首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Herpes Simplex Virus 1 (HSV-1) glycoprotein gE-gI is a transmembrane Fc receptor found on the surface of infected cells and virions that binds human immunoglobulin G (hIgG). gE-gI can also participate in antibody bipolar bridging (ABB), a process by which the antigen-binding fragments (Fabs) of the IgG bind a viral antigen while the Fc binds to gE-gI. IgG Fc binds gE-gI at basic, but not acidic, pH, suggesting that IgG bound at extracellular pH by cell surface gE-gI would dissociate and be degraded in acidic endosomes/lysosomes if endocytosed. The fate of viral antigens associated with gE-gI–bound IgG had been unknown: they could remain at the cell surface or be endocytosed with IgG. Here, we developed an in vitro model system for ABB and investigated the trafficking of ABB complexes using 4-D confocal fluorescence imaging of ABB complexes with transferrin or epidermal growth factor, well-characterized intracellular trafficking markers. Our data showed that cells expressing gE-gI and the viral antigen HSV-1 gD endocytosed anti-gD IgG and gD in a gE-gI–dependent process, resulting in lysosomal localization. These results suggest that gE-gI can mediate clearance of infected cell surfaces of anti-viral host IgG and viral antigens to evade IgG-mediated responses, representing a general mechanism for viral Fc receptors in immune evasion and viral pathogenesis.  相似文献   

2.
The murine cytomegalovirus (MCMV) fcr-1 gene codes for a glycoprotein located at the surface of infected cells which strongly binds the Fc fragment of murine immunoglobulin G. To determine the biological significance of the fcr-1 gene during viral infection, we constructed MCMV fcr-1 deletion mutants and revertants. The fcr-1 gene was disrupted by insertion of the Escherichia coli lacZ gene. In another mutant, the marker gene was also deleted, by recombinase cre. As expected for its hypothetical role in immunoevasion, the infection of mice with fcr-1 deletion mutants resulted in significantly restricted replication in comparison with wild-type MCMV and revertant virus. In mutant mice lacking antibodies, however, the fcr-1 deletion mutants also replicated poorly. This demonstrated that the cell surface-expressed viral glycoprotein with FcR activity strongly modulates the virus-host interaction but that this biological function is not caused by the immunoglobulin binding property.  相似文献   

3.
Recognition of immunoglobulin G (IgG) by surface receptors for the Fc domain of immunoglobulin G (Fcgamma), FcgammaRs, can trigger both humoral and cellular immune responses. Two human cytomegalovirus (HCMV)-encoded type I transmembrane receptors with Fcgamma-binding properties (vFcgammaRs), gp34 and gp68, have been identified on the surface of HCMV-infected cells and are assumed to confer protection against IgG-mediated immunity. Here we show that Fcgamma recognition by both vFcgammaRs occurs independently of N-linked glycosylation of Fcgamma, in contrast with the properties of host FcgammaRs. To gain further insight into the interaction with Fcgamma, truncation mutants of the vFcgammaR gp68 ectodomain were probed for Fcgamma binding, resulting in localization of the Fcgamma binding site on gp68 to residues 71 to 289, a region including an immunoglobulin-like domain. Gel filtration and biosensor binding experiments revealed that, unlike host FcgammaRs but similar to the herpes simplex virus type 1 (HSV-1) Fc receptor gE-gI, gp68 binds to the C(H)2-C(H)3 interdomain interface of the Fcgamma dimer with a nanomolar affinity and a 2:1 stoichiometry. Unlike gE-gI, which binds Fcgamma at the slightly basic pH of the extracellular milieu but not at the acidic pH of endosomes, the gp68/Fcgamma complex is stable at pH values from 5.6 to pH 8.1. These data indicate that the mechanistic details of Fc binding by HCMV gp68 differ from those of host FcgammaRs and from that of HSV-1 gE-gI, suggesting distinct functional and recognition properties.  相似文献   

4.
 M11D杂交瘤细胞株是由人胎盘细胞膜纯化所得胰岛素受体免疫BALB/C小鼠后,取其脾细胞与同系小鼠骨髓瘤细胞株NS-1细胞融合所得。该杂交瘤细胞分泌的抗体经ELISA及放射免疫沉淀法证实为胰岛素受体特异的单克隆抗体。该抗体经Protein A-Sepharose亲和层析分离、纯化,SDS-聚丙烯酰胺梯度凝胶电泳鉴定得分子量分别为53000及23000的两条区带,免疫双扩证明为IgGl。该抗体特异地沉淀125Ⅰ-人胎盘细胞膜胰岛素受体,沉淀经SDS-聚丙烯酰胺凝胶电泳后放射自显影得分子量为135000的特异显影带,与胰岛素受体α亚基分子量相同,说明M11D为抗胰岛素受体α亚基的单克隆抗体。  相似文献   

5.
Human cytomegalovirus (HCMV) infections are life-threating to people with a compromised or immature immune system. Upon adhesion, fusion of the virus envelope with the host cell is initiated. In this step, the viral glycoprotein gB is considered to represent the major fusogen. Here, we present for the first time structural data on the binding of an anti-herpes virus antibody and describe the atomic interactions between the antigenic domain Dom-II of HCMV gB and the Fab fragment of the human antibody SM5-1. The crystal structure shows that SM5-1 binds Dom-II almost exclusively via only two CDRs, namely light chain CDR L1 and a 22-residue-long heavy chain CDR H3. Two contiguous segments of Dom-II are targeted by SM5-1, and the combining site includes a hydrophobic pocket on the Dom-II surface that is only partially filled by CDR H3 residues. SM5-1 belongs to a series of sequence-homologous anti-HCMV gB monoclonal antibodies that were isolated from the same donor at a single time point and that represent different maturation states. Analysis of amino acid substitutions in these antibodies in combination with molecular dynamics simulations show that key contributors to the picomolar affinity of SM5-1 do not directly interact with the antigen but significantly reduce the flexibility of CDR H3 in the bound and unbound state of SM5-1 through intramolecular side chain interactions. Thus, these residues most likely alleviate unfavorable binding entropies associated with extra-long CDR H3s, and this might represent a common strategy during antibody maturation. Models of entire HCMV gB in different conformational states hint that SM5-1 neutralizes HCMV either by blocking the pre- to postfusion transition of gB or by precluding the interaction with additional effectors such as the gH/gL complex.  相似文献   

6.
In patients with impaired cell-mediated immune responses (e.g., lung transplant recipients and AIDS patients), cytomegalovirus (CMV) infection causes severe disease such as pneumonitis. However, although immunocompetency in the host can protect from CMV disease, the virus persists by evading the host immune defenses. A model of CMV infection of the endothelium has been developed in which inflammatory stimuli, such as the CC chemokine RANTES, bind to the endothelial cell surface, stimulating calcium flux during late times of CMV infection. At 96 h postinfection, CMV-infected cells express mRNA of the CMV-encoded CC chemokine receptor US28 but do not express mRNA of other CC chemokine receptors that bind RANTES (CCR1, CCR4, CCR5). Cloning and stable expression of the receptor CMV US28 in human kidney epithelial cells (293 cells) with and without the heterotrimeric G protein α16 indicated that CMV US28 couples to both Gαi and Gα16 proteins to activate calcium flux in response to the chemokines RANTES and MCP-3. Furthermore, cells that coexpress US28 and Gα16 responded to RANTES stimulation with activation of extracellular signal-regulated kinase, which could be attributed, in part, to specific Gα16 coupling. Thus, through expression of the CC chemokine receptor US28, CMV may utilize resident G proteins of the infected cell to manipulate cellular responses stimulated by chemokines.  相似文献   

7.
Herpes simplex virus (HSV) glycoproteins gE and gI form an immunoglobulin G (IgG) Fc receptor (FcγR) that binds the Fc domain of human anti-HSV IgG and inhibits Fc-mediated immune functions in vitro. gE or gI deletion mutant viruses are avirulent, probably because gE and gI are also involved in cell-to-cell spread. In an effort to modify FcγR activity without affecting other gE functions, we constructed a mutant virus, NS-gE339, that has four amino acids inserted into gE within the domain homologous to mammalian IgG FcγRs. NS-gE339 expresses gE and gI, is FcγR, and does not participate in antibody bipolar bridging since it does not block activities mediated by the Fc domain of anti-HSV IgG. In vivo studies were performed with mice because the HSV-1 FcγR does not bind murine IgG; therefore, the absence of an FcγR should not affect virulence in mice. NS-gE339 causes disease at the skin inoculation site comparably to wild-type and rescued viruses, indicating that the FcγR mutant virus is pathogenic in animals. Mice were passively immunized with human anti-HSV IgG and then infected with mutant or wild-type virus. We postulated that the HSV-1 FcγR should protect wild-type virus from antibody attack. Human anti-HSV IgG greatly reduced viral titers and disease severity in NS-gE339-infected animals while having little effect on wild-type or rescued virus. We conclude that the HSV-1 FcγR enables the virus to evade antibody attack in vivo, which likely explains why antibodies are relatively ineffective against HSV infection.  相似文献   

8.
Identification of broadly cross-reactive HIV-1-neutralizing antibodies (bnAbs) may assist vaccine immunogen design. Here we report a novel human monoclonal antibody (mAb), designated m43, which co-targets the gp120 and gp41 subunits of the HIV-1 envelope glycoprotein (Env). M43 bound to recombinant gp140 s from various primary isolates, to membrane-associated Envs on transfected cells and HIV-1 infected cells, as well as to recombinant gp120 s and gp41 fusion intermediate structures containing N-trimer structure, but did not bind to denatured recombinant gp140 s and the CD4 binding site (CD4bs) mutant, gp120 D368R, suggesting that the m43 epitope is conformational and overlaps the CD4bs on gp120 and the N-trimer structure on gp41. M43 neutralized 34% of the HIV-1 primary isolates from different clades and all the SHIVs tested in assays based on infection of peripheral blood mononuclear cells (PBMCs) by replication-competent virus, but was less potent in cell line-based pseudovirus assays. In contrast to CD4, m43 did not induce Env conformational changes upon binding leading to exposure of the coreceptor binding site, enhanced binding of mAbs 2F5 and 4E10 specific for the membrane proximal external region (MPER) of gp41 Envs, or increased gp120 shedding. The overall modest neutralization activity of m43 is likely due to the limited binding of m43 to functional Envs which could be increased by antibody engineering if needed. M43 may represent a new class of bnAbs targeting conformational epitopes overlapping structures on both gp120 and gp41. Its novel epitope and possibly new mechanism(s) of neutralization could helpdesign improved vaccine immunogens and candidate therapeutics.  相似文献   

9.
Poliovirus infects susceptible cells through the poliovirus receptor (PVR), which functions to bind virus and to change its conformation. These two activities are thought to be necessary for efficient poliovirus infection. How binding and conformation conversion activities contribute to the establishment of poliovirus infection was investigated. Mouse L cells expressing mouse high-affinity Fcγ receptor molecules were established and used to study poliovirus infection mediated by mouse antipoliovirus monoclonal antibodies (MAbs) (immunoglobulin G2a [IgG2a] subtypes) or PVR-IgG2a, a chimeric molecule consisting of the extracellular moiety of PVR and the hinge and Fc portion of mouse IgG2a. The antibodies and PVR-IgG2a showed the same degree of affinity for poliovirus, but the infectivities mediated by these molecules were different. Among the molecules tested, PVR-IgG2a mediated the infection most efficiently, showing 50- to 100-fold-higher efficiency than that attained with the different MAbs. A conformational change of poliovirus was induced only by PVR-IgG2a. These results strongly suggested that some specific interaction(s) between poliovirus and the PVR is required for high-level infectivity of poliovirus in this system.  相似文献   

10.
11.
The recycling of immunoglobulins by the neonatal Fc receptor (FcRn) is of crucial importance in the maintenance of antibody levels in plasma and is responsible for the long half-lives of endogenous and recombinant monoclonal antibodies. From a therapeutic point of view there is great interest in understanding and modulating the IgG–FcRn interaction to optimize antibody pharmacokinetics and ultimately improve efficacy and safety. Here we studied the interaction between a full-length human IgG1 and human FcRn via hydrogen/deuterium exchange mass spectrometry and targeted electron transfer dissociation to map sites perturbed by binding on both partners of the IgG–FcRn complex. Several regions in the antibody Fc region and the FcRn were protected from exchange upon complex formation, in good agreement with previous crystallographic studies of FcRn in complex with the Fc fragment. Interestingly, we found that several regions in the IgG Fab region also showed reduced deuterium uptake. Our findings indicate the presence of hitherto unknown FcRn interaction sites in the Fab region or a possible conformational link between the IgG Fc and Fab regions upon FcRn binding. Further, we investigated the role of IgG glycosylation in the conformational response of the IgG–FcRn interaction. Removal of antibody glycans increased the flexibility of the FcRn binding site in the Fc region. Consequently, FcRn binding did not induce a similar conformational stabilization of deglycosylated IgG as observed for the wild-type glycosylated IgG. Our results provide new molecular insight into the IgG–FcRn interaction and illustrate the capability of hydrogen/deuterium exchange mass spectrometry to advance structural proteomics by providing detailed information on the conformation and dynamics of large protein complexes in solution.Antibodies and variants thereof constitute the fastest growing category of therapeutic agents, and currently more than 30 immunoglobulins (Igs)1 have been approved for the treatment of cancer, immunological diseases, and infectious diseases (1). The success of therapeutic monoclonal antibodies (mAbs) is based on the ability to specifically target diverse antigens and activate immunological effector responses. An Ig is a “dimer of a dimer” consisting of light chains and heavy chains in which each light chain is linked to a heavy chain and the light–heavy dimers are connected by disulfide bridges to form the intact antibody. IgG is the most prevalent Ig isotype in plasma and is the most commonly used isotype for therapeutic antibodies because of its strong ability to induce antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity (2). The IgG1 subtype is a 150 kDa Y-shaped glycoprotein. Its stem and arms are referred to as the fragment crystallizable (Fc) and fragment antigen binding (Fab) regions, respectively. The Fab region is composed of a variable (V) and constant (C) domain from both the light chain and the heavy chain (VL, CL, VH, CH1). Antigen binding is achieved through three highly variable complementary determining regions in each variable domain (VL and VH) of the Fab region. The Fc region is composed of additional constant domains of the heavy chain (CH2 and CH3); it mediates antibody-dependent cellular cytotoxicity through interaction with Fcγ receptors (3, 4) and activates complement-dependent cytotoxicity through interaction with C1q (5). The Fc region also interacts with the neonatal Fc receptor (FcRn), which regulates the maintenance of antibody levels in plasma and thus the half-life of endogenous and recombinant monoclonal antibodies (6). The interaction between IgG and FcRn displays a characteristic pH dependence that is the basis for the function of FcRn in IgG recycling (7). FcRn rescues and recycles IgG from lysosomal degradation by binding with low micromolar affinity to internalized IgG in the slightly acidic late endosome of, for example, vascular endothelial cells (pH < 6.5). The IgG is rescued from intracellular degradation as the IgG–FcRn complex returns to the cell surface, where the IgG is released into circulation as FcRn binding is abolished in the neutral pH of plasma (6). FcRn-mediated IgG recycling contributes to the long catabolic half-life of endogenous and therapeutic antibodies of ∼22 days (8).The FcRn is a heterodimer of an MHC-class-I-like heavy chain and a β2-microglobulin (β2m) light chain. The FcRn heavy chain (α-chain) is composed of three structural domains, α1, α2, and α3, followed by a transmembrane region and a cytoplasmic domain. The three-dimensional structure of FcRn is similar to that of MHC class I molecules in which domains α1 and α2 are stacked against domain α3 and β2m (9, 10). The pH dependence of the IgG–FcRn interaction is attributed to highly conserved residues in both FcRn and IgG (10). The first crystal structures of rat FcRn and rat Fc revealed that FcRn binds to the CH2 and CH3 domains of the IgG Fc region—specifically, CH2 residues 252–254 and 309–311, as well as CH3 residues 434–436 (11, 12). Several positively charged histidines in the IgG CH2 and CH3 domains (H310, H433, H435, and H436; the latter is not found in humans) interact with acidic residues E117, E132, W133, E135, and D137 in the FcRn α2 domain, accounting for the pH-sensitive nature of the IgG–FcRn interaction. The interface is also composed of a hydrophobic core around Fc I253 that interacts with FcRn W133 and the N-terminal I1 residue of the β2m, which has been proposed to contact Fc residues 309–311. The interaction of FcRn and IgG occurs in a 2:1 stoichiometry, where two FcRn molecules bind to one IgG through binding sites on each heavy chain (12). Two distinct binding modes have been suggested in which the FcRn molecules bind in a symmetric or asymmetric fashion to the Fc. In symmetric models FcRns bind to opposite sites on the Fc, whereas in the asymmetric models two FcRn molecules form a homodimer with only one FcRn molecule binding the Fc directly (6, 11). The extracellular domains of rat and human FcRn have 68% sequence identity and are structurally similar (9, 10). The first crystal structure of human FcRn in complex with an engineered human Fc fragment (Fc-YTE) as well as human serum albumin was published recently (13) and showed a binding mode similar to that of rodent IgG–FcRn variants, with the exception of the additional interaction sites caused by substitutions in the Fc domain. To the best of our knowledge, no crystal structures of full-length human IgG and human FcRn are currently available.From a therapeutic point of view there is great interest in understanding and modulating the IgG–FcRn interaction to optimize the pharmacokinetics and thus ultimately the efficacy of therapeutic monoclonal antibodies. The goal of FcRn modulation is typically prolongation of the in vivo half-life in order to reduce dosing frequency and ultimately the cost of treatment. However, a shorter half-life can also be desirable, for example, for antibody–toxin conjugates or antibodies used in bioimaging (6). Several engineered therapeutic mAb variants with improved in vitro FcRn binding affinity and extended in vivo half-life have been generated via mutation of residues in the Fc domain (1419). For example, the engineered variants of palivizumab (M252Y/S254T/T256E) (15, 16) and bevacizumab (M428L/N434S) (17) show 10- and 11-fold increases in relative FcRn affinity that result in increases of the in vivo half-life in cynomolgus monkeys of 4- and 3-fold, respectively. Mutation can also impact half-life negatively: mAb engineering can improve FcRn affinity at both pH 6 and 7.5 such that the pH-dependent release of IgGs is prohibited, leading to increased IgG clearance (16). Interestingly, post-translational modifications such as oxidation of conserved methionines in the CH2 and CH3 domains of IgG1 and IgG2 have been shown to affect FcRn affinity negatively. Antibody oxidation that can occur during production or storage significantly reduces FcRn binding in vitro (20, 21), which also translates to a reduced in vivo half-life in human FcRn transgenic mice models (22). The molecular origins of the effect of post-translational modifications on the IgG–FcRn interaction are, however, unclear. Further, the impact of FcRn binding on the conformational properties and dynamics of IgG in solution is currently not well understood.In this study we investigated the interaction between human FcRn and two variants of a full-length IgG1 by means of hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS). HDX-MS has become a popular approach for studying protein dynamics and interactions (2327), as the technique provides access to proteins at native solution conditions with modest sample requirements. Amide HDX rates in native proteins are highly influenced by higher order structure: fully solvated (non-hydrogen-bonded) amides exchange rapidly, whereas structurally protected (hydrogen-bonded) amides exchange up to 7 orders of magnitude slower (28, 29). Protein interactions can be studied and mapped via HDX-MS, as binding events can perturb HDX rates as solvation and hydrogen bonding changes directly in the binding interface or indirectly in conformationally linked regions. The structural resolution of a classic peptide-level HDX-MS experiment is dependent on the generation of overlapping peptides by acid-stable proteases, such as pepsin, typically used in HDX-MS workflows. More recently, the use of gas-phase fragmentation of deuterated peptides with ETD (3033) has become a viable option for sublocalizing deuterium uptake to short peptide stretches or even individual amino acids, thus increasing the spatial resolution of the classical bottom-up HDX-MS method.Here, we used HDX-MS to probe the solution-phase interactions of human FcRn with a full-length recombinant human IgG1 and its deglycosylated variant. Our results allowed us to map antibody and FcRn regions that displayed changes in HDX upon complex formation and examine the impact of antibody glycosylation on FcRn binding. Additionally, by coupling ETD to the HDX-MS workflow in a targeted manner, we obtained high-resolution information on the HDX of individual sites that became protected upon IgG1–FcRn complex formation.  相似文献   

12.
Stimulating, and some blocking, antibodies to the TSH receptor (TSHR) have conformation-dependent epitopes reported to involve primarily the leucine rich repeat region of the ectodomain (LRD). However, successful crystallization of TSHR residues 22-260 has omitted important extracellular non-LRD residues including the hinge region which connects the TSHR ectodomain to the transmembrane domain and which is involved in ligand induced signal transduction. The aim of the present study, therefore, was to determine if TSHR antibodies (TSHR-Abs) have non-LRD binding sites outside the LRD. To obtain this information we employed the method of epitope protection in which we first protected TSHR residues 1-412 with intact TSHR antibodies and then enzymatically digested the unprotected residues. Those peptides remaining were subsequently delineated by mass spectrometry. Fourteen out of 23 of the reported stimulating monoclonal TSHR-Ab crystal contact residues were protected by this technique which may reflect the higher binding energies of certain residues detected in this approach. Comparing the protected epitopes of two stimulating TSHR-Abs we found both similarities and differences but both antibodies also contacted the hinge region and the amino terminus of the TSHR following the signal peptide and encompassing cysteine box 1 which has previously been shown to be important for TSH binding and activation. A monoclonal blocking TSHR antibody revealed a similar pattern of binding regions but the residues that it contacted on the LRD were again distinct. These data demonstrated that conformationally dependent TSHR-Abs had epitopes not confined to the LRDs but also incorporated epitopes not revealed in the available crystal structure. Furthermore, the data also indicated that in addition to overlapping contact regions within the LRD, there are unique epitope patterns for each of the antibodies which may contribute to their functional heterogeneity.  相似文献   

13.
生长抑素(somatostatin,SST)通过与细胞膜上的G蛋白偶联的生长抑素受体(somatostatin receptors,SSTRs)结合而发挥其抑制细胞增殖的作用,因而生长抑素类似物(somatostatin analogue, SSA)常被用于肿瘤辅助治疗。然而,治疗效果存在相当大的个体差异,推测生长抑素类似物治疗效果不佳,与内源性生长抑素受体表达缺失或者表达量和亚型组合有关。为此,检测各亚型SSTR在几例罕见的神经内分泌肿瘤中的表达,并检测过表达SSTR2和SSTR5以及受体激活对细胞增殖的抑制效果,分析受体激活的可能机制,有助于临床筛选适合SSA肿瘤辅助治疗的病例,预估SSA的治疗效果。免疫组化检测肿瘤组织SSTR1-5的表达。在培养的293T细胞中过表达SSTR2和SSTR5,免疫共沉淀检测受体相互作用,免疫荧光和共聚焦显微镜检测受体细胞内定位。用MTT法检测受体过表达及激活对培养的人肺癌细胞NCI-H460细胞增殖的影响,用流式细胞技术检测细胞周期分布。SSTR1-5在10例神经内分泌肿瘤组织中均有不同程度的表达,表达亚型及表达量与肿瘤类型和年龄无关,SSTR5在所有肿瘤组织中均表达。SSTR2与SSTR5可形成受体相互作用。SSTR2与SSTR5活化后相互作用增加并定位于细胞质。共表达SSTR2和SSTR5显著抑制细胞增殖,并与受体激活剂呈现剂量相关性。SSTR2/SSTR5的共表达及激活显著减少S期的细胞而滞留于G1期。  相似文献   

14.

Background

In rheumatoid arthritis (RA) macrophages play a major role in amplifying synovial inflammation. Important activating signals are those induced by Toll-like receptor (TLR) ligands and by activated T cells. The balance between activating and inhibitory Fc gamma receptors (FcγRs) on macrophages might be crucial in modulating these inflammatory responses. The purpose of this study was to determine FcγR expression on pro- and anti-inflammatory macrophages (gmMφ and mMφ, respectively) and identify functional consequences on immune complex uptake and macrophage activation.

Methods

Human monocytes were isolated and differentiated into gmMφ and mMφ. A full FcγR characterization of both macrophage subtypes was performed and uptake of fluorescent immune complexes (ICs) was determined. FcγRIIb isoforms were determined by qPCR. Macrophages were stimulated via different TLRs or cytokine activated T cells in the presence or absence of ICs and cytokine production was determined. Blocking studies were performed to look into the pathways involved.

Results

mMφ expressed high levels of the activating FcγRIIa and FcγRIII and low levels of the inhibitory FcγRIIb, while the FcγR balance on gmMφ was shifted towards the inhibitory FcγRIIb. This was accompanied by a clear increase in FcγRIIb1 mRNA expression in gmMφ. This resulted in higher IC uptake by mMφ compared to gmMφ. Furthermore, FcγR-mediated stimulation of gmMφ inhibited TLR2, 3, 4 and 7/8 mediated cytokine production via FcγRIIb and PI3K signaling. In addition, gmMφ but not mMφ produced TNFα upon co-culture with cytokine activated T cells, which was reduced by IC binding to FcγRIIb. The latter was dependent on PI3K signaling and COX2.

Conclusions

FcγR expression patterns on gmMφ and mMφ are significantly different, which translates in clear functional differences further substantiating FcγRIIb as an interesting target for inflammation control in RA and other autoimmune/inflammatory diseases.  相似文献   

15.
16.
应用抗巨细胞病毒(HCMV)蛋白抗原(分子量为20千道尔顿)的单克隆抗体(McAb-20k)和HCMV IgG特异性阳性血清以间接免疫荧光试验检测28例器官移植病人尿标本接种人胚肺细胞后的HCMV感染情况,结果前法于接种后48小时检测到HCMV阳性病人9例,后者于接种6天检测到阳性病人11例。与病毒分离结果相比较,两法的敏感性分别为81.8%和90.9%,特异性相应为100%和94.12%,符合率均为92.9%,比病毒分离提前数天至数周作出诊断,重复性良好。因此,抗HCMV蛋白抗原的单克隆抗体间接免疫荧光法是一种有效的、早期快速而又敏感特异的诊断方法,操作简便,既使没有单抗,可用HCMV IgG阳性血清代替,也可取得较好效果,值得在一般实验室推广应用。  相似文献   

17.
18.
19.
Nontypable Haemophilus influenzae (NTHI) is one of the major pathogens of human respiratory infections and has the ability to attach to pharyngeal epithelial cells. We characterized the epithelial cell receptor to which NTHI bind. Neuraminidase pretreatment of pharyngeal epithelial cells resulted in a significant decrease in NTHI attachment, suggesting sialic acid as an important component of the receptor. The attachment was not decreased in NTHI pretreated with 1,000 μg/ml of fucose, N-acetyl-neuraminic acid, N-acetyl-glucosamine, N-acetyl-galactosamine, acetyl-salicylic acid and colominic acid. Only treatment with gangliosides D1a, D1b and D2 at a concentration of 12.5 μg/ml significantly decreased the attachment. On the other hand, treatment with gangliosides M1, M2, M3, D3, T1b and asialoganglioside M1 did not decrease the attachment of NTHI. Only ganglioside D2 inhibited the attachment significantly at a concentration of 12.5 ng/ml. Other isolates of NTHI showed a decrease in attachment after treatment with ganglioside D2. Treatment of cells with anti-human GD2 monoclonal antibody also decreased the attachment of NTHI in a dose-dependent manner. This study indicates that sialic acid glycoconjugate, GD2, is one of the receptors of NTHI on human pharyngeal epithelial cells.  相似文献   

20.
Induction of an effective antibody response against human cytomegalovirus (HCMV) is an important defense mechanism since it is potentially capable of neutralizing infectious viruses. We have analyzed the extent of HCMV strain-specific neutralization capacity in human sera. Nine recent HCMV isolates and their corresponding sera were investigated in cross-neutralization assays. We observed differences, independent of the overall neutralization capacity, in the 50% neutralization titers of the sera against individual strains, differences that ranged from 8-fold to more than 60-fold. For one isolate, complete resistance to neutralization by two human sera was observed. The neutralization capacity of human sera was not influenced by the presence of various concentrations (up to 100-fold excess) of noninfectious envelope glycoproteins, an inherent contamination of virus preparations from recent HCMV isolates. This indicated that the decisive parameter for neutralization is the titer of the neutralizing antibodies and that neutralization is largely independent of the concentration of virus. Analysis with transplant patients revealed that during primary infection strain-specific and strain-common antibodies are produced asynchronously. Thus, our data demonstrate that the induction of strain-specific neutralizing antibodies is a common event during infection with HCMV and that it might have important implications for the course of the infection and the development of anti-HCMV vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号