首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of actinobacteria on plant disease suppression and growth promotion   总被引:3,自引:0,他引:3  
Biological control and plant growth promotion by plant beneficial microbes has been viewed as an alternative to the use of chemical pesticides and fertilizers. Bacteria and fungi that are naturally associated with plants and have a beneficial effect on plant growth by the alleviation of biotic and abiotic stresses were isolated and developed into biocontrol (BCA) and plant growth-promoting agents (PGPA). Actinobacteria are a group of important plant-associated spore-forming bacteria, which have been studied for their biocontrol, plant growth promotion, and interaction with plants. This review summarizes the effects of actinobacteria as BCA, PGPA, and its beneficial associations with plants.  相似文献   

2.
型分泌系统(typeⅥsecretion system,T6SS)是一种强大的细菌分子武器,它通过将效应蛋白注入原核或真核细胞而介导细菌间竞争并影响宿主的生命活动。T6SS广泛分布于革兰氏阴性菌中,主要存在于变形菌门(Proteobacteria)。尽管T6SS的研究大多集中在动物相关细菌上,但它在植物相关细菌中的作用不能被忽视。本文对植物相关细菌的T6SS进行了较为详细的介绍,主要从T6SS的发现、T6SS在植物相关细菌间竞争中的作用、在细菌与植物互作中的作用以及在植物生物防治中的作用等4个方面综述了最新的研究成果,旨在为今后更好地研究植物相关细菌T6SS的生物学功能及其应用提供指导。  相似文献   

3.

Background  

N-acylhomoserine lactone (AHL)-based quorum sensing (QS) systems have been described in many plant-associated Gram-negative bacteria to control certain beneficial phenotypic traits, such as production of biocontrol factors and plant growth promotion. However, the role of AHL-mediated signalling in the endophytic strains of plant-associated Serratia is still poorly understood. An endophytic Serratia sp. G3 with biocontrol potential and high levels of AHL signal production was isolated from the stems of wheat and the role of QS in this isolate was determined.  相似文献   

4.
Both in natural and in managed ecosystems, bacteria are common inhabitants of the phytosphere and the internal tissues of plants. Probably the most diverse and environmentally adaptable plant-associated bacteria belong to the genus Burkholderia. This genus is well-known for its human, animal and plant pathogenic members, including the Burkholderia cepacia complex. However, it also contains species and strains that are beneficial to plants and can be potentially exploited in biotechnological processes. Here we present an overview of plant-associated Burkholderia spp. with special emphasis on beneficial plant-Burkholderia interactions. A discussion of the potential for utilization of stable plant-Burkholderia spp. associations in the development of low-input cropping systems is also provided.  相似文献   

5.
A deeper understanding of the complex relationship between plants and their microbiota is allowing researchers to appreciate a plethora of possibilities to improve crops using chemical-free alternatives based on beneficial microorganisms. An increase in crop yield from the promotion of plant growth or even simultaneous protection of the plants from the attack of phytopathogens can be achieved in the presence of different plant-associated microorganisms known as plant-growth-promoting rhizobacteria (PGPR) and biocontrol agents (BCAs), respectively. Thus, the study of the great diversity of plant-microbe and microbe-microbe interactions is an attention-grabbing topic covering studies of interactions since the plant seed and through all developmental stages, from root to shoot. The intricate communication systems that plant holobionts co-evolved has resulted in many different strategies and interplays between these organisms shaping the bacterial communities and the plant fitness simultaneously. Herein, we emphasize two understudied delivery systems existing in plant-associated bacteria: the type VI secretion system (T6SS) and the membrane vesicles with a huge potential to boost a highly demanded and necessary green agriculture.  相似文献   

6.
Recent outbreaks of vegetable-borne gastrointestinal illnesses across the globe demonstrate that human enteric pathogens can contaminate produce at any stage of production. Interactions of enterics with native plant-associated microbiota influence the microbiological safety of produce by affecting the attachment, persistence and proliferation of human pathogens on plants. Supermarket surveys have revealed that bacteria, but not fungi or mechanical damage, promote the growth of Salmonella enterica on produce. Field and laboratory studies have indicated that some plant pathogenic bacteria and fungi facilitate the entry and internalization of human pathogens in plants. Conversely, some phytobacteria, including those involved in biocontrol of plant diseases, significantly inhibit attachment and plant colonization by non-typhoidal Salmonella and enterovirulent Escherichia coli by producing antibiotics or competing for nutrients in the phyllosphere. In this review, we attempt to elucidate the mechanisms of interactions between human enteric pathogens and plant-associated microbiota, and describe how these interactions affect produce safety.  相似文献   

7.
The concept of using bacteriophages (bacterial viruses) as biocontrol agents in pest management emerged shortly after their discovery. Although research on phage-based biopesticides temporarily stopped with the advent of antibiotics, the appearance of antibiotic resistant bacterial strains led to a renewed interest in phage therapy for control of plant diseases. In the past twenty years numerous successful experiments have been reported on bacteriophage-based biocontrol measures, and several comprehensive studies have recently been published discussing detailed results of phage application practices in pest management, mainly from North American authors. The present review focuses on bacteriophage-mediated control of fire blight (caused by Erwinia amylovora (Burill) Winslow et al.), the most devastating bacterial disease of pome fruits. Research results from North America are discussed along with recent data from European laboratories.  相似文献   

8.
A screening strategy was developed to assess the potential of plant-associated bacteria to control diseases caused by Rhizoctonia solani Kühn. About 434 already characterized antagonistic bacterial strains isolated from diverse plant species and microenvironments were evaluated for biocontrol and plant growth promotion by a hierarchical combination of assays. Analyzing in vitro antagonism towards different Rhizoctonia isolates resulted in a selection of 20 potential biocontrol agents. The strains were characterized by their antagonistic mechanisms in vitro as well as their production of the plant growth hormone indole-3-acetic acid. The plant growth promoting effect by antagonistic bacteria was determined using a microtiter plate assay on the basis of lettuce seedlings. Lettuce and sugar beet as host plant were included in the biocontrol experiments in which the antagonistic effect of 17 bacterial isolates could be confirmed in vivo. Sequencing of the 16S rDNA gene and (or) fatty acid methyl ester gas chromatography was used to identify the antagonistic isolates. Molecular fingerprints of isolates obtained by BOX-polymerase chain reaction were compared to avoid further investigation with genetically very similar strains and to obtain unique molecular fingerprints for quality control and patent licensing. According to our strategy, an assessment scheme was developed and four interesting biological control agents, Pseudomonas reactans B3, Pseudomonas fluorescens B1, Serratia plymuthica B4, and Serratia odorifera B6, were found. While S. plymuthica B4 was the best candidate to biologically control Rhizoctonia in lettuce, P. reactans B3 was the best candidate to suppress the pathogen in sugar beet.  相似文献   

9.
Arbuscular mycorrhizal (AM) fungi, one of the most important component of the soil microbial community, establish physical interactions with naturally occurring and genetically modified bacterial biofertilizers and biopesticides, commonly referred to as plant growth-promoting rhizobacteria (PGPR). We have used a genetic approach to investigate the bacterial components possibly involved in the attachment of two PGPR (Azospirillum and Rhizobium) to AM roots and AM fungal structures. Mutants affected in extracellular polysaccharides (EPS) have been tested in in vitro adhesion assays and shown to be strongly impaired in the attachment to both types of surfaces as well as to quartz fibers. Anchoring of rhizobacteria to AM fungal structures may have special ecological and biotechnological significance because it may facilitate colonisation of new rhizospheres by the bacteria, and may be an essential trait for the development of mixed inocula.  相似文献   

10.
Fungi are an extraordinary and immensely diverse group of microorganisms that colonize many habitats even competing with other microorganisms. Fungi have received recognition for interesting metabolic activities that have an enormous variety of biotechnological applications. Previously, volatile organic compounds produced by fungi (FVOCs) have been demonstrated to have a great capacity for use as antagonist products against plant pathogens. However, in recent years, FVOCs have been received attention as potential alternatives to the use of traditional pesticides and, therefore, as important eco-friendly biotechnological tools to control plant pathogens. Therefore, highlighting the current state of knowledge of these fascinating FVOCs, the actual detection techniques and the bioactivity against plant pathogens is essential to the discovery of new products that can be used as biopesticides.  相似文献   

11.
The rhizosphere is the narrow zone of soil surrounding the root that is subject to influence by the root. Rhizobacteria are plant-associated bacteria that are able to colonize and persist on roots. An understanding of the ecology of a microorganism is a fundamental requirement for the introduction of a microbial inoculant into the open environment. This is particularly true for biological control of root pathogens in the rhizosphere, where one is actively seeking to alter the ecological balance so as to favour growth of the host plant and to curtail the development of pathogens. Some strains of plant growth-promoting rhizobacteria can effectively colonize plant roots and protect plants from diseases caused by a variety of root pathogens and growth promotion of plants through direct stimulation of growth hormone. Such beneficial or plant health-promoting strains are emerging as promising biocontrol agents. They are suitable as soil inoculants either individually or in combination and may be compatible with current chemical pesticides. Considerable progress has been achieved using molecular genetic techniques to elucidate the important microbial factors or genetic traits involved in the suppression of fungal root diseases. Strategies utilizing molecular genetic techniques have been developed to complement the ongoing research ranging from the characterization and genetic improvement of a selected biocontrol agent to the measurement of its persistence and dispersal. Finally, biocontrol is considered as part of a disease control strategy like integrated pest management which offers a successful approach for the deployment of both agro-chemicals and biocontrol agents.  相似文献   

12.
13.
14.
15.
16.
Hydrogen cyanide (HCN) is a broad-spectrum antimicrobial compound involved in biological control of root diseases by many plant-associated fluorescent pseudomonads. The HCN synthase is encoded by three biosynthetic genes (hcnA, hcnB, and hcnC), but little is known about the diversity of these genes in fluorescent Pseudomonas spp. and in other bacteria. Here, the partial hcnBC sequence was determined for a worldwide collection of biocontrol fluorescent Pseudomonas spp. Phylogenies based on hcnBC and deduced protein sequences revealed four main bacterial groups, but topological incongruences were found between hcnBC and rrs-based phylogenies, suggesting past lateral transfer of hcnBC among saprophytic root-colonizing pseudomonads. Three of the four groups included isolates from different countries and host plants. Yet, these groups corresponded to distinct, ecologically-adapted populations of HCN-producing biocontrol fluorescent pseudomonads, as indicated by high hcnBC distinctness ratio values and the differences in production levels of HCN in vitro found between groups. This is in accordance with previous results on catabolic properties and biocontrol abilities of these strains. HCN synthase gene diversity may thus reflect the adaptive radiation of HCN+ biocontrol fluorescent pseudomonads. Positive correlations were found between HCN production in vitro and plant protection in the cucumber/Pythium ultimum and tomato/Fusarium oxysporum f. sp. radicis-lycopersici pathosystems.  相似文献   

17.
The Burkholderia cepacia complex (Bcc) is composed of 17 closely related species. These bacteria are widely but heterogeneously distributed in the natural environment, such as soil, water and rhizosphere. Bcc strains are able to colonize various ecological niches by adopting versatile lifestyles, including saprophytism and (positive or deleterious) association with eukaryotic cells. Bcc strains have proven to be very efficient in biocontrol, plant growth promotion and bioremediation. However, they also are important opportunistic pathogens that can cause severe respiratory infections among individuals suffering from cystic fibrosis or chronic granulomatous disease. Therefore, considering that the distinction between plant beneficial and clinical strains is not obvious, biotechnological applications of Bcc strains are currently not allowed. This minireview provides an overview of the wide range of lifestyles that Bcc bacteria can adopt, leading to glimpses into their tremendous adaptation potential and highlighting remaining questions concerning potential implicated mechanisms.  相似文献   

18.
Type III protein secretion systems play a key role in the virulence of many pathogenic proteobacteria, but they also occur in nonpathogenic, plant-associated bacteria. Certain type III protein secretion genes (e.g., hrcC) have been found in Pseudomonas sp. strain SBW25 (and other biocontrol pseudomonads), but other type III protein secretion genes, such as the ATPase-encoding gene hrcN, have not been found. Using both colony hybridization and a PCR approach, we show here that hrcN is nevertheless present in many biocontrol fluorescent pseudomonads. The phylogeny of biocontrol Pseudomonas strains based on partial hrcN sequences was largely congruent with the phylogenies derived from analyses of rrs (encoding 16S rRNA) and, to a lesser extent, biocontrol genes, such as phlD (for 2,4-diacetylphloroglucinol production) and hcnBC (for HCN production). Most biocontrol pseudomonads clustered separately from phytopathogenic proteobacteria, including pathogenic pseudomonads, in the hrcN tree. The exception was strain KD, which clustered with phytopathogenic pseudomonads, such as Pseudomonas syringae, suggesting that hrcN was acquired from the latter species. Indeed, strain KD (unlike strain SBW25) displayed the same organization of the hrpJ operon, which contains hrcN, as P. syringae. These results indicate that the occurrence of hrcN in most biocontrol pseudomonads is not the result of recent horizontal gene transfer from phytopathogenic bacteria, although such transfer might have occurred for a minority of biocontrol strains.  相似文献   

19.
Chemical signal-mediated biological communication is common within bacteria and between bacteria and their hosts. Many plant-associated bacteria respond to unknown plant compounds to regulate bacterial gene expression. However, the nature of the plant compounds that mediate such interkingdom communication and the underlying mechanisms remain poorly characterized. Xanthomonas campestris pv. campestris (Xcc) causes black rot disease on brassica vegetables. Xcc contains an orphan LuxR regulator (XccR) which senses a plant signal that was validated to be glucose by HPLC-MS. The glucose concentration increases in apoplast fluid after Xcc infection, which is caused by the enhanced activity of plant sugar transporters translocating sugar and cell-wall invertases releasing glucose from sucrose. XccR recruits glucose, but not fructose, sucrose, glucose 6-phosphate, and UDP-glucose, to activate pip expression. Deletion of the bacterial glucose transporter gene sglT impaired pathogen virulence and pip expression. Structural prediction showed that the N-terminal domain of XccR forms an alternative pocket neighbouring the AHL-binding pocket for glucose docking. Substitution of three residues affecting structural stability abolished the ability of XccR to bind to the luxXc box in the pip promoter. Several other XccR homologues from plant-associated bacteria can also form stable complexes with glucose, indicating that glucose may function as a common signal molecule for pathogen–plant interactions. The conservation of a glucose/XccR/pip-like system in plant-associated bacteria suggests that some phytopathogens have evolved the ability to utilize host compounds as virulence signals, indicating that LuxRs mediate an interkingdom signalling circuit.  相似文献   

20.
Plants constitute an excellent ecosystem for microorganisms. The environmental conditions offered differ considerably between the highly variable aerial plant part and the more stable root system. Microbes interact with plant tissues and cells with different degrees of dependence. The most interesting from the microbial ecology point of view, however, are specific interactions developed by plant-beneficial (either non-symbiotic or symbiotic) and pathogenic microorganisms. Plants, like humans and other animals, also become sick, but they have evolved a sophisticated defense response against microbes, based on a combination of constitutive and inducible responses which can be localized or spread throughout plant organs and tissues. The response is mediated by several messenger molecules that activate pathogen-responsive genes coding for enzymes or antimicrobial compounds, and produces less sophisticated and specific compounds than immunoglobulins in animals. However, the response specifically detects intracellularly a type of protein of the pathogen based on a gene-for-gene interaction recognition system, triggering a biochemical attack and programmed cell death. Several implications for the management of plant diseases are derived from knowledge of the basis of the specificity of plant-bacteria interactions. New biotechnological products are currently being developed based on stimulation of the plant defense response, and on the use of plant-beneficial bacteria for biological control of plant diseases (biopesticides) and for plant growth promotion (biofertilizers). Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号