollagen I, but sedimented slightly faster, and its component chains were slightly underhydroxylated and were not disulfide-linked to each other, although its propeptides were internally disulfide-bonded. Pulse-chase experiments showed its conversion to disulfide-linked procollagen. As the same conversion occurred when proline hydroxylation was blocked by 2,2'-dipyridyl, we infer that the formation of this precursor from its component chains does not require collagen triple helix formation. We suggest that interaction between the folded carboxyl propeptides of individual pro-alpha (I) chains is an important step in the formation of this precursor and of procollagen I. Studies of the refolding and association of fully reduced and denatured carboxyl propeptides supported this concept. In the presence of glutathione the correct disulfide bonds could be reestablished, as judged by a mapping of some tryptic peptides. Individual carboxyl propeptides refolded first, and this occurred even in 2 M urea. Recognition between folded carboxyl propeptides occurred only when less than 0.5 M urea was present. The presence of the carboxyl telopeptides was important for trimeric reassembly. Individual propeptides also folded spontaneously during cell-free translation of pro-alpha (I) chains and were recognized by specific antibodies. We consider the role of carboxyl propeptides in the formation of procollagen I molecules and suggest a model of self-assembly, possibly facilitated by interactions with the luminal surface of the rough endoplasmic reticulum.  相似文献   

3.
J Koivu 《FEBS letters》1987,217(2):216-220
Procollagen molecules have amino-terminal and carboxy-terminal propeptides at the respective ends of the collagenous triple helix. The carboxy-terminal propeptides enhance and direct the association of pro alpha-chains into procollagen molecules, but the mechanism of this registration function is still obscure. A hypothesis concerning the function of disulfide bonding in the assembly of types I, II and III procollagen is put forward here.  相似文献   

4.
A general mechanism for the assembly of procollagens is proposed from a biosynthetic study of procollagen III. This was shown to proceed by a stepwise process punctuated by disulfide bond formation and an assembly intermediate was recovered. The biosynthesis of type III procollagen in excised chick embryo blood vessels was studied by radioactive labeling for 30 min. Velocity sedimentation under denaturing conditions and purified antibodies specific against bovine amino propeptide III were used to identify and characterize monomeric pro alpha 1 III chains and a type III procollagen intermediate which is interchain disulfide-linked only at the carboxyl end but not at the amino end. The monomeric chains presumably have intrachain disulfide bonds within the propeptides. The monomeric pro alpha 1 III chains were also found when alpha, alpha'-dipyridyl was present during incubation. Pulse-chase experiments show that the monomeric chains and the intermediate are biosynthetic precursors of type III procollagen. Furthermore, it is shown that monomeric pro alpha 1 chains are not triple helical when extracted under nondenaturing conditions. The results indicate that the assembly of pro alpha 1 III chains into type III procollagen starts with the association of the folded carboxyl propeptides and is followed by formation of disulfide bonds between carboxyl propeptides, folding of the triple helix, and formation of disulfide bonds between amino propeptides. All procollagens may follow a similar assembly sequence.  相似文献   

5.
We present, here, evidence for a pretranslational role of procollagen propeptides in the regulation of collagen synthesis. Amino- and carboxyl-terminal type I procollagen propeptides were isolated and purified from chick calvaria and tendon cultures. Human lung fibroblasts (IMR-90) were incubated in medium containing varying concentrations of propeptides. Amino-propeptides at 10 nM caused an 80% decrease in collagen synthesis compared to control. Higher concentrations of amino-propeptides did not decrease collagen synthesis further and no significant effect on non-collagen synthesis was found throughout the entire concentration range. Carboxyl-propeptides also inhibited collagen synthesis. At 10 nM, collagen synthesis was decreased by 30% and a concentration of 40 nM caused an 80% reduction. However, at the latter concentration non-collagen synthesis was also affected, decreasing by 20% relative to control. To assess possible pretranslational effects of propeptides, IMR-90 fibroblasts were treated with varying concentrations of each propeptide and levels of type I procollagen mRNA was determined by dot hybridization with a 32P-alpha 2(I) cDNA probe. Both propeptides caused significant concentration-dependent decreases in procollagen type I mRNA levels. At 10 nM, the amino-propeptide resulted in a 55% decrease in collagen mRNA levels while at 40 nM these levels decreased by 72% compared to control. Carboxyl-propeptides were also inhibitory, decreasing mRNA levels by 33% at 10 nM and 73% at 40 nM. Messenger RNA levels of a representative noncollagenous protein, beta-actin, were unaffected by either propeptide throughout the concentration range.  相似文献   

6.
The purpose of this study was to correlate ultrastructural features of tendon collagen fibrils at various stages of development with the presence of procollagen, pN-collagen, pC-collagen, and the free amino propeptides and carboxyl propeptide of type I procollagen. Tendons from 10-, 14-, and 18-day chicken embryos reveal small, well-defined intercellular compartments containing collagen fibrils with diameters showing a unimodal distribution. At 21 days (hatching) and 9 days (post hatching) and at 5 weeks (post hatching), the compartments are larger, less well-defined, and there is multimodal distribution of tendon fibril diameters. Procollagen and the intermediates pN-collagen and pC-collagen are present in tendons up to 18 days. Thereafter there is a marked reduction in procollagen, whereas the intermediates persist throughout all stages of development. Similarly, free amino propeptides and carboxyl propeptides of type I procollagen were found at all stages. The amino propeptide of type III procollagen was restricted to the peritendineum until 7 weeks post hatching. At that time, a network of fibrils containing the amino propeptide of type III procollagen was seen delineating well-circumscribed compartments of collagen fibrils throughout the entire tendon. This study supports the notion that pN- and pC-collagen have an extracellular role and participate in collagen fibrillogenesis.  相似文献   

7.
During the biosynthesis and assembly of collagen structures, disulfide links can serve several functions. During biosynthesis they successively stabilize intra-peptide folding and associations of three chains into one molecule. Studies on the refolding and reassociation of reduced and denatured carboxyl propeptides of procollagen I showed that successive interactions of folding and assembly are successively weaker. Disulfide bridges were reestablished within correctly refolded carboxyl propeptides. Rearrangements of disulfide bridges may occur during the processing of type V procollagen molecules as these collagens become incorporated into extracellular matrix. The basement membrane procollagen IV molecules become disulfide linked at each end into networks, and there are indications that further rearrangements of disulfide links may allow additional modulation.  相似文献   

8.
Procollagen from the culture medium of human foreskin fibroblasts is efficiently adsorbed on controlled-pore glass (CPG) beads. Elution of adsorbed protease(s), capable of procollagen degradation, is accomplished with 1 m phosphate. This allows subsequent purification steps to be accomplished without detectable degradation of the high-molecular-weight procollagen form which is subsequently eluted with 1 m Tris. Analysis of the Tris elution fraction from CPG beads by sodium dodecyl sulfate-agarose-polyacrylamide electrophoresis on 2% gels indicated that the majority of protein is types I and III procollagens and partially processed intermediates. Types I and III procollagens were separated by DEAE-cellulose chromatography, and presumptive undegraded type I procollagen was resolved from processed forms by molecular sieve chromatography in 1 m CaCl2 on agarose beads. The high-molecular-weight type I human procollagen isolated by this method was found to contain both amino and carboxy-terminal propeptides. Two α1 and one α2 procollagen chains, disulfide bonded via the carboxy-terminal propeptides, are present per molecule. This procedure represents an efficient and relatively rapid method for preparing human procollagen in sufficient quantity for detailed chemical analysis.  相似文献   

9.
The specific mammalian collagenase isolated from cultures of metastatic mouse PMT sarcoma cells cleaves murine procollagen IV into two segments, of approximate mass ratio 3:1. These fragments were separated by velocity sedimentation, visualized by electron microscopy, and analyzed. The longer COOH-terminal procollagen segment has a 270-nm collagenous portion with a knob at one end. This knob consists of the three previously identified, noncollagenous carboxyl propeptides, of approximately 30,000 daltons each. These carboxyl propeptides are chain-specific, and the three chains of each segment have the same amino to carboxyl orientation. The collagenase cuts through all three chains at one site, and the three-component chains of both the longer COOH-terminal procollagen segment and the shorter NH2-terminal procollagen segment are linked by interchain disulfide bridges. The enzyme cuts off the same COOH-terminal procollagen segment from procollagen IV monomers and tetramers, and the flexibility of this segment is similar to that of interstitial collagen helices. The amino ends of the NH2-terminal procollagen segments derived from tetramers remain joined as the 32-nm long "7 S collagen" junctional complex, and the remaining 89-nm long projecting threads are significantly more flexible than the COOH-terminal procollagen segment. The electrophoretic mobilities of the enzyme cleavage products are consistent with a heterotrimeric composition of this procollagen IV.  相似文献   

10.
Dermatosparaxis is a recessively inherited connective-tissue disorder that results from lack of the activity of type I procollagen N-proteinase, the enzyme that removes the amino-terminal propeptides from type I procollagen. Initially identified in cattle more than 20 years ago, the disorder was subsequently characterized in sheep, cats, and dogs. Affected animals have fragile skin, lax joints, and often die prematurely because of sepsis following avulsion of portions of skin. We recently identified two children with soft, lax, and fragile skin, which, when examined by transmission electron microscopy, contained the twisted, ribbon-like collagen fibrils characteristic of dermatosparaxis. Skin extracts from one child contained collagen precursors with amino-terminal extensions. Cultured fibroblasts from both children failed to cleave the amino-terminal propeptides from the pro alpha 1(I) and pro alpha 2(I) chains in type I procollagen molecules. Extracts of normal cells cleaved to collagen, the type I procollagen synthesized by cells from both children, demonstrating that the enzyme, not the substrate, was defective. These findings distinguish dermatosparaxis from Ehlers-Danlos syndrome type VII, which results from substrate mutations that prevent proteolytic processing of type I procollagen molecules.  相似文献   

11.
12.
Procollagen N-proteinase, the enzyme which cleaves the NH2-terminal propeptides from type I procollagen, was purified over 15,000-fold from extracts of chick embryos by chromatography on columns of DEAE-cellulose, concanavalin A-agarose, heparin-agarose, pN-collagen-agarose, and a filtration gel. The purified enzyme had an apparent molecular weight of 320,000 as estimated by gel filtration and a pH optimum for activity of 7.4 to 9.0. The enzyme was inhibited by metal chelators and the thiol reagent dithiothreitol. Addition of calcium was required for maximal activity under the standard assay conditions, and the presence of calcium decreased thermal inactivation at 37 degrees C. The purified enzyme cleaved a homotrimer of pro-alpha 1(I) chains, an observation which indicated that the presence of pro-alpha 2(I) chain is not essential for the enzymic cleavage of NH2-terminal propeptides. Previous observations suggesting that the enzyme requires a substrate with a native conformation were explored further by reacting the enzyme with type I procollagen at different temperatures. Type I procollagen from chick embryo fibroblasts became resistant to cleavage at about 43 degrees C. Type I procollagen from human skin fibroblasts, which was previously shown to have a slightly lower thermal stability than chick embryo type I procollagen, became resistant to cleavage at temperatures that were about 2 degrees C lower. The results suggested that the enzyme is a sensitive probe for the three-dimensional structure of the NH2-terminal region of the procollagen molecule and that it requires the protein substrate to be triple helical.  相似文献   

13.
Collagen fibers are the main components of most of the extracellular matrices where they provide a structural support to cells, tissues and organs. Fibril-forming procollagens are synthetized as individual chains that associate to form homo- or hetero-trimers. They are characterized by the presence of a central triple helical domain flanked by amino and carboxy propeptides. Although there are some exceptions, these two propeptides have to be proteolytically removed to allow the almost spontaneous assembly of the trimers into collagen fibrils and fibers. While the carboxy-propeptide is mainly cleaved by proteinases from the tolloid family, the amino-propeptide is usually processed by procollagen N-proteinases: ADAMTS2, 3 and 14.This review summarizes the current knowledge concerning this subfamily of ADAMTS enzymes and discusses their potential involvement in physiopathological processes that are not directly linked to fibrillar procollagen processing.  相似文献   

14.
S Curran  D J Prockop 《Biochemistry》1982,21(7):1482-1487
The amino-terminal propeptide from type II procollagen was isolated from organ cultures of sternal cartilages from 17-day-old chick embryos. The procedure provided the first isolation of the propeptide in amounts adequate for chemical characterization. The propeptide had an apparent molecular weight of 18000 as estimated by gel electrophoresis in sodium dodecyl sulfate. It contained a collagen-like domain as demonstrated by its amino acid composition, circular dichroism spectrum, and susceptibility to bacterial collagenase. One residue of hydroxylysine was present, the first time this amino acid has been detected in a propeptide. The peptide contained no methionine and only two residues of half-cystine. Antibodies were prepared to the propeptide and were used to establish its identity. The antibodies precipitated type II procollagen but did not precipitate type II procollagen from which the amino and carboxy propeptides were removed with pepsin. Also, they did not precipitate the carboxy propeptide of type II procollagen. The data demonstrated th at the type II amino propeptide was similar to the amino propeptides of type I and type III procollagens in that it contained a collagen-like domain. It differed, however, in that it lacked a globular domain as large as the globular domain of 77-86 residues found at the amino-terminal ends of the pro alpha 1 chains of type I and type III procollagens.  相似文献   

15.
Matrix-free cells obtained from chick embryo cartilage were incubated in the presence of α,α′-dipyridyl and radioactive mannose in order to examine the incorporation of mannose into the propeptide extensions of Type II procollagen. Cell proteins were digested with bacterial collagenase and the digests were examined by polyacrylamide gel electrophoresis. Radioactive mannose was found in fragments from both the N- and C-propeptides, and therefore the results provided the first indication that both these propeptides of Type II procollagen contain mannose. The results also supported previous indications that addition of carbohydrate to the propeptides of procollagen does not require folding of the collagen domain into a triple helix.  相似文献   

16.
Procollagen N-proteinase (EC 3.4.24.14), the enzyme that cleaves the NH2-terminal propeptides from type I procollagen, was purified over 20,000-fold with a yield of 12% from extracts of 17-day-old chick embryo tendons. The procedure involved precipitation with ammonium sulfate, adsorption on concanavalin A-Sepharose, and five additional column chromatographic steps. The purified enzyme was a neutral, Ca2+-dependent proteinase (5-10 mM) that was inhibited by metal chelators. It had a molecular mass of 500 kDa as determined by gel filtration. The enzyme contained unreduced polypeptides of 61, 120, 135, and 161 kDa that were separated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The 135- and 161-kDa polypeptides were catalytically active after elution from the polyacrylamide gel. Other properties of 500-kDa enzyme are: 1) the Km for type I procollagen is 54 nM at pH 7.5 and 35 degrees C, and the kappa cat is 350 h-1; 2) the activation energy for reaction with type I procollagen is 7,100 cal mol-1; 3) the isoelectric point is 3.6; and 4) the enzyme specifically cleaves the NH2-terminal propeptides of type I and II procollagen, but not of type III procollagen. A minor form of N-proteinase with a 300-kDa mass was also purified and was found to contain a 90-kDa polypeptide as the major active polypeptide. The enzyme appeared to be a degraded form of the 500-kDa N-proteinase. The properties of the 300-kDa enzyme were similar to those observed for the 500-kDa enzyme.  相似文献   

17.
Procollagen carboxyl-terminal proteinase, the enzyme which cleaves the carboxyl-terminal propeptides from type I procollagen, was extensively purified in a yield of 25% from pooled culture media of 17-day-old chick embryo tendons using a procedure which involved chromatography on Green A Dye matrix gel, concanavalin A-Sepharose and heparin-Sepharose, and filtration gels of Sephacryl S-300 and S-200. The purified enzyme is a neutral, Ca2+-dependent proteinase which is inhibited by metal chelators, but not by inhibitors for serine and cysteine proteinases. Calcium in a concentration of 5-10 mM is required for optimal activity. The molecular weight of the enzyme was determined to be 97,000-110,000 by gel filtration and by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Other properties of the carboxyl-terminal proteinase are: 1) the Km for the type I procollagen is 96 nM at pH 7.5 and 35 degrees C; 2) the activation energy for the reaction with type I procollagen is 21,000 cal mol-1; 3) amino acid sequencing of the released carboxyl-terminal propeptide indicated the enzyme specifically cleaves an -Ala-Asp- bond in both the pro-alpha 1(I) and pro-alpha 2(I) chains; 4) the enzyme specifically cleaves the carboxyl-terminal propeptides of a homotrimer of pro-alpha 1(I) chains and type II and III procollagens, but it does not cleave type IV procollagen. The results suggest that the enzyme is involved in the processing of type I procollagen in vivo.  相似文献   

18.
Type I procollagen secreted by matrix-free chick embryo tendon cells was labeled with L-[3,3'-3H] cystine and purified by DEAE-cellulose chromatography. After bacterial collagenase digestion, the NH2- and COOH-terminal propeptides were partially characterized by ion exchange chromatography and gel filtration. Similar experiments were then conducted after labeling with either D-[6-3H] glucosamine, D-[2-3H] mannose, or D-[U-14C] glucose. On the basis of these studies and subsequent carbohydrate analysis, it was concluded that the COOH-terminal peptide contained greater than 90% of the radioactive carbohydrate which consisted predominantly of glucosamine and mannose with traces of galactosamine and galactose. Only radioactive glucosamine could be detected in the NH2-terminal propeptide. Under conditions which inhibit hydroxylation of lysine and glycosylation of hydroxylysine, unhydroxylated procollagen (protocollagen) could still be labeled with [3H] glucosamine and [3H] mannose. This suggested that glycosylation of the propeptides is at least initiated at the level of the rough endoplasmic reticulum.  相似文献   

19.
A rapid assay procedure was developed for cleavage of the N-terminal propeptides of procollagen. With the assay a neutral procollagen N-protease was purified about 300-fold from chick embryo tendon extract. The enzyme had an apparent molecular weight of 260 000 and a pH optimum of 7.4. Ca2+ was required for enzymic activity but this requirement was partially replaced by Mg2+ or Mn2+. The enzyme was bound to concanavalin A-agarose and therefore was presumably a glycoprotein. The N-propeptides released from type I procollagen were of about 23 000 and 11 000 daltons as estimated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The partially purified enzyme was also found to cleave type II procollagen and the N-propeptide obtained was about 18 000 daltons. Heat denaturation of either type I or type II procollagen decreased the rate at which the proteins were cleaved by the N-protease.  相似文献   

20.
Building collagen molecules,fibrils, and suprafibrillar structures   总被引:8,自引:0,他引:8  
Fibril-forming collagens are synthesized in precursor form, procollagens, with N- and C-terminal propeptide extensions. The C-propeptides direct chain association during intracellular assembly of the procollagen molecule from its three constituent polypeptide chains. Following or during secretion into the extracellular matrix, propeptides are cleaved by specific procollagen proteinases, thereby triggering fibril formation. The recent determination of the low-resolution structure of the C-propeptide trimer gives insights into the mechanism of procollagen chain association. In the extracellular matrix, the procollagen C-propeptides ensure procollagen solubility, while persistence of the N-propeptides controls fibril shape. Mechanisms for the control of fibril diameter are reviewed in terms of the radial packing model for collagen fibril structure. Finally, procollagen molecules have recently been shown to undergo liquid crystalline ordering in solution, prior to fibril assembly. This may provide an explanation for the liquid crystal-like suprafibrillar architectures of different connective tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号