首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Z-disc is a highly specialized multiprotein complex of striated muscles that serves as the interface of the sarcomere and the cytoskeleton. In addition to its role in muscle contraction, its juxtaposition to the plasma membrane suggests additional functions of the Z-disc in sensing and transmitting external and internal signals. Recently, we described two novel striated muscle-specific proteins, calsarcin-1 and calsarcin-2, that bind alpha-actinin on the Z-disc and serve as intracellular binding proteins for calcineurin, a calcium/calmodulin-dependent phosphatase shown to be integral in cardiac hypertrophy as well as skeletal muscle differentiation and fiber-type specification. Here, we describe an additional member of the calsarcin family, calsarcin-3, which is expressed specifically in skeletal muscle and is enriched in fast-twitch muscle fibers. Like calsarcin-1 and calsarcin-2, calsarcin-3 interacts with calcineurin, and the Z-disc proteins alpha-actinin, gamma-filamin, and telethonin. In addition, we show that calsarcins interact with the PDZ-LIM domain protein ZASP/Cypher/Oracle, which also localizes to the Z-disc. Calsarcins represent a novel family of sarcomeric proteins that serve as focal points for the interactions of an array of proteins involved in Z-disc structure and signal transduction in striated muscle.  相似文献   

2.
Filamin, also called actin binding protein-280, is a dimeric protein that cross-links actin filaments in the cortical cytoplasm. In addition to this ubiquitously expressed isoform (FLN1), a second isoform (ABP-L/gamma-filamin) was recently identified that is highly expressed in mammalian striated muscles. A monoclonal antibody was developed, that enabled us to identify filamin as a Z-disc protein in mammalian striated muscles by immunocytochemistry and immunoelectron microscopy. In addition, filamin was identified as a component of intercalated discs in mammalian cardiac muscle and of myotendinous junctions in skeletal muscle. Northern and Western blots showed that both, ABP-L/gamma-filamin mRNA and protein, are absent from proliferating cultured human skeletal muscle cells. This muscle specific filamin isoform is, however, up-regulated immediately after the induction of differentiation. In cultured myotubes, ABP-L/gamma-filamin localises in Z-discs already at the first stages of Z-disc formation, suggesting that ABP-L/gamma-filamin might play a role in Z-disc assembly.  相似文献   

3.
gamma-Filamin, also called ABP-L, is a filamin isoform that is specifically expressed in striated muscles, where it is predominantly localized in myofibrillar Z-discs. A minor fraction of the protein shows subsarcolemmal localization. Although gamma-filamin has the same overall structure as the two other known isoforms, it is the only isoform that carries a unique insertion in its immunoglobulin (Ig)-like domain 20. Sequencing of the genomic region encoding this part of the molecule shows that this insert is encoded by an extra exon. Transient transfections of the insert-bearing domain in skeletal muscle cells and cardiomyocytes show that this single domain is sufficient for targeting to developing and mature Z-discs. The yeast two-hybrid method was used to identify possible binding partners for the insert-bearing Ig-like domain 20 of gamma-filamin. The two Ig-like domains of the recently described alpha-actinin-binding Z-disc protein myotilin were found to interact directly with this filamin domain, indicating that the amino-terminal end of gamma-filamin may be indirectly anchored to alpha-actinin in the Z-disc via myotilin. Since defects in the myotilin gene were recently reported to cause a form of autosomal dominant limb-girdle muscular dystrophy, our findings provide a further contribution to the molecular understanding of this disease.  相似文献   

4.
There are a large number of proteins associated with Z-bands in myofibrils, but the precise arrangements of most of these proteins in Z-bands are largely unknown. Even less is known about how these arrangements change during myofibrillogenesis. We have begun to address this issue using Sensitized Emission Fluorescence Resonance Energy Transfer (SE-FRET) microscopy. Cultured skeletal muscle cells from quail embryos were transfected to express fusions of alpha-actinin, FATZ, myotilin, or telethonin with cyan and yellow fluorescent proteins in various pair wise combinations. FATZ and myotilin were selected because previous biochemical studies have suggested that they bind to alpha-actinin, the major protein of the Z-band. Telethonin was selected for its reported ability to bind FATZ. Statistical analysis of data from FRET imaging studies yield results that are in agreement with published biochemical data suggesting that FATZ and myotilin bind to alpha-actinin near its C-terminus as well as to each other and that a region near the amino-terminus of FATZ is responsible for its interaction with telethonin. In addition, our analysis has revealed changes in the arrangement of alpha-actinin and FATZ that take place during the transition as the z-bodies of premyofibrils fuse to form the Z-bands of mature myofibrils. There was no evidence for a change in the arrangement of myotilin as z-bodies transformed into Z-bands. Myotilin is one Z-band protein that does not exhibit decreased dynamics as z-bodies fuse to form Z-bands. These FRET results from living cells support a stepwise model for the assembly of myofibrils.  相似文献   

5.
During myofibril formation, Z-bodies, small complexes of alpha-actinin and associated proteins, grow in size, fuse and align to produce Z-bands. To determine if there were changes in protein dynamics during the assembly process, Fluorescence Recovery after Photobleaching was used to measure the exchange of Z-body and Z-band proteins with cytoplasmic pools in cultures of quail myotubes. Myotubes were transfected with plasmids encoding Yellow, Green, or Cyan Fluorescent Protein linked to the Z-band proteins: actin, alpha-actinin, cypher, FATZ, myotilin, and telethonin. Each Z-band protein showed a characteristic recovery rate and mobility. All except telethonin were localized in both Z-bodies and Z-bands. Proteins that were present both early in development in Z-bodies and later in Z-bands had faster exchange rates in Z-bodies. These results suggest that during myofibrillogenesis, molecular interactions develop between the Z-band proteins that decrease their mobility and increase the stability of the Z-bands. A truncated construct of alpha-actinin, which localized in Z-bands in myotubes and exhibited a very low rate of exchange, led to disruption of myofibrils, suggesting the importance of dynamic, intact alpha-actinin molecules for the formation and maintenance of Z-bands. Our experiments reveal the Z-band to be a much more dynamic structure than its appearance in electron micrographs of cross-striated muscle cells might suggest.  相似文献   

6.
To define the actin-binding site within the NH2-terminal domain (residues 1-245) of chick smooth muscle alpha-actinin, we expressed a series of alpha-actinin deletion mutants in monkey Cos cells. Mutant alpha-actinins in which residues 2-19, 217-242, and 196-242 were deleted still retained the ability to target to actin filaments and filament ends, suggesting that the actin-binding site is located within residues 20-195. When a truncated alpha-actinin (residues 1-290) was expressed in Cos cells, the protein localized exclusively to filament ends. This activity was retained by a deletion mutant lacking residues 196-242, confirming that these are not essential for actin binding. The actin-binding site in alpha-actinin was further defined by expressing both wild-type and mutant actin-binding domains as fusion proteins in E. coli. Analysis of the ability of such proteins to bind to F-actin in vitro showed that the binding site was located between residues 108 and 189. Using both in vivo and in vitro assays, we have also shown that the sequence KTFT, which is conserved in several members of the alpha-actinin family of actin-binding proteins (residues 36-39 in the chick smooth muscle protein) is not essential for actin binding. Finally, we have established that the NH2-terminal domain of dystrophin is functionally as well as structurally homologous to that in alpha-actinin. Thus, a chimeric protein containing the NH2-terminal region of dystrophin (residues 1-233) fused to alpha-actinin residues 244-888 localized to actin-containing structures when expressed in Cos cells. Furthermore, an E. coli-expressed fusion protein containing dystrophin residues 1-233 was able to bind to F-actin in vitro.  相似文献   

7.
We have cloned and characterized a novel striated muscle-restricted protein (Cypher) that has two mRNA splice variants, designated Cypher1 and Cypher2. Both proteins contain an amino-terminal PDZ domain. Cypher1, but not Cypher2, contains three carboxyl-terminal LIM domains and an amino acid repeat sequence that exhibits homology to a repeat sequence found in the largest subunit of RNA polymerase II. cypher1 and cypher2 mRNAs exhibited identical expression patterns. Both are exclusively expressed in cardiac and striated muscle in embryonic and adult stages. By biochemical assays, we have demonstrated that Cypher1 and Cypher2 bind to alpha-actinin-2 via their PDZ domains. This interaction has been further confirmed by immunohistochemical studies that demonstrated co-localization of Cypher and alpha-actinin at the Z-lines of cardiac muscle. We have also found that Cypher1 binds to protein kinase C through its LIM domains. Phosphorylation of Cypher by protein kinase C has demonstrated the functional significance of this interaction. Together, our data suggest that Cypher1 may function as an adaptor in striated muscle to couple protein kinase C-mediated signaling, via its LIM domains, to the cytoskeleton (alpha-actinin-2) through its PDZ domain.  相似文献   

8.
9.
Z-band alternatively spliced PDZ-containing protein (ZASP/Cypher) has an important role in maintaining Z-disc stability in striated and cardiac muscle. ZASP/Cypher interacts through its PDZ domain with the major Z-disc actin cross-linker, alpha-actinin. ZASP/Cypher also has a conserved sequence called the ZM-motif, and it is found in two alternatively spliced exons 4 and 6. We have shown earlier that the ZM-motif containing internal regions of two related proteins ALP and CLP36 interact with alpha-actinin rod region, and that the ZM-motif is important in targeting ALP to the alpha-actinin containing structures in cell. Here, we show that the ZASP/Cypher internal fragments containing either ZM exon 4 or 6 co-localized with alpha-actinin in cultured myoblasts and nonmuscle cells. Fragments of 130 residues around the ZM-consensus were sufficient for localization, which is similar to our previous results of ALP. Moreover, ZASP/Cypher protein interacted directly with the alpha-actinin rod and competed with ALP in binding to the rod. During the inhibition of stress fiber assembly ZASP/Cypher and alpha-actinin co-localization could be partially disturbed, suggesting that ZASP/Cypher is bound to alpha-actinin mainly when alpha-actinin is localizing in stress fibers. Many point mutations found in cardiomyopathy patients are located in the internal region of ZASP/Cypher. However, we found no evidence that human patient mutations in the internal domain would affect the ZASP/Cypher co-localization with alpha-actinin, or that the mutations would destabilize the ZASP/Cypher protein.  相似文献   

10.
Enigma proteins are proteins that possess a PDZ domain at the amino terminal and one to three LIM domains at the carboxyl terminal. They are cytoplasmic proteins that are involved with the cytoskeleton and signal transduction pathway. By virtue of the two protein interacting domains, they are capable of protein-protein interactions. Here we report a study on a human Enigma protein hCLIM1, in particular. Our study describes the interaction of the human 36 kDa carboxyl terminal LIM domain protein (hCLIM1), the human homologue of CLP36 in rat, with alpha-actinin 2, the skeletal muscle isoform of alpha-actinin. hCLIM1 protein was shown to interact with alpha-actinin 2 by yeast two-hybrid screening and immunochemical analyses. Yeast two-hybrid analyses also demonstrated that the LIM domain of hCLIM1 binds to the EF-hand region of alpha-actinin 2, defining a new mode of LIM domain interactions. Immunofluorescent study demonstrates that hCLIM1 colocalizes with alpha-actinin at the Z-disks in human myocardium. Taken together, our experimental results suggest that hCLIM1is a novel cytoskeletal protein and may act as an adapter that brings other proteins to the cytoskeleton.  相似文献   

11.
Recently we identified a novel target gene of MEF2A named myospryn that encodes a large, muscle-specific, costamere-restricted alpha-actinin binding protein. Myospryn belongs to the tripartite motif (TRIM) superfamily of proteins and was independently identified as a dysbindin-interacting protein. Dysbindin is associated with alpha-dystrobrevin, a component of the dystrophin-glycoprotein complex (DGC) in muscle. Apart from these initial findings little else is known regarding the potential function of myospryn in striated muscle. Here we reveal that myospryn is an anchoring protein for protein kinase A (PKA) (or AKAP) whose closest homolog is AKAP12, also known as gravin/AKAP250/SSeCKS. We demonstrate that myospryn co-localizes with RII alpha, a type II regulatory subunit of PKA, at the peripheral Z-disc/costameric region in striated muscle. Myospryn interacts with RII alpha and this scaffolding function has been evolutionarily conserved as the zebrafish ortholog also interacts with PKA. Moreover, myospryn serves as a substrate for PKA. These findings point to localized PKA signaling at the muscle costamere.  相似文献   

12.
Kettin is a high molecular mass protein of insect muscle that in the sarcomeres binds to actin and alpha-actinin. To investigate kettin's functional role, we combined immunolabeling experiments with mechanical and biochemical studies on indirect flight muscle (IFM) myofibrils of Drosophila melanogaster. Micrographs of stretched IFM sarcomeres labeled with kettin antibodies revealed staining of the Z-disc periphery. After extraction of the kettin-associated actin, the A-band edges were also stained. In contrast, the staining pattern of projectin, another IFM-I-band protein, was not altered by actin removal. Force measurements were performed on single IFM myofibrils to establish the passive length-tension relationship and record passive stiffness. Stiffness decreased within seconds during gelsolin incubation and to a similar degree upon kettin digestion with mu-calpain. Immunoblotting demonstrated the presence of kettin isoforms in normal Drosophila IFM myofibrils and in myofibrils from an actin-null mutant. Dotblot analysis revealed binding of COOH-terminal kettin domains to myosin. We conclude that kettin is attached not only to actin but also to the end of the thick filament. Kettin along with projectin may constitute the elastic filament system of insect IFM and determine the muscle's high stiffness necessary for stretch activation. Possibly, the two proteins modulate myofibrillar stiffness by expressing different size isoforms.  相似文献   

13.
Young P  Gautel M 《The EMBO journal》2000,19(23):6331-6340
The assembly of stable cytoskeletal structures from dynamically recycled molecules requires developmental and spatial regulation of protein interactions. In muscle, titin acts as a molecular ruler organizing the actin cytoskeleton via interactions with many sarcomeric proteins, including the crosslinking protein alpha-actinin. An interaction between the C-terminal domain of alpha-actinin and titin Z-repeat motifs targets alpha-actinin to the Z-disk. Here we investigate the cellular regulation of this interaction. alpha-actinin is a rod shaped head-to-tail homodimer. In contrast to C-terminal fragments, full-length alpha-actinin does not bind Z-repeats. We identify a 30-residue Z-repeat homologous sequence between the actin-binding and rod regions of alpha-actinin that binds the C-terminal domain with nanomolar affinity. Thus, Z-repeat binding is prevented by this 'pseudoligand' interaction between the subunits of the alpha-actinin dimer. This autoinhibition is relieved upon binding of the Z-disk lipid phosphatidylinositol-bisphosphate to the actin-binding domain. We suggest that this novel mechanism is relevant to control the site-specific interactions of alpha-actinin during sarcomere assembly and turnover. The intramolecular contacts defined here also constrain a structural model for intrasterical regulation of all alpha-actinin isoforms.  相似文献   

14.
Calpains are a family of calcium-dependent cysteine-proteases involved in cytoskeleton remodelling and muscle differentiation. In a recent study, we observed the presence of calpain 1 in the muscle contractile apparatus and specifically in the N1- and N2-lines. This calpain isoform was found to be involved in the degradation of muscle fibres via proteolysis of key proteins in Z-disk and costameric junctions. The goal of this study was to determine whether gamma-filamin--a specific muscle isoform of the filamin family--is a calpain 1 substrate and to characterise this interaction. Gamma-filamin is a major muscle architectural protein located in the Z-line and under the sarcolemmal membrane. This protein is a component of the chain binding the sarcolemma to the sarcomeric structure. In this study, we found that gamma-filamin formed a stable complex in vitro and in cells with calpain 1 in the absence of calcium stimulation. We also located the binding domains in the C-terminus of gamma-filamin with a cleavage site between serine 2626 and serine 2627 in the hinge 2 region. The catalytic (80 kDa) and regulatory (28 kDa) subunits of calpain 1 are both involved in high affinity binding at gamma-filamin. Moreover, we showed that phosphorylation of the filamin C-terminus domain by PKC alpha protected gamma-filamin against proteolysis by calpain 1 in COS cells. Stimulation of PKC activity in myotubes, prevented gamma-filamin proteolysis by calpain and resulted in an increase in myotube adhesion.  相似文献   

15.
Telethonin protein expression in neuromuscular disorders   总被引:4,自引:0,他引:4  
Telethonin is a 19-kDa sarcomeric protein, localized to the Z-disc of skeletal and cardiac muscles. Mutations in the telethonin gene cause limb-girdle muscular dystrophy type 2G (LGMD2G).We investigated the sarcomeric integrity of muscle fibers in LGMD2G patients, through double immunofluorescence analysis for telethonin with three sarcomeric proteins: titin, alpha-actinin-2, and myotilin and observed the typical cross striation pattern, suggesting that the Z-line of the sarcomere is apparently preserved, despite the absence of telethonin. Ultrastructural analysis confirmed the integrity of the sarcomeric architecture. The possible interaction of telethonin with other proteins responsible for several forms of neuromuscular disorders was also analyzed. Telethonin was clearly present in the rods in nemaline myopathy (NM) muscle fibers, confirming its localization to the Z-line of the sarcomere. Muscle from patients with absent telethonin showed normal expression for the proteins dystrophin, sarcoglycans, dysferlin, and calpain-3. Additionally, telethonin showed normal localization in muscle biopsies from patients with LGMD2A, LGMD2B, sarcoglycanopathies, and Duchenne muscular dystrophy (DMD). Therefore, the primary deficiency of calpain-3, dysferlin, sarcoglycans, and dystrophin do not seem to alter telethonin expression.  相似文献   

16.
17.
alpha-Actinins from striated muscle, smooth muscle, and nonmuscle cells are distinctive in their primary structure and Ca2+ sensitivity for the binding to F-actin. We isolated alpha-actinin cDNA clones from a cDNA library constructed from poly(A)+ RNA of embryonic chicken skeletal muscle. The amino acid sequence deduced from the nucleotide sequence of these cDNAs was identical to that of adult chicken skeletal muscle alpha-actinin. To examine whether the differences in the structure and Ca2+ sensitivity of alpha-actinin molecules from various tissues are responsible for their tissue-specific localization, the cDNA cloned into a mammarian expression vector was transfected into cell lines of mouse fibroblasts and skeletal muscle myoblasts. Immunofluorescence microscopy located the exogenous alpha-actinin by use of an antibody specific for skeletal muscle alpha-actinin. When the protein was expressed at moderate levels, it coexisted with endogenous alpha-actinin in microfilament bundles in the fibroblasts or myoblasts and in Z-bands of sarcomeres in the myotubes. These results indicate that Ca2+ sensitivity or insensitivity of the molecules does not determine the tissue-specific localization. In the cells expressing high levels of the exogenous protein, however, the protein was diffusely present and few microfilament bundles were found. Transfection with cDNAs deleted in their 3' portions showed that the expressed truncated proteins, which contained the actin-binding domain but lacked the domain responsible for dimerization, were able to localize, though less efficiently in microfilament bundles. Thus, dimer formation is not essential for alpha-actinin molecules to bind to microfilaments.  相似文献   

18.
19.
Interactions between Z-disc proteins regulate muscle functions and disruption of these interactions results in muscle disorders. Mutations in Z-disc components myotilin, ZASP/Cypher, and FATZ-2 (calsarcin-1/myozenin-2) are associated with myopathies. We report here that the myotilin and the FATZ (calsarcin/myozenin) families share high homology at their final C-terminal five amino acids. This C-terminal E[ST][DE][DE]L motif is present almost exclusively in these families and is evolutionary conserved. We show by in vitro and in vivo studies that proteins from the myotilin and FATZ (calsarcin/myozenin) families interact via this novel type of class III PDZ binding motif with the PDZ domains of ZASP/Cypher and other Enigma family members: ALP, CLP-36, and RIL. We show that the interactions can be modulated by phosphorylation. Calmodulin-dependent kinase II phosphorylates the C terminus of FATZ-3 (calsarcin-3/myozenin-3) and myotilin, whereas PKA phosphorylates that of FATZ-1 (calsarcin-2/myozenin-1) and FATZ-2 (calsarcin-1/myozenin-1). This is the first report of a binding motif common to both the myotilin and the FATZ (calsarcin/myozenin) families that is specific for interactions with Enigma family members.The sarcomere of striated muscle consists of strictly organized subunits, myosin-containing thick filaments and actin-containing thin filaments. The thin filaments are aligned and cross-linked at the Z-discs by a molecular complex in which α-actinin is one of the core structures. Since the contractile force is transduced via the Z-discs, this structure has special requirements. It must provide extensive stability and yet undergo modulation in response to external signals. The Z-discs also serve as important sensors of extracellular cues and mediators of cellular signals that result in various adaptive responses (37). Muscle cells are able to sense changes in their workload and adapt accordingly via complex signaling pathways, some involving calcium, since its level in muscle cells alters in response to nerve pulses and muscle contraction. Of special importance is calcineurin, a sarcomeric calcium/calmodulin-dependent phosphatase that can act as a sensor of change. It is involved in the regulation of genes affecting muscle differentiation and fiber-type specification (12, 13).The special role of the Z-discs is indicated by the fact that mutations in several Z-disc proteins can result in neuromuscular disorders and cardiomyopathies. For instance, myofibrillar myopathy (desmin-related myopathy), a disease characterized by sarcomere disintegration and accumulation of thin filament material, is caused by dominantly inherited missense mutations in Z-disc proteins: myotilin, filamin-C, and Z-band alternatively spliced PDZ motif-containing protein (ZASP, also named LIM domain-binding factor 3, Cypher, or Oracle) (42, 43, 52). Missense mutations in myotilin can also result in limb-girdle muscular dystrophy 1A and spheroid body myositis (10, 18), while mutations in ZASP/Cypher (8, 57), myopalladin or FATZ-2 (calsarcin-1/myozenin-2) have been found to be associated with dominant familial dilated (7, 50) or hypertrophic cardiomyopathy (33). ZASP/Cypher knockout mice display a severe form of congenital myopathy and die postnatally (58), whereas myotilin knockout mice are virtually normal (31), suggesting redundancy between the myotilin family members and indicating that dysfunctional myotilin is more harmful to muscle cells than loss of the protein.Myotilin (40), palladin (32, 34), and myopalladin (3) are homologous Z-disc proteins that form a novel family of immunoglobulin-domain-containing actin-binding proteins. Biochemical studies on the best-characterized family member, myotilin, have demonstrated an association with important components of the sarcomere: α-actinin (40), which is a core structural component of the Z-disc; filamins (15, 49); the proteins of the FATZ (calsarcin/myozenin) family (15); and actin (51). Myotilin is linked to signaling networks by binding to the ubiquitin ligases Murf-1 and Murf-2 (54) and indirectly via FATZ (calsarcin/myozenin). Experiments using myotilin fragments with dominant-negative effect have shown its critical involvement in sarcomere organization. Myotilin bundles and stabilizes actin effectively, which suggests a role for myotilin in the organization and maintenance of Z-disc integrity.The FATZ (calsarcin/myozenin) proteins form another Z-disc family with structural and signaling functions. The three homologous members—FATZ-1 (calsarcin-2/myozenin-1), FATZ-2 (calsarcin-1/myozenin-2), and FATZ-3 (calsarcin-3/myozenin-3)—are localized in the Z-disc binding not only to myotilin but also to filamins A, B, and C (15), telethonin (T-cap), α-actinin, ZASP/Cypher, and calcineurin (9, 11, 12, 47). The three FATZ (calsarcin/myozenin) proteins share high homology at their N and the C terminals and, in fact, the binding sites for a variety of proteins occur in these regions. It has been suggested that the FATZ (calsarcin/myozenin) family may play a role in contributing to the formation and maintenance of the Z-disc, as well as in cell signaling, since its members bind calcineurin. FATZ-1 (calsarcin-2/myozenin-1) and FATZ-3 (calsarcin-3/myozenin-3) are highly expressed in skeletal muscle fast-twitch fibers, whereas FATZ-2 (calsarcin-1/myozenin-2) is highly expressed in cardiac muscle slow-twitch fibers. Mice lacking FATZ-2 (calsarcin-1/myozenin-2) showed an increase in the level of calcineurin, as well as a concurrent increase in the percentage of slow-twitch fibers (13). A recent report shows that FATZ-1 (calsarcin-2/myozenin-1) knockout mice have reduced body weight and fast-twitch muscle mass without exhibiting muscle atrophy (14). It is noteworthy that they also have the ability to run longer distances than control mice, thus exhibiting endurance to exercise. In fact, thus far only actinin-3 knockout mice have displayed this phenotype of endurance to exercise. FATZ-1 (calsarcin-2/myozenin-1)-deficient mice show an increase in oxidative muscle fibers and a switch from fast-twitch to slow-twitch fibers due to an increase in NFAT activity, as well as the regulator of calcineurin 1-4 (RCAN1-4), resulting in the concomitant increase in calcineurin signaling. Both FATZ-1 (calsarcin-2/myozenin-1) and FATZ-2 (calsarcin-1/myozenin-2) can regulate calcineurin/NFAT activity, thus influencing the fiber type composition of skeletal muscle (14).ZASP/Cypher (Oracle) (8, 35, 57) belongs to the Enigma family of proteins, the members of which all have a N-terminal PDZ domain and one or more LIM domains at the C-terminal (48). To date, there are six isoforms of ZASP/Cypher, all of which contain an N-terminal PDZ domain and none or three C-terminal LIM domains. ZASP/Cypher also contains a third domain known as the ZM motif which can also be found in ALP and CLP-36 (23, 24). It interacts with two different regions of α-actinin-2; its PDZ domain binds to the C-terminal EH-hand region of α-actinin-2, whereas its ZM motif binds to the rod region of α-actinin-2 (2, 23). ZASP/Cypher colocalizes with α-actinin-2 in the Z-disc, whereas the LIM domains interact with and are phosphorylated by all six isoforms of protein kinase C (PKC α, β1, γ, ζ, δ, and ɛ). ZASP/Cypher is important for the stability of the Z-disc; in fact, ZASP/Cypher knockout mice die in the first 24 h after birth as a result of functional failure of striated muscles caused by disruption of the Z-disc during muscle contraction (58). The PDZ of ZASP/Cypher is a classical type I PDZ domain that binds to the C-terminal of α-actinin-2.To better understand the biology of the Z-disc and pathogenesis of muscle disorders, it is important to unravel the dynamic interplay of Z-disc components. In the present study, we demonstrate a novel PDZ domain-binding motif common to the myotilin and FATZ (calsarcin/myozenin) protein families. This domain mediates interaction with ZASP/Cypher in a phosphorylation-dependent manner and is also involved in targeting ZASP/Cypher.  相似文献   

20.
A single-site mutation of the flight-muscle-specific actin gene of Drosophila melanogaster causes a substitution of glutamic acid 93 by lysine in all the actin encoded in the indirect flight muscle (IFM). In these Act88FE93K mutants, myofibrillar bundles of thick and thin filaments are present but lack Z-discs and all sarcomeric repeats. Dense filament bundles, which are probably aberrant Z-discs, are seen in myofibrils of pupal flies, but early in adult life these move to the periphery of the fibrils and are not seen in skinned adult fibres. Consistent with this observation, alpha-actinin and other high molecular weight proteins, possibly associated with Z-discs, are not detected on SDS/polyacrylamide gels or Western blots of skinned adult IFM. The mutation lies at the beginning of a loop in the small domain of actin, near the myosin binding region. However, that the mutant actin binds myosin heads is shown by (1) rigor crossbridges in electron micrographs, (2) the appropriate rise in stiffness when ATP is withdrawn in mechanical experiments, and (3) equal protection against tryptic digestion provided by rigor binding between actin and myosin in both wild-type and mutant fibres. Reversal of rigor chevron angle along some thin filaments reflects reversal of thin-filament polarity due to lattice disorder. The absence of Z-discs, alpha-actinin and two high molecular weight proteins, and binding studies by others, suggest that the substitution at residue 93 affects the binding of the mutant actin to a protein, possibly alpha-actinin, which is necessary for Z-disc assembly or maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号