首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In xeric ecosystems, ant diversity response to aridity varies with rainfall magnitude and gradient extension. At a local scale and with low precipitation regimes, increased aridity leads to a reduction of species richness and an increased relative abundance for some ant species. In order to test this pattern in tropical environments, ant richness and relative abundance variation were evaluated along 35 km of an aridity gradient in the Araya Peninsula, state of Sucre, Venezuela. Three sampling stations comprising five transects each were set up. Pitfall traps and direct collecting from vegetation were assessed per transect. Overall, 52 species, 23 genera, and 7 subfamilies of ants were recorded in the peninsula. The total number of species and genera recorded by both sampling stations and transects decreased linearly with increasing aridity. Total relative abundance was highest in the most arid portion of the peninsula, with Crematogaster rochai (Forel) and Camponotus conspicuus zonatus (Emery) (Hymenoptera: Formicidae) being the numerically dominant species. Spatial and multivariate analyses revealed significant changes in ant composition every 11 km of distance, and showed a decrease of ant diversity with the increase of harsh conditions in the gradient. Here, we discuss how local geographic and topographic features of Araya originate the aridity gradient and so affect the microhabitat conditions for the ant fauna.  相似文献   

2.
Land‐use intensification is a major driver of local species extinction and homogenization. Temperate grasslands, managed at low intensities over centuries harbored a high species diversity, which is increasingly threatened by the management intensification over the last decades. This includes key taxa like ants. However, the underlying mechanisms leading to a decrease in ant abundance and species richness as well as changes in functional community composition are not well understood. We sampled ants on 110 grassland plots in three regions in Germany. The sampled grasslands are used as meadows or pastures, being mown, grazed or fertilized at different intensities. We analyzed the effect of the different aspects of land use on ant species richness, functional trait spaces, and community composition by using a multimodel inference approach and structural equation models. Overall, we found 31 ant species belonging to 8 genera, mostly open habitat specialists. Ant species richness, functional trait space of communities, and abundance of nests decreased with increasing land‐use intensity. The land‐use practice most harmful to ants was mowing, followed by heavy grazing by cattle. Fertilization did not strongly affect ant species richness. Grazing by sheep increased the ant species richness. The effect of mowing differed between species and was strongly negative for Formica species while Myrmica and common Lasius species were less affected. Rare species occurred mainly in plots managed at low intensity. Our results show that mowing less often or later in the season would retain a higher ant species richness—similarly to most other grassland taxa. The transformation from (sheep) pastures to intensively managed meadows and especially mowing directly affects ants via the destruction of nests and indirectly via loss of grassland heterogeneity (reduced plant species richness) and increased soil moisture by shading of fast‐growing plant species.  相似文献   

3.
Grazing by domestic livestock is one of the most widespread forms of anthropogenic disturbance globally, and can have a major impact on biodiversity and therefore conservation values. Here we use ants to assess the extent to which livestock grazing is compatible with biodiversity conservation in a tropical savanna of northern Australia, where there is growing pressure to intensify pastoral production. We focus on the extent to which ant responses conform with four general patterns identified in a recent global review: (1) soil and vegetation type have a far bigger impact on ant community composition than does grazing; (2) grazing modifies ant species composition but often not species richness or total abundance; (3) a species’ response often varies among habitats; and (4) between 25–50% of the species that can be statistically analysed are responsive to grazing. We sampled ants using pitfall traps at 38 sites in two land systems, based on cross-fence comparisons of areas of different grazing intensities. A total of 130 ant species from 24 genera were recorded, with the fauna dominated by species of Iridomyrmex and Monomorium. Land system was the primary driver of variation in ant species richness and composition, and grazing intensity was related to neither species richness nor total abundance. Only 10% of common species appeared to be impacted by grazing. Overall, ant responses to grazing in our study region were generally consistent with the four global patterns, except that the local fauna seems to be particularly resilient. Such resilience indicates that current grazing management practices are compatible with the conservation of ant biodiversity.  相似文献   

4.
Ants are considered an important faunal group for the functioning of arid rangelands, they have a long history of use for environmental monitoring, and exhibit four global patterns in grazing lands: (i) soil and vegetation type are primary determinants of ant community composition, and have a far greater effect on ant community composition than grazing; (ii) grazing induces species compositional change, but does not necessarily affect species richness or abundance; (iii) a species response to grazing is not necessarily consistent across habitats; and (iv) approximately one‐quarter to one‐half of species that are common enough for statistical analysis have significant responses to grazing. Here we report the patterns of arid zone ant faunas as they exist after several decades of sheep grazing in southern Australia, and examine the extent to which they conform to the four global patterns. We measured ant faunas along grazing gradients (varying distance to water) in seven paddocks containing two soil and two vegetation types on five pastoral properties. Total site abundance and richness of ants did not differ significantly with distance from water, but the abundance of 10 (34%) of the 29 most common species did differ; three were increasers, three were decreasers, and four had mixed responses dependent on soil/vegetation type. Rare species showed no trend with grazing intensity. The ant fauna of the more structurally complex vegetation types appeared to be the most vulnerable to grazing effects. Multivariate analysis showed soil type was the primary factor influencing ant faunal composition, followed by vegetation structure; however, grazing treatment effects were present. This study fully supports the recently identified global patterns of ant responses to grazing. It also shows that sampling regional ant faunas using widely dispersed traps can detect ant faunal patterns comparable to studies that use smaller‐scale grids of traps.  相似文献   

5.
Environmental stressors and changes in land use have led to rapid and dramatic species losses. As such, we need effective monitoring programs that alert us not only to biodiversity losses, but also to functional changes in species assemblages and associated ecosystem processes. Ants are important components of terrestrial food webs and a key group in food web interactions and numerous ecosystem processes. Their sensitive and rapid response to environmental changes suggests that they are a suitable indicator group for the monitoring of abiotic, biotic, and functional changes. We tested the suitability of the incidence (i.e. the sum of all species occurrences at 30 baits), species richness, and functional richness of ants as indicators of ecological responses to environmental change, forest degradation, and of the ecosystem process predation on herbivorous arthropods. We sampled data along an elevational gradient (1000–3000 m a.s.l.) and across seasons (wetter and drier period) in a montane rainforest in southern Ecuador. The incidence of ants declined with increasing elevation but did not change with forest degradation. Ant incidence was higher during the drier season. Species richness was highly correlated with incidence and showed comparable results. Functional richness also declined with increasing elevation and did not change with forest degradation. However, a null-model comparison revealed that the functional richness pattern did not differ from a pattern expected for ant assemblages with randomly distributed sets of traits across species. Predation on artificial caterpillars decreased along the elevational gradient; the pattern was not driven by elevation itself, but by ant incidence (or interchangeable by ant richness), which positively affected predation. In spite of lower ant incidence (or ant richness), predation was higher during the wetter season and did not change with forest degradation and ant functional richness. We used path analysis to disentangle the causal relationships of the environmental factors temperature (with elevation as a proxy), season, and habitat degradation with the incidence and functional richness of ants, and their consequences for predation. Our results would suggest that the forecasted global warming might support more active and species-rich ant assemblages, which in turn would mediate increased predation on herbivorous arthropods. However, this prediction should be made with reservation, as it assumes that the dispersal of ants keeps pace with the climatic changes as well as a one-dimensional relationship between ants and predation within a food-web that comprises species interactions of much higher complexity. Our results also suggested that degraded forests in our study area might provide suitable habitat for epigaeic, ground-dwelling ant assemblages that do not differ in incidence, species richness, functional richness, composition, or predation on arthropods from assemblages of primary forests. Most importantly, our results suggest that the occurrence and activity of ants are important drivers of ecosystem processes and that changes in the incidence and richness of ants can be used as effective indicators of responses to temperature changes and of predation within mega-diverse forest ecosystems.  相似文献   

6.
The interactive effect of grazing and soil resources on plant species richness and coexistence has been predicted to vary across spatial scales. When resources are not limiting, grazing should reduce competitive effects and increase colonisation and richness at fine scales. However, at broad scales richness is predicted to decline due to loss of grazing intolerant species. We examined these hypotheses in grasslands of southern Australia that varied in resources and ungulate grazing intensity since farming commenced 170 years ago. Fine-scale species richness was slightly greater in more intensively grazed upper slope sites with high nutrients but low water supply compared to those that were moderately grazed, largely due to a greater abundance of exotic species. At broader scales, exotic species richness declined with increasing grazing intensity whether nutrients or water supply were low or high. Native species richness declined at all scales in response to increasing grazing intensity and greater resource supply. Grazing also reduced fine-scale heterogeneity in native species richness and although exotics were also characterised by greater heterogeneity at fine scales, grazing effects varied across scales. In these grasslands patterns of plant species richness did not match predictions at all scales and this is likely to be due to differing responses of native and exotic species and their relative abundance in the regional species pool. Over the past 170 years intolerant native species have been eliminated from areas that are continually and heavily grazed, whereas transient, light grazing increases richness of both exotics and natives. The results support the observation that the processes and scales at which they operate differ between coevolved ungulate—grassland systems and those in transition due to recent invasion of herbivores and associated plant species.  相似文献   

7.
Agriculture of varying management intensity dominates fragmented tropical areas and differentially impacts organisms across and within taxa. We examined impacts of local and landscape characteristics on four groups of ants in an agricultural landscape in Chiapas, Mexico comprised of forest fragments and coffee agroecosystems varying in habitat quality. We sampled ground ants found in leaf litter and rotten logs and arboreal ants found in hollow coffee twigs and on tree trunks. Then using vegetation and agrochemical indices and conditional inference trees, we examined the relative importance of local (e.g. vegetation, elevation, agrochemical) and landscape variables (e.g. distance to and amount of nearby forest and rustic coffee) for predicting richness and abundance of ants. Leaf litter ant abundance increased with vegetation complexity; richness and abundance of ants from rotten logs, twig-nests, and tree trunks were not affected by vegetation complexity. Agrochemical use did not affect species richness or abundance of any ant group. Several local factors (including humus mass, degree of decay of logs, number of hollow twigs, tree circumference, and absence of fertilizers) were significant positive predictors of abundance and richness of some ant groups. Two landscape factors (forest within 200 m, and distance from forest) predicted richness and abundance of twig-nesting and leaf litter ants. Thus, different ant groups were influenced by different characteristics of agricultural landscapes, but all responded primarily to local characteristics. Given that ants provide ecosystem services (e.g. pest control) in coffee farms, understanding ant responses to local and landscape characteristics will likely inform farm management decisions.  相似文献   

8.
Ants are a prominent invertebrate group used to assess ecological change in response to disturbance. Their application as a bioindicator group has been particularly widespread in Australia, and a recent comprehensive review of their responses to environmental disturbance identified a range of consistent and predictable patterns. Here I conduct a literature review of the responses of ants to grazing globally, and specifically test whether key patterns identified in the review of ant responses to disturbance in Australia apply globally. The patterns tested were (1) soil and vegetation type are primary determinants of ant community composition, and often have a far greater effect on ant community composition than disturbance, (2) disturbance induces species compositional change, but does not necessarily affect overall species richness or abundance, (3) a species’ response is not necessarily consistent across habitats because of variation in inherent habitat suitability, and (4) approximately one quarter to one half of species that are common enough for statistical analysis have significant responses to disturbance. All these patterns were found to hold true for grazing studies worldwide. All but three studies sampling multiple soils/vegetation types found the influence of these variables to override grazing effects. Community composition changed consistently, yet the responses of total ant abundance and species richness were highly inconsistent. All studies that analysed species-level data on multiple soils/vegetation types, showed mixed responses to grazing across habitats. On average, 33% of tested species had statistically significant differences across treatments. This is the first such formulation of global patterns for any terrestrial invertebrate group for their use in bioindication, and provides valuable support to the use of ants as indicators of ecological disturbance. The challenge now is to provide a predictive understanding of this context dependency, as well as to improve the precision of the predictive responses. The confirmation of global patterns to grazing presented here represents a first step in developing the valuable contribution that ants can provide to rangeland monitoring systems.  相似文献   

9.
Frequent low‐intensity fires are used in management of Australian forests to reduce fuel loads and protect natural resources and human property. Low‐intensity fires are typically patchy and unburned litter microhabitats are often associated with large objects such as logs, which may act as refuges both for vertebrate and for invertebrate fauna. The aim of this study was to determine whether ants were using unburned leaf litter microhabitats associated with logs as a refuge after fire. The study was carried out in Bulls Ground State Forest, New South Wales, Australia, where experimentally burned and unburned sites had previously been established. Species richness and abundance of ants in leaf litter did not differ between habitats adjacent to logs and away from logs, in burned and unburned sites. Fifteen of the 42 ant species were found in all four habitats, and contributed 94% of total ant abundance. Every habitat had a group of unique species, which together made up 30% of the total species richness. There was also a distinct group of species that was not found in the leaf litter associated with the burned/open habitat. However, as 45% of all species were found in low abundance (less than 10 individuals), care must be taken in inferring patterns for these groups. When functional groups were used to assess community structure, ‘cryptic’ species were found to be common in all habitats, whereas ‘subordinate Camponotini’ were found in burned habitats only. This study indicates that in an area where frequent burning is applied on a broad scale, preserving a range of microhabitats, including those associated with retained logs, may make a substantial contribution to conserving ant biodiversity.  相似文献   

10.
Low and highly variable precipitation pulses exert a strong selective pressure on plant traits and this might provide axes of ecological differentiation among plant species in arid ecosystems. We asked whether aridity contributes to maintain high diversity of species and morphotypes in shrub canopies. We selected eleven study sites evenly distributed across a 400-km transect in northern Patagonia, Argentina. Precipitation is low and highly variable within and between years but almost homogeneous across the transect (125–150 mm). Mean annual temperature varied, however, ranging from 8 °C (west) to 13.5 °C (east) creating a west–east gradient of aridity (aridity index from 3.7 to 7.3, respectively). Sheep grazing commenced in the early 1900s at a similar intensity across the transect. We recorded the richness and cover of shrubs by species and by morphotypes (drought deciduous tall shrubs, evergreen tall shrubs, medium shrubs, and dwarf shrubs), and further calculated the species and morphotype Shannon diversity index at each site. We assessed the presence of spiny leaves, leaf pubescence, thorny stems, and photosynthetic stems in shrub species of all morphotypes and collected green leaves of the dominant shrub species (more than 80% of the total shrub cover) to assess the leaf area, leaf mass per unit area, N-, lignin- and soluble phenolic-concentrations per species at each site. Richness and diversity of shrub species and morphotypes were positively associated with aridity. The richness and diversity of shrub species with pubescent leaves and thorny stems, and nitrogen concentration in green leaves of dominant shrubs increased with increasing aridity. We conclude that our findings on increased diversification in life history traits, species and morhotypes in shrub canopies with increasing aridity support the hypothesis that variability in aridity provides axes of ecological differentiation among shrub species facilitating their coexistence.  相似文献   

11.
Abstract I investigated the relationship between species richness and composition of ant faunas, and sampling intensity in two regions with different long‐term histories of grazing intensity in mulga (Acacia aneura) woodlands in northern New South Wales. There were two aims: (i) to examine the relationship between sampling intensity and species richness and composition; and (ii) to explore the differences in ant assemblages from two regions of markedly different grazing intensity when sampled at different intensities (i.e. when a higher proportion of the local ant fauna were collected). Ants were sampled in pit traps (120‐mm diameter) at densities of two, four, six and nine pits per 100 m2. Each sampling‐intensity treatment was replicated three times within each region. Pit traps filled with preservative were opened for 3 days. Species richness was higher with each successive increase in sampling intensity but was not different between regions for a given trapping intensity. There was no obvious asymptote of the curve relating trapping intensity to cumulative species richness suggesting that even greater trap densities than those used in the present study would be needed to collect most of the species of ants using a patch of ground over a few days. Spatial replication of a low‐intensity sampling design did not capture as many species as one higher‐intensity sampling array with the same total number of pit traps. This result can be explained by aggressive numerically dominant species of ants monopolizing access to a greater proportion of the traps in low‐density arrays. Ordination reveals that regions and sampling‐intensity treatments could be discriminated and that differences between regions with different grazing histories were less apparent with high‐intensity sampling arrays than they were with low‐intensity sampling arrays. This suggests that differences between locations in space (or potentially samples in time) could be exaggerated by incomplete sampling of the patch‐scale fauna. Comparison of the present study with other studies suggests that most studies to date have used sampling intensities that would not give a thorough assessment of the patch‐scale ground‐dwelling fauna if sampled only by pit traps. The implications of the results for programmes of ant monitoring in rangelands are discussed.  相似文献   

12.
In species‐rich ecosystems, such as subtropical and tropical forests, higher trophic level interactions are key mediators of ecosystem functioning. Plant species loss may alter these interactions, but the effects of plant diversity might be modified by intraguild interactions, particularly among predators. We analyzed the relationships between spiders and ants, two dominant predatory arthropod taxa, on tree saplings across a gradient from medium to high woody plant species richness in a subtropical forest in Southeast China. Neither ant nor spider total biomass was significantly related to plant species richness. By contrast, the biomass distribution of web‐building and hunting spiders changed and spider family richness increased in the presence of ants, resulting in more web builder‐dominated assemblages. However, these relationships depended on the plant communities, and were stronger in plots with higher plant species richness. Our results indicate that in addition to potential effects of ants on hunting spiders in particular, ants could indirectly influence intraguild interactions within spider assemblages. The observed shifts in the spider assemblages with increasing ant presence and plant species richness may have functional consequences, as web‐building and hunting spiders have distinct prey spectra. The relationships among ants, spiders, and plant species richness might contribute to explaining the non‐significant relationship between the overall effects of predators and plant diversity previously observed in the same forest plots. Our findings thus give insight into the complexity of biotic interactions in such species‐rich ecosystems.  相似文献   

13.
Interactions between aboveground vertebrate herbivores and subterranean yellow meadow ants (Lasius flavus) can drive plant community patterns in grassland ecosystems. Here, we study the relative importance of the presence of ants (L. flavus) and ant mounds under different simulated grazing regimes for biomass production and species composition in plant communities. We set up a greenhouse experiment using intact soil cores with their associated vegetation.We found that plant biomass production in the short term was affected by an interaction between simulated grazing (clipping) and ant mound presence. Clipping homogenized production on and off mounds, while in unclipped situations production was higher off than on mounds. During the experiment, these differences in unclipped situations disappeared, because production on unclipped mounds increased. Plant species richness was on average higher in clipped treatments and patterns did not change significantly over the experimental period. Plant community composition was mainly affected by clipping, which increased the cover of grazing-tolerant plant species. The actual presence of yellow meadow ants did not affect plant community composition and production.We conclude that the interaction between ant mounds and clipping determined plant community composition and biomass production, while the actual presence of ants themselves was not important. Moreover, clipping can overrule effects of ant mounds on biomass production. Only shortly after the cessation of clipping biomass production was affected by ant mound presence, suggesting that only under low intensity clipping ant mounds may become important determining plant production. Therefore, under low intensity grazing ant mounds may drive the formation of small-scale plant patches.  相似文献   

14.
Biological invasions are typically associated with disturbance, which often makes their impact on biodiversity unclear—biodiversity decline might be driven by disturbance, with the invader just being a ‘passenger’. Alternatively, an invader may act as a ‘back-seat driver’, being facilitated by disturbance that has already caused some biodiversity decline, but then causing further decline. Here we examine the interactive effects of anthropogenic fire and invasive ant species (Anoplolepis gracilipes or Wasmannia auropunctata) on native ant diversity in New Caledonia, a globally recognized biodiversity hotspot. We first examined native ant diversity at nine paired burnt and unburnt sites, with four pairs invaded by Anoplolepis, 5 years after an extensive fire. In the absence of invasion, native epigaeic ants were resilient to fire, but native ant richness and the abundance of Forest Opportunists were markedly lower in invaded burnt sites. Second, we examined native ant diversity along successional gradients from human-derived savanna to natural rainforest in the long-term absence of fire, where there was a disconnection between disturbance-mediated variation in microhabitat and the abundance of the disturbance specialist Wasmannia. All native ant diversity responses (total abundance, richness, species composition, functional group richness and the abundance of Forest Opportunists) declined independently of microhabitat variables but in direct association with high Wasmannia abundance. Our results indicate that invasive ants are acting as back-seat drivers of biodiversity decline in New Caledonia, with invasion facilitated by disturbance but then causing further biodiversity decline.  相似文献   

15.
1. Ants are highly interactive organisms and dominant species are considered to be able to control the species richness of other ants via competitive exclusion. However, depending on the scale studied, inter‐specific competition may or may not structure biological assemblages. To date, ant dominance–richness relationships have only been studied in small sample units, where a few dominant colonies could plausibly control most of the sample unit. 2. We conducted a comprehensive survey of terrestrial ant assemblages using bait, pitfall, and litter‐sorting methods in three sites in Brazilian Amazonia. Using a spatially structured rarefaction approach, based on sampling units with linear dimensions ranging from 25 to 250 m, the mesoscale patterns of ant dominance–richness relationships (sampling units covering hundreds of meters separated by kilometers) were investigated. 3. Interference–competition models (parabolic or negative linear relationships between species richness and the abundance of dominant ants) tended to be more frequent in smaller sample units or in assemblages sampled with interactive methods, such as baits. Using more inclusive sampling methods, the relationship was generally asymptotic rather than parabolic, with no reduction in species diversity because of the presence of dominants. Random co‐occurrence patterns of species within sites support the interpretation of a limited role for present‐day competition in structuring these assemblages. 4. Competition from dominant species may reduce species richness in small areas, especially when artificial baits are used, but appears to be less important than environmental constraints in determining ant species richness across scales of hectares and greater in these Amazon forests.  相似文献   

16.
1.?Habitat disturbance and species invasions interact in natural systems, making it difficult to isolate the primary cause of ecosystem degradation. A general understanding requires case studies of how disturbance and invasion interact across a variety of ecosystem - invasive species combinations. 2.?Dramatic losses in ant diversity followed the invasion of central Texas by red imported fire ants (Solenopsis invicta). However, recent manipulative studies in Florida revealed no effect on ant diversity following the removal of S.?invicta from a disturbed pasture habitat, but moderate loss of diversity associated with their introduction into undisturbed habitat and no invasion occurred without disturbance. Thus, the importance of S.?invicta in driving diversity loss and its ability to invade undisturbed systems is unresolved. 3.?We examine the distribution and abundance of a large monogyne S.?invicta population and its association with the co-occurring ant assemblage at a site in south Texas close to the aridity tolerance limit of S.?invicta. 4.?We document that moisture modulates S.?invicta densities. Further, soil disturbing habitat manipulations greatly increase S.?invicta population densities. However, S.?invicta penetrates all habitats regardless of soil disturbance history. In contrast, controlled burns depress S.?invicta densities. 5.?In habitats where S.?invicta is prevalent, it completely replaces native fire ants. However, S.?invicta impacts native ants as a whole less strongly. Intriguingly, native ants responded distinctly to S.?invicta in different environments. In wet, undisturbed environments, high S.?invicta abundance disrupts the spatial structure of the ant assemblage by increasing clumping and is associated with reduced species density, while in dry-disturbed habitats, sites with high S.?invicta abundance possess high numbers of native species. Analyses of co-occurrence indicate that reduced species density in wet-undisturbed sites arises from negative species interactions between native ants and S.?invicta. However, these same data suggest that the high native species density of abundant S.?invicta sites in dry-disturbed environments does not result from facilitation. 6.?Monogyne S.?invicta populations play different roles in different environments, driving ant diversity loss in some, but being largely symptomatic of habitat disturbance in others.  相似文献   

17.
1. Fire ants naturally invade some undisturbed ecosystems of high conservation value and may negatively impact co‐occurring ants. 2. Over 3 years, fire ants were added and removed from a longleaf pine savanna ecosystem that naturally supports a low density of fire ants. Impacts on co‐occurring ants were monitored using pitfall traps. 3. Treatments resulted in significant differences in average fire ant abundance across all plots only in the first year of the experiment. Fire ants had little discernible impact. The abundance and species richness of co‐occurring ants in removal plots never differed from unmanipulated control plots. The abundance of co‐occurring ants was very slightly lower and ant species richness was slightly higher where Solenopsis invicta Buren colonies were added, but neither contrast was significant. 4. The poor conditions in this habitat for many native ants may explain this outcome. More broadly, the impact of fire ants on ant assemblages still appears to be secondary and largely a consequence of human impacts on the environment.  相似文献   

18.
This study aims primarily to assess the response of two invertebrate groups to the effects of pastoralism and military training, at one site in the tropical savanna of north‐eastern Queensland. The richness and species composition of ants and terrestrial spiders were examined at two contrasting times of year across three land use treatments (pastoralism, military training and undisturbed) and four landscape positions (upper slope to riparian). Ant species richness was least in the grazed sites, and a high proportion of the ant species recorded varied significantly in frequency between the grazed and the two ungrazed land uses. This variation was generally greater than that associated with landscape position. Although variation in the richness of spiders was significantly related to land‐use type, this effect was less pronounced than for ants, was less marked than variation associated with landscape position and was confounded by a strong interaction between land use and landscape position. Quadrat‐scale variation in the composition of spider assemblages was influenced most by season of sampling. For both spiders and ants, there were few differences in richness or species composition between undisturbed land and that managed for military use.  相似文献   

19.
Northern Australia supports the world’s largest estate of undeveloped tropical savannas, but previous studies of ant diversity in the region have covered only a fraction of its land area and habitat diversity. We assess patterns of ant species and functional diversity, their environmental predictors, and biogeographic significance in the central North Kimberley region of Australia’s seasonal tropics. Pitfall traps were used to sample ants at 69 plots in representative savanna habitats, collecting a total of 158 species from 30 genera. Total richness was estimated to be as high as 237 species. At least 29 species across 12 genera appear to have been collected for the first time. Only a single invasive ant was recorded from the study area. Based on cluster analysis we identified six compositionally distinct ant communities, each associated with a combination of vegetation type and underlying geology. Species richness and functional diversity was highest in savanna woodlands and grasslands on sandstone-derived soils, with increasing richness also predicted by a lower mean daily temperature range, a more complex understorey, and lower precipitation seasonality. The abundance of nearly all commonly trapped species was related to temperature, moisture, and habitat variables, although these relationships were highly idiosyncratic. Nearly 40 % of the collected species are known only from the North Kimberley region. The high level of endemism, together with the lack of introduced ant species, identifies the North Kimberley ant fauna as having outstanding biodiversity value. Our identification of ant community types based on mappable soil and vegetation units provides a basis for predicting ant distribution throughout the broader region, and therefore contributing to regional conservation planning and management.  相似文献   

20.
Honeydew‐producing psyllids are an important pest of eucalyptus (Myrtaceae) in California, USA, and may influence surrounding litter arthropod communities. In particular, the introduced Australian psyllids Glycaspis brimblecombei Moore and Eucalyptolyma maideni Froggatt (both Hemiptera: Psyllidae) may facilitate the prevalence of invasive ant species. We examined ground‐dwelling arthropod communities under eucalyptus trees infested by psyllids. We used a model comparison approach to examine the association of psyllid infestation, ant abundance, and environmental factors with ground arthropod abundance and richness. We found a significant positive association between ant activity on eucalyptus trees and psyllid abundance. Higher psyllid abundance and higher Argentine ant abundance were associated with increased arthropod richness. Irrigation was also associated with increased arthropod richness and abundance. Regardless of location collected, arthropod communities collected in pitfall traps under trees with high psyllid abundance had high similarity to arthropod communities under trees with high ant activity. Abundance of isopods was positively associated with both ant and psyllid abundance. Other arthropod groups differed in their association with ants and psyllids. Argentine ants may exacerbate pest impacts and may also decrease the effectiveness of biological control programs for eucalyptus lerp psyllids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号