首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The invasive redbay ambrosia beetle, Xyleborus glabratus, is the primary vector of Raffaelea lauricola, a symbiotic fungus and the etiologic agent of laurel wilt. This lethal disease has caused severe mortality of redbay (Persea borbonia) and swampbay (P. palustris) trees in the southeastern USA, threatens avocado (P. americana) production in Florida, and has potential to impact additional New World species. To date, all North American hosts of X. glabratus and suscepts of laurel wilt are members of the family Lauraceae. This comparative study combined field tests and laboratory bioassays to evaluate attraction and boring preferences of female X. glabratus using freshly-cut bolts from nine species of Lauraceae: avocado (one cultivar of each botanical race), redbay, swampbay, silkbay (Persea humilis), California bay laurel (Umbellularia californica), sassafras (Sassafras albidum), northern spicebush (Lindera benzoin), camphor tree (Cinnamomum camphora), and lancewood (Nectandra coriacea). In addition, volatile collections and gas chromatography-mass spectroscopy (GC-MS) were conducted to quantify terpenoid emissions from test bolts, and electroantennography (EAG) was performed to measure olfactory responses of X. glabratus to terpenoids identified by GC-MS. Significant differences were observed among treatments in both field and laboratory tests. Silkbay and camphor tree attracted the highest numbers of the beetle in the field, and lancewood and spicebush the lowest, whereas boring activity was greatest on silkbay, bay laurel, swampbay, and redbay, and lowest on lancewood, spicebush, and camphor tree. The Guatemalan cultivar of avocado was more attractive than those of the other races, but boring response among the three was equivalent. The results suggest that camphor tree may contain a chemical deterrent to boring, and that different cues are associated with host location and host acceptance. Emissions of α-cubebene, α-copaene, α-humulene, and calamenene were positively correlated with attraction, and EAG analyses confirmed chemoreception of terpenoids by antennal receptors of X. glabratus.  相似文献   

2.
3.
4.
The redbay ambrosia beetle, Xyleborus glabratus, is the vector of the laurel wilt disease fungal pathogen, Raffaelea lauricola. Since the vector's initial detection in the USA in the early 2000s, laurel wilt has killed millions of redbay, Persea borbonia, trees and other members of the plant family Lauraceae. To protect host trees from beetle attack and laurel wilt infection, we tested the efficacy of host‐ and non‐host‐derived and commercial compounds as X. glabratus repellents in field experiments. In our first trial, the major constituents of the non‐host tree, longleaf pine, Pinus palustris, and SPLAT Verb (verbenone 10%) were paired with manuka oil attractants and beetle captures were counted. Verbenone and a 1 : 1 blend of myrcene and camphene were intermediate to both the manuka positive and blank negative controls. Subsequently, we tested different blends of methyl salicylate (MeSA), a host defence and signalling compound, and verbenone in SPLAT dispensers using freshly cut redbay bolts as an attractant. All treatments reduced X. glabratus captures and boring holes as compared to the redbay (‐) repellent positive control; however, SPLAT Verb and SPLAT MeSA‐Verb (5% each) achieved the highest repellency, with results comparable to that of the non‐host (laurel oak). These trials establish that host‐derived and commercially available repellent compounds can reduce X. glabratus attacks and therefore have potential as part of an integrated management strategy against laurel wilt and its vector.  相似文献   

5.
  1. Laurel wilt is a disease that has caused extensive mortality of redbay Persea borbonia in the southeastern U.S.A. The redbay ambrosia beetle Xyleborus glabratus is the vector of the causal agent of laurel wilt, the fungus Raffaelea lauricola.
  2. We tested two potential repellents to the redbay ambrosia beetle, verbenone and methyl salicylate (MeSA) in an 8‐month large‐scale experiment conducted in three locations in Florida. In each location, redbay trees were treated with a single or double application of SPLAT (Specialized Pheromone and Lure Application Technology; ISCA Technologies, Riverside, California) verbenone, as well as SPLAT with a 1:2 mix of MeSA and verbenone.
  3. The MeSA + verbenone mixes did not reduce beetle captures compared with the control treatment, whereas SPLAT verbenone alone significantly reduced the number of beetles captured on sticky traps placed on redbay trees in the three locations. The reduction of beetle capture was similar regardless of one or two treatments of SPLAT verbenone. The reduction of tree death with the SPLAT verbenone treatment was not statistically significant.
  4. The results of the present study suggest that trunk application of verbenone can reduce landing rates of the redbay ambrosia beetle on live redbay trees and shows promise for use in an integrated pest management strategy against laurel wilt.
  相似文献   

6.
Avocado, Persea americana, is an important fruit crop in the tropics and warm subtropics. Laurel wilt, caused by Raffaelea lauricola, is a systemic vascular wilt of avocado that spread recently to Florida, an important producing state in the USA. As fruit and seed of avocado produced in Florida are sold in other states and countries where this crop is produced, there is concern that commerce in these commodities might spread this disease. Potted, fruit‐bearing trees were artificially inoculated with R. lauricola, and plants were systemically colonized by the fungus. In no instance did infection progress further than the hilum (87 total fruit), as determined by re‐isolation of R. lauricola on a semi‐selective medium or its detection, with qPCR and high fidelity PCR, of diagnostic small subunit (SSU) 18s rDNA. Thus, it would apparently be safe to propagate avocado with seed from trees affected by this disease. Pedicels/peduncles and hila associated with these fruit were colonized by the pathogen. The latter tissues would be associated with/attached to marketed fruit, but they do not harbour the pathogen’s ambrosia beetle vector, Xyleborus glabratus. Thus, commerce in avocado fruit appears to be a negligible risk for expanding the geographic range of laurel wilt.  相似文献   

7.
  1. Extensive boring damage into trunks of living poplar trees in the urban forest of Shanghai, eastern China, was investigated in 2017.
  2. In order to determine the taxonomic identity of the pest, we used morphological identification and sequenced mitochondrial COI gene. Based on both morphology and molecular data, it was concluded that the pest boring into the poplars was the ambrosia beetle Euwallacea interjectus (Blandford).
  3. Its occurrence and damage on poplar across Shanghai were also investigated. In the Pudong District, a total of 104.52 ha of urban forest were investigated thoroughly, and 16.22% of surveyed forests were found to be infested. This insect species is an important native pest capable of causing damage across the Shanghai area.
  4. Observations in the field suggested that the damage may be related to distance to water sources. Our statistical analysis confirmed this hypothesis, as the close distance to water bodies correlated with higher levels of damage. We conclude that E. interjectus prefers host trees stressed by an occasional excessive abundance of water, and acts as a parasite on living trees without killing them.
  相似文献   

8.
Laurel wilt is a lethal disease of plants in the Lauraceae plant family, including avocado (Persea americana). This devastating disease has spread rapidly along the southeastern seaboard of the United States and has begun to affect commercial avocado production in Florida. The main objective of this study was to evaluate the potential to discriminate laurel wilt-affected avocado trees using aerial images taken with a modified camera during helicopter surveys at low-altitude in the commercial avocado production area. The ability to distinguish laurel wilt-affected trees from other factors that produce similar external symptoms was also studied. RmodGB digital values of healthy trees and laurel wilt-affected trees, as well as fruit stress and vines covering trees were used to calculate several vegetation indices (VIs), band ratios, and VI combinations. These indices were subjected to analysis of variance (ANOVA) and an M-statistic was performed in order to quantify the separability of those classes. Significant differences in spectral values among laurel wilt affected and healthy trees were observed in all vegetation indices calculated, although the best results were achieved with Excess Red (ExR), (Red–Green) and Combination 1 (COMB1) in all locations. B/G showed a very good potential for separate the other factors with symptoms similar to laurel wilt-affected trees, such as fruit stress and vines covering trees, from laurel wilt-affected trees. These consistent results prove the usefulness of using a modified camera (RmodGB) to discriminate laurel wilt-affected avocado trees from healthy trees, as well as from other factors that cause the same symptoms and suggest performing the classification in further research. According to our results, ExR and B/G should be utilized to develop an algorithm or decision rules to classify aerial images, since they showed the highest capacity to discriminate laurel wilt-affected trees. This methodology may allow the rapid detection of laurel wilt-affected trees using low altitude aerial images and be a valuable tool in mitigating this important threat to Florida avocado production.  相似文献   

9.
Native Lauraceae (e.g. sassafras, redbay) in the southeastern USA are being severely impacted by laurel wilt disease, which is caused by the pathogen Raffaelea lauricola T. C. Harr., Fraedrich and Aghayeva, and its symbiotic vector, the redbay ambrosia beetle (Xyleborus glabratus Eichhoff). Cold temperatures are currently the only viable limitation to the establishment of X. glabratus in northern populations of sassafras. The observed lower lethal temperature of X. glabratus (? 10.0 °C) is warmer than its supercooling point (? 22.0 °C), indicating the beetle is a freeze intolerant and chill susceptible species. Empirically derived X. glabratus lower lethal temperature thresholds were combined with host distribution and microhabitat-corrected climate data to produce species distribution models for X. glabratus in the eastern USA. Macroclimate data (30-year mean annual minimum temperature) were corrected (? 1.2 °C) to account for thermal buffering afforded to X. glabratus while living inside sassafras trees. Only 0.1% of the current US sassafras spatial extent experiences sufficiently harsh winters (locales where mean annual minimum winter temperatures ≤ ? 6.2 °C for ≥ 12 h) to exclude X. glabratus establishment in our species distribution model. Minimum winter temperatures will likely cause some X. glabratus mortality in ~ 52% of the current spatial extent of sassafras, although current data do not allow a quantification of X. glabratus mortality in this zone. Conversely, ~ 48% of the current spatial extent of sassafras is unlikely to experience sufficiently cold winter temperatures to cause any significant impediment to X. glabratus spread or establishment. A modest climate change scenario (RCP4.5) of + 1.4 °C would result in 91% of the current spatial extent of sassafras in the eastern USA occurring where winter minimum temperatures are unlikely to cause any mortality to X. glabratus.  相似文献   

10.
The Hass avocado tree Persea americana cv. Hass was derived from a single hybrid tree of P. americana var. drymifolia and P. americana var. guatemalensis, and it is propagated clonally by grafting. This cultivar is the most widely planted in the world but its profile of secondary metabolites has been studied rarely despite of its importance in plant protection. We illustrate the variability of the volatilome of mature leaves by describing the average chemical composition and the phenotypic variability found in 70 trees. Contrary to the uniformity expected in the Hass cultivar, high variability coefficients were found for most of the 36 detected foliar volatile compounds; furthermore we found six chemotypes grouping the foliar phenotypes of the sampled trees using hierarchical cluster analysis. About 48% of trees were grouped in one chemotype; five chemotypes grouped the remaining trees. The compounds that determined these chemotypes were: estragole, α‐farnesene, β‐caryophyllene, germacrene D, α‐cubebene and eugenol. This striking variation in a cultivar propagated clonally is discussed in terms of somatic mutation.  相似文献   

11.
Invasive insects and fungal pathogens have triggered numerous declines in ecologically important tree species in the forests of eastern North America. Although now functionally extinct in many ecosystems, these tree species have been able to persist through sprouting or the presence of a low density of resistant individuals. In this study, we document widespread mortality of another dominant North American hardwood species, redbay (Persea borbonia, Lauraceae), from an exotic disease, laurel wilt. This disease is caused by a nonnative Asian ambrosia beetle, Xyleborus glabratus, and its pathogenic fungal symbiont, Raffaelea lauricola, which were introduced to Georgia, USA in 2003. We conducted tree surveys on an island near the center of introduction from 2004 to 2009 and assessed the trajectory of tree mortality caused by laurel wilt. Additionally, we examined sprouting as a mechanism for persistence and whether changes in community structure occurred after laurel wilt introduction. We observed 98 % death of main stems and widespread mortality of genets (79 %) independent of main stem size. All remaining individuals were symptomatic of laurel wilt. Sprouting does not appear to give redbay the ability to maintain genets and recruit new stems into the forest canopy. We identified a negative interaction between laurel wilt and deer browse on stems and new sprouts, which may accelerate death rates of infected populations. If our results are applicable across redbay’s geographic range, a once abundant tree species may become ecologically extinct from coastal forest ecosystems in the southeastern United States.  相似文献   

12.
The redbay ambrosia beetle, Xyleborus glabratus Eichhoff, is a non-native invasive pest and vector of the fungus that causes laurel wilt disease in certain trees of the family Lauraceae. This study assessed the relative attractiveness and suitability of cut bolts of several tree species to X. glabratus. In 2009, female X. glabratus were equally attracted to traps baited with swampbay (Persea palustris (Rafinesque) Sargent) and camphortree (Cinnamomum camphora (L.) J. Presl), which were more attractive than avocado (Persea americana Miller), lancewood (Ocotea coriacea (Swartz) Britton), and sweetbay (Magnolia virginiana L.). These species were more attractive than loblolly bay (Gordonia lasianthus (L.) J. Ellis). X. glabratus entrance hole density and emergence from caged bolts were highest on swampbay and camphortree. In 2010, swampbay was significantly more attractive to X. glabratus than sassafras (Sassafras albidum (Nuttall) Nees), yellow poplar (Liriodendron tulipifera L.), and eastern redbud (Cercis canadensis L.). Sassafras bolts end sealed with a liquid wax-and-water emulsion were more attractive to X. glabratus than end-sealed bolts of yellow poplar and redbud. Relative to unsealed bolts, end seal decreased X. glabratus entrance hole density on swampbay and decreased granulate ambrosia beetle (Xylosandrus crassiusculus (Motschulsky)) trap catch, entrance hole density, and adult emergence from swampbay. X. crassiusculus was not attracted to sassafras, yellow poplar, and redbud and was not more attracted to manuka oil than to unbaited traps. Sassafras was more attractive to X. glabratus than previously reported and supported reproducing populations of the insect. End sealing bolts with a wax-and-water emulsion may not be optimal for attracting and rearing ambrosia beetles in small logs.  相似文献   

13.
14.
  1. The Asian longhorn beetle (ALB) Anoplophora glabripennis Motschulsky is a destructive invasive species worldwide. Female ALB produce a pheromone component, α-longipinene, in the genitalia. However, the origin and factors, such as age, mating, adult feeding and host plant, influencing the production of this compound are unclear.
  2. Our results showed that virgin female ALB consistently produced α-longipinene at various ages after feeding for several days post eclosion, but unfed adult females never produced this compound. Mating significantly reduced the amount of α-longipinene in female genitalia.
  3. α-Longipinene was the most dominant compound in the volatiles emitted by females, but not in those emitted by males or host twigs (Acer pensylvanicum L.). The proportion of α-longipinene among the beetle-released sesquiterpenes that were known to be male antennally active was significantly greater than that emitted by ALB damaged, mechanically damaged or control twigs.
  4. These results suggest that ALB females probably derive α-longipinene or a precursor from hosts via adult feeding, and release it at a significantly different ratio from that found in host volatiles. The various ratios of α-longipinene produced by beetles and host twigs may encode information pertaining to multiple purposes such as aggregation, mate and host location.
  相似文献   

15.
  • 1 Xylosandrus germanus typically colonizes physiologically‐stressed deciduous hosts but it is increasingly being recognized as a key pest of ornamental nursery stock. We tested the attractiveness of common plant stress‐related volatiles to ambrosia beetles occupying the nursery agroecosystem, as well as their ability to induce attacks on selected trees. Experiments were conducted in Ohio, U.S.A.
  • 2 Stress volatile attractiveness was first assessed by positioning traps baited with acetaldehyde, acetone, ethanol and methanol in ornamental nurseries. Cumulative trap counts confirmed that ethanol was the most attractive stress‐related volatile to X. germanus. Methanol‐baited traps were slightly attractive to X. germanus, whereas traps baited with acetaldehyde and acetone were not attractive to any ambrosia beetle.
  • 3 A series of tree injection experiments were also conducted to determine the ability of these volatiles to induce attacks by ambrosia beetles under field conditions. Injection of ethanol into Magnolia virginiana induced the largest number of attacks, whereas injection of acetaldehyde induced more attacks than methanol or acetone. Xylosandrus germanus was the most predominant species emerging from M. virginiana injected with each of the stress‐related volatiles. No attacks by wood‐boring beetles were observed on water injected or uninjected control trees.
  • 4 Solid‐phase microextraction–gas chromatography–mass spectrometry confirmed the emission of acetaldehyde, acetone, ethanol and methanol after their injection into M. virginiana.
  • 5 Xylosandrus germanus has an efficient olfactory‐based mechanism for differentiating among host volatile cues. Injecting select trees with stress‐related volatiles, particularly ethanol, shows promise as a trap tree strategy for X. germanus and other ambrosia beetles.
  相似文献   

16.
  1. The giant willow aphid Tuberolachnus salignus is an invasive pest in New Zealand, attacking over 50 species and hybrids of willow. The aphids produce copious amounts of honeydew, which is used by other insects as a food source.
  2. When foraged by honeybees, T. salignus honeydew causes honey to crystallize in the comb and affects bee health; these effects are associated with the elevated melezitose content in the honeydew. The impact of host plant-related factors on T. salignus honeydew melezitose content remains unknown.
  3. This study investigated the effect of willow cultivar and plant age on the melezitose content (and that of other sugars) of T. salignus honeydew. To do so, we conducted high-performance liquid chromatography analyses of honeydew samples from 13 willow clones collected in the same season (autumn) from 1- and 2-year old plants under field conditions.
  4. Melezitose was the most abundant of the measured sugars in most samples, but its content did not vary significantly with willow cultivar or plant age. By contrast, sucrose was significantly affected by both factors. Fructose and glucose were significantly impacted by willow plant age and cultivar, respectively. A significant cultivar*age interaction was observed for all sugars.
  5. We recommend the selection of resistant willow cultivars and further research on potential biocontrol agents to lessen melezitose-related problems in apiculture industries.
  相似文献   

17.
  1. The knowledge of natural factors that affect pest populations is essential in predicting the occurrence of pest outbreaks and in developing integrated pest management programmes. Natural enemies, climatic elements and host plants are among the most important factors affecting pest dynamics.
  2. Tomato (Solanum lycopersicum) is the second most consumed vegetable worldwide. The pea leaf miner Liriomyza huidobrensis (Diptera: Agromyzidae) is a major pest to the tomato in Brazil.
  3. This study aimed to determine the main natural factors that regulate L. huidobrensis populations in tomato fields in Brazil.
  4. Liriomyza huidobrensis densities were evaluated by directly counting the number of active mines on the basal leaf of the middle section of the plant canopy, and predators and parasitoids were assessed using the leaf‐beating‐against‐a‐tray technique. Eight commercial tomato fields were assessed over two years. The phenological growth stages of the tomato plants (vegetative and reproductive) were noted during the assessments.
  5. Liriomyza huidobrensis populations peaked between the middle and end of the planting season.
  6. Opius sp. (Hymenoptera: Braconidae) was the main natural enemy of L. huidobrensis.
  7. Our results suggest that phenological growth stage and Opius sp. are associated with population dynamics of L. huidobrensis in tomato fields.
  8. Therefore, integrated pest management programmes should aim to preserve populations of the parasitoid Opius sp.
  相似文献   

18.
  • 1 The pecan nut casebearer Acrobasis nuxvorella Neunzig (Lepidoptera: Pyralidae) is an important, monophagous pest of pecan Carya illinoinensis (Fagales: Juglandaceae).
  • 2 This pest is native from Louisiana west to the eastern edge of New Mexico and north to Illinois in the U.S.A. and as far west as Chihuahua and south to Oaxaca in Mexico.
  • 3 Recently, this pest has expanded beyond the native range of pecan into regions where pecan has been introduced for cultivation.
  • 4 Amplified fragment length polymorphism markers were used to determine the population genetic structure of this insect pest across its current geographical distribution.
  • 5 Population genetic analyses indicate a great degree of genetic structure in the pecan nut casebearer across its geographical distribution, with genetically distinct populations occurring in those areas where the pecan nut casebearer is not native but has been invasive.
  相似文献   

19.
20.
The redbay ambrosia beetle (RAB), Xyleborus glabratus, is a wood-boring insect that vectors the fungal pathogen, Raffaelea lauricola, which causes laurel wilt, a lethal disease of avocado. The objective of this study was to determine the susceptibility of RAB to infection and subsequent death by exposure to three commercial strains of entomopathogenic fungi [two strains of Isaria fumosorosea (Ifr 3581 and PFR), and strain GHA of Beauveria bassiana]. RAB females were dipped in fungal spore solutions and their median survivorship times (MST) determined. Contact with any of the biopesticides resulted in death of all RAB females. MSTs of RAB females ranged from 3 days (B. bassiana) to 5 days (I. fumosorosea PFR). B. bassiana killed RAB females faster, followed by Ifr 3581 and PFR. RAB females dipped in B. bassiana suspensions had the highest number of viable spores attached to their bodies, followed by Ifr 3581. Beetles dipped in PFR suspension had significantly less viable spores attached to their bodies. No significant differences were observed in the mortality of beetles exposed to entomopathogenic fungi by dipping in a fungal suspension or walking on treated avocado bolts. Beetles bored into the logs and constructed galleries, but they were found dead inside the galleries a few days after exposure to the entomopathogens. Entomopathogenic fungal infection in dead beetles was confirmed through molecular techniques. This is the first study to demonstrate that entomopathogenic fungi are potential biological control agents against RAB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号