首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
水杨酸对小白菜幼苗抗盐性的诱导效应   总被引:1,自引:0,他引:1  
采用外源水杨酸(SA)叶面喷施的方法,研究不同浓度SA(0、0.1、0.5、1.0、1.5 mmol/L)对盐胁迫下小白菜(Brassica chinensis)‘上海青’幼苗生长及其生理生化特性的影响。结果表明,0.5 mmol/L SA诱导能显著提高幼苗的株高、单株干重、叶面积和含水量等;降低叶片丙二醛(MDA)含量和电解质渗出率;增强叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)的活性。说明适宜浓度的外源SA可以通过提高植株渗透调节能力和抗氧化能力,保护膜结构和功能,减轻盐胁迫对小白菜的伤害。本试验表明,SA最佳诱导浓度为0.5 mmol/L。  相似文献   

2.
In the present study, the physiological responses of Nitraria tangutorum Bobr. seedlings to NaCl stress and the regulatory function of exogenous application of salicylic acid (SA) were investigated. NaCl in low concentration (100 mM) increased while in higher concentrations (200–400 mM) decreased the individual plant dry weights (wt) of seedlings. Decreased relative water content (RWC) and chlorophyll content were observed in the leaves of seedlings subjected to salinity stress (100–400 mM NaCl). Furthermore, NaCl stress significantly increased electrolyte leakage and malondialdehyde (MDA) content. The levels of osmotic adjustment solutes including proline, soluble sugars, and soluble protein were enhanced under NaCl treatments as compared to the control. In contrast, exogenous application of SA (0.5–1.5 mM) to the roots of seedlings showed notable amelioration effects on the inhibition of individual plant dry wt, RWC, and chlorophyll content. The increases in electrolyte leakage and MDA content in the leaves of NaCl-treated seedlings were markedly inhibited by SA application. The SA application further increased the contents of proline, soluble sugars, and soluble protein. The activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) were up-regulated by NaCl stress and the activities of SOD, POD, and CAT were further enhanced by SA treatments. Application of SA in low concentration (0.5 mM) enhanced while in higher concentrations (1.0 and 1.5 mM) inhibited APX activities in leaves of NaCl-treated seedlings. These results indicate that SA effectively alleviated the adverse effects of NaCl stress on N. tangutorum.  相似文献   

3.
Abstract

Salicylic acid (SA) treatment reduces the damaging action by water deficit on growth and accelerates a restoration of growth processes. The aim of the present work was to study the physiological and biochemical alteration induced by SA in lemongrass plants under stress conditions. Therefore, a pot culture experiment was conducted to test whether SA application at concentration of (10?5 M) through foliar spray could protect lemongrass (Cymbopogon flexuosus Steud. Wats.) varieties (Neema and Krishna), subjected to drought stress on the basis of growth parameters and biochemical constituents, proline metabolism and quality attributes including citral content. The treatments were as follows: (i) 100% FC + 0 SA; (ii) 75% FC + 0 SA; (iii) 50% FC + 0 SA; (iv) 75% FC + 10?5 M SA; and (v) 50% FC + 10?5 M SA. The growth parameters were significantly reduced under the applied water stress levels; however, foliar application of salicylic acid (10?5 M) improved the growth parameters in stress-affected plants. The plants under water stress exhibited a significant increase in activities of nitrate reductase and carbonic anhydrase, and electrolyte leakage, proline content, free amino acid and in PEP carboxylase activity. Content and yield of essential oil also significantly decreased in plants that faced water stress. Thus, it was concluded that variety Neema is the more tolerant variety as compared to Krishna on the basis of content and oil yield and well adapted to drought stress conditions.  相似文献   

4.
张营  李法云  严霞  李霞  程志辉  沈曼莉  荣湘民 《生态学报》2012,32(14):4300-4308
随着融雪剂在国内外寒冷地区的广泛应用及其在城市使用量的逐年增加,融雪剂对城市生态环境的危害引起了广泛的重视。其中,融雪剂在城市道路土壤中的积累对植物生长的影响已日益凸现。以油松幼苗为材料,通过分析0.2%浓度融雪剂胁迫下外源钾(K+)和水杨酸(salicylic acid,SA)对油松幼苗各生长生理指标的影响,探讨外源K+和SA在缓解融雪剂对油松幼苗生长抑制中的机理与剂量效应关系。结果表明,0.2%浓度的融雪剂处理对油松生长有明显的抑制作用,而20 mmol/L KNO3和2 mmol/L SA能明显诱导过氧化物酶(peroxidase,POD)活性的增强,缓解膜脂过氧化作用,降低丙二醛(malondialdehyde,MDA)在叶片中的积累,维持细胞膜的稳定性。虽然外源K+和SA对油松幼苗叶片胞间CO2浓度(intracellular CO2concentrations,Ci)和气孔导度(stomatal conductance,Gs)的缓解作用并不显著,但其可通过提高叶绿素含量促进光合作用的进行,缓解融雪剂胁迫对油松幼苗生长的抑制,分别增加生物量24.9%和63.6%。可见,20 mmol/L KNO3和2 mmol/L SA处理能有效缓解融雪剂对油松幼苗的伤害,为城市化学融雪剂的污染防治提供科学依据。  相似文献   

5.
The effects of salicylic acid (SA) on the accumulation of dehydrins in leaves of Tibetan hulless barley seedlings under water stress were investigated. The results indicated that SA decreased the levels of the four dehydrin-like proteins induced by water stress. The concentrations of these dehydrin-like proteins increased under water stress. However, their levels in SA-pretreated seedlings were always lower than in those receiving only water stress. Our results also indicated that the levels of dehydrin-like proteins decreased as the SA concentration increased. In SA-pretreated seedlings, electrolyte leakage, MDA and H2O2 content were rather higher than in seedlings receiving only water stress. By these results, we suggest that lower levels of dehydrin-like proteins in seedlings with SA treatment may be due to the greater accumulation of H2O2 induced by SA, which causes more oxidative injury under water stress.  相似文献   

6.
Effect of grain soaking presowing in 1 mM salicylic acid (SA) and NaCl (0, 50, 100, 150 and 200 mM) on barley (Hordeum vulgare cv Gerbel) was studied. Increasing of NaCl level reduced the germination percentage, the growth parameters (fresh and dry weight), potassium, calcium, phosphorus and insoluble sugars content in both shoots and roots of 15-day old seedlings. Leaf relative water content (RWC) and the photosynthetic pigments (Chl a, b and carotenoids) contents also decreased with increasing NaCl concentration. On the other hand, Na, soluble sugars, soluble proteins, free amino acids including proline content and lipid peroxidation level and peroxidase activity were increased in the two plant organs with increasing of NaCl level. Electrolyte leakage from plant leaves was found to increase with salinity level. SA-pretreatment increased the RWC, fresh and dry weights, water, photosynthetic pigments, insolube saccharides, phosphorus content and peroxidase activity in the stressed seedlings. On the contrary, Na+, soluble proteins content, lipid peroxidation level, electrolyte leakage were markedly reduced under salt stress with SA than without. Under stress conditions, SA-pretreated plants exhibited less Ca2+ and more accumulation of K+, and soluble sugars in roots at the expense of these contents in the plant shoots. Exogenous application (Grain soaking presowing) of SA appeared to induce preadaptive response to salt stress leading to promoting protective reactions to the photosynthetic pigments and maintain the membranes integrity in barley plants, which reflected in improving the plant growth.  相似文献   

7.
Heavy metal contamination of agricultural soils has increased along with industrialization. Mercury is a toxic heavy metal and a widespread pollutant in the ecosystem. Mercury-tolerant and plant growth-promoting rhizobacteria (PGPR) HG 1, HG 2, and HG 3 were isolated from the rhizosphere of plants growing in a mercury-contaminated site. These isolates were able to grow in the presence of mercury ranging from 10 to 200 µM in minimal medium and 25 to 500 µM in LB medium. The strains were characterized by morphological, biochemical, and plant growth-promoting traits. In the present study, these PGPR strains were analyzed for their involvement in metal stress tolerance in Triticum aestivum (wheat). Two bacterial strains, namely, Enterobacter ludwigii (HG 2) and Klebsiella pneumoniae (HG 3), showed better growth promotion of T. aestivum seedlings under metal stress. Different growth parameters like, water content and biochemical properties were analyzed in the PGPR-inoculated wheat plants under 75 µM HgCl2. Shoot length, root length, shoot dry weight, root dry weight and relative water content (RWC) were significantly higher in inoculated plants compared to uninoculated plants under stress condition. Proline content, electrolyte leakage, and malondialdehyde content (shoots and roots) were significantly lower in inoculated plants with respect to uninoculated plants under mercury stress. Therefore, it could be assumed that all these parameters collectively improve plant growth under mercury stress conditions in the presence of PGPR. Hence, these PGPRs can serve as promising candidates for increasing plant growth and also have immense potential for bioremediation of mercury-contaminated soils.  相似文献   

8.
大花三色堇性喜冷凉、忌酷热。该研究以大花三色堇3个自交系08H 、HAR 和 E01为材料,分别测定了40℃高温处理4、8和12 h 时不同基因型大花三色堇幼苗的生理指标,以及不同浓度(0.1、1、2 mmol?L-1)水杨酸预处理对热胁迫下大花三色堇幼苗耐热性的影响。结果表明:在高温胁迫下大花三色堇电解质外渗量增加,随着处理时间的延长,电解质外渗更多,可溶性糖含量先增加后降低,POD 酶活性先提高后降低;与其他2个自交系相比,HAR 表现出较好的耐热性,其可溶性糖含量、POD 酶活性的增加均较高,而电解质外渗率偏低;与对照相比,3种浓度 SA 预处理均显著降低了大花三色堇幼苗的电解质外渗率,增加了幼苗体内可溶性糖含量,提高了大花三色堇的幼苗体内脯氨酸含量和 POD 酶活性;其中1 mmol?L-1的 SA 预处理对高温胁迫下大花三色堇幼苗体内可溶性糖的含量增加最高,最大程度减缓幼苗体内的电解质外渗量,08H 和 HAR 的脯氨酸含量和 POD 酶活性达到最大值。而对 E01而言,0.1 mmol?L-1的水杨酸预处理的脯氨酸含量和 POD 酶活性最高。该研究结果探讨了高温胁迫下不同基因型大花三色堇幼苗的生理表现,以及外施水杨酸对增强大花三色堇幼苗耐热性的效果,为大花三色堇抗热栽培提供重要的基础资料。  相似文献   

9.
The salt tolerance of peanut (Arachis hypogaea L.) seedlings was evaluated by analyzing growth, nutrient uptake, electrolyte leakage, lipid peroxidation and alterations in levels of some organic metabolites under NaCl stress. The plant height, leaf area and plant biomass decreased significantly in salt-treated seedlings as compared with control. The relative water content (RWC %) of leaf decreased by 16 % at high concentrations of NaCl. There was an increase in the lipid peroxidation level and decrease in the electrolyte leakage at high concentrations of NaCl. The total free amino acid and proline contents of leaf increased by 5.5- and 43-folds, respectively in 150 mM NaCl-treated plants as compared with control. Total sugar and starch content increased significantly at high concentrations of NaCl. Chl a, Chl b, total chlorophyll and carotenoid contents decreased significantly at high salinity. Na+ contents of leaf, stem and root increased in dose-dependent manner. K+ content remained unaffected in leaf and root and decreased in stem by salinity. The results from present study reveal that the peanut plants have an efficient adaptive mechanism to tolerate high salinity by maintaining adequate leaf water status associated with growth restriction. In order to circumvent the stress resulting from high salinity, the levels of some organic metabolites such as total free amino acids, proline, total sugars and starch were elevated. The elevated levels of the organic metabolites may possibly have some role in maintenance of osmotic homeostasis, nutrient uptake and adequate tissue water status in peanut seedlings under high-salinity conditions.  相似文献   

10.
The alternative pathway is a cyanide-resistant and non-phosphorylatory electron transport pathway in mitochondria of higher plants. Alternative oxidase (AOX) is the terminal oxidase of this pathway. Our present study investigated the effect of exogenous salicylic acid (SA) on alternative pathway in cucumber (Cucumis sativus L.) seedlings under low temperature stress. Results showed that during the process of low temperature stress, the alternative pathway capacity was enhanced as AOX expression increased in SA pretreated seedlings. Compared with seedlings without SA pretreatment, slower decrease of relative water content and lower levels of electrolyte leakage, H2O2 and malonyldialdehyde content were detected in SA pretreated seedlings. These results indicated that SA could alleviate the injury caused by low temperature on cucumber seedlings. Since the special protective functions of alternative pathway and AOX in plants, we suggested that the alternative pathway was related to SA-mediated plant resistance to environmental stresses such as low temperature.  相似文献   

11.
Improvement of plant performance under drought stress is crucial to sustaining agricultural productivity. The current study investigated the ameliorative effects of foliar-applied kinetin, an adenine-type cytokinin (CK), on growth and gas exchange parameters, water relations and biochemical attributes of maize plants under drought stress. Eighteen-day-old maize plants were subjected to drought by maintaining soil moisture content at 25% field capacity for 8 days followed by foliar application of kinetin at 0, 75, 150 and 225 mg L−1 (CK0, CK75, CK150 and CK225, respectively) to the plants for two-times at the 9-day interval. Results revealed that drought stress markedly reduced stem diameter, dry weight, chlorophyll content, gas exchange parameters and water balance but increased proline, malondialdehyde and soluble sugar contents, electrolyte leakage and senescence in maize leaves. Application of exogenous CK remarkably improved maize performance by modulating growth, gas exchange- and water relation-related parameters in a dose-dependent manner under drought stress. CK225 increased chlorophyll content (by 61.54%), relative water content (by 49.14%), net photosynthesis rate (by 39.94%) and transpiration rate (by 121.36%) and also delayed leaf senescence but decreased internal CO2 concentration (by 7.38%), water saturation deficit (by 40.40%) and water uptake capacity (by 42.49%) in both well-watered and drought-stressed plants. Nevertheless, CK application considerably decreased electrolyte leakage, proline, malondialdehyde and soluble sugar levels in drought-stressed maize plants, as also supported by heatmap and cluster analyses. Taken together, exogenous CK at proper concentration (225 mg L−1) successfully improved maize performance under drought conditions, thereby suggesting CK application as a useful approach to alleviate drought-induced adverse effects in maize plants, and perhaps in other important crop plants.  相似文献   

12.
In the present study we tried to evaluate the effect of salicylic acid (SA) in alleviating the negative effects of salinity stress. NaCl stress (50 and 100 mM) declines the shoot and root length and maximum decrease was observed at 100 mM concentration of NaCl. Similarly shoot dry weight decreased by 57.14% and root dry weight by 67.24% with 100 mM NaCl stress. The pigments and leaf relative water content (LRWC) were also observed to decline with increase in NaCl concentration. However, supplementation of SA to NaCl stressed seedlings showed enhanced length and dry weight of shoot and root. The pigment and LRWC also increased by the application of SA in the present study. NaCl stress also enhanced proline and glycine betaine (GB) by 3.01 and 2.04 folds, respectively; further enhancement was recorded by the application of SA. Hydrogen peroxide (H2O2) and malondialdehyde (MDA) content also showed rise in accumulation, however, seedlings treated with SA and NaCl (100 mM + SA) declines the H2O2 accumulation to 1.90 from 2.45 folds and MDA to 1.69 from 2.34 folds over the control. Antioxidants were observed to increase with NaCl concentration and further increase was recorded by the application of SA. Indoleacetic acid (IAA) and indole butyric acid (IBA) decreased by 36.60 and 44.16%, respectively, and ABA increased by 750% with 100 mM NaCl. Addition of SA to NaCl stressed seedlings enhanced the IAA and IBA and decreased the ABA concentration to appreciable level. NaCl is also responsible for the higher accumulation of Na+ and Na+/K+ ratio and decreased uptake of Ca2+ and K+. Supplementation of SA decreased the Na+ accumulation and enhanced the uptake of Ca2+ and K+ in NaCl stressed seedlings. In conclusion, SA supplementation mitigates the negative effects of NaCl toxicity in faba bean seedlings through the modulation of different osmoprotectants, antioxidants and nutrients uptake.  相似文献   

13.
Water stress is one of the main environmental stresses that affect plant growth and development. Salicylic acid (SA) induces water stress tolerance in plants. In this study, the effect of exogenous SA on physiological and biochemical process in Red bayberry (Myric rubra) seedlings, of three different genotypes, that were grown under water stress (soil ranging from 20 to 50 % of field capacity) was evaluated. Results showed that water stress severely affected the relative water content (RWC), photosynthesis, stomatal conductance and enzymes activities. Genotypes differed in RWC, Chlorophyll content, gas exchange parameter, antioxidant enzymes activities and proline, and the genotype Biqi had the RWC, photosynthesis, stomatal conductance and enzymes activities greater than the other two genotypes Wangdao and Shenhong. SA treated plants showed, in general, a higher RWC, chlorophyll content, photosynthetic rate, stomatal conductance, superoxide dismutase activity and proline content, and a lower relative electrolyte conductivity, methane dicarboxylic aldehyde content and catalase activity compared to those of untreated seedlings. These results signified the role of SA in diminishing the negative effects of drought on Red bayberry plants and suggest that SA could be used as a potential growth regulator, for improving plant growth under water stress.  相似文献   

14.
The present study investigates the role of salicylic acid (SA) in inducing plant tolerance to salinity. The application of 0.1 mM SA to tomato [Lycopersicon esculentum Mill.] plants via root drenching provided protection against 150 mM or 200 mM NaCl stress. SA treated plants had greater survival and relative shoot growth rate compared to untreated plants when exposed to salt stress. At 200 mM salt, shoot growth rates were approximately 4 times higher in SA treated plants than untreated plants. Application of SA increased photosynthetic rates in salt stressed plants and may have contributed to the enhanced survival. Transpiration rates and stomatal conductance were also significantly higher in SA treated plants under saline stress conditions. SA application reduced electrolyte leakage by 44% in 150 mM NaCl and 32% in 200 mM NaCl, compared to untreated plants, indicating possible protection of integrity of the cellular membrane. Beneficial effects of SA in saline conditions include sustaining the photosynthetic/transpiration activity and consequently growth, and may have contributed to the reduction or total avoidance of necrosis. SA, when used in appropriate concentrations, alleviates salinity stress without compromising the plants ability for growth under a favourable environment.  相似文献   

15.
The influence of a water deficit treatment and mycorrhizal inoculation with Pisolithus tinctorius (Pers.) Coker and Couch on the water relations, gas exchange, and plant growth in Arbutus unedo L. plants was studied in order to evaluate the hardening process during the nursery period. The ability to withstand the adverse conditions after transplantation was also studied. Mycorrhizal and non-mycorrhizal seedlings of A. unedo were pot-grown for 4 months in a greenhouse (nursery period), during which time two irrigation treatments, well watered (100% water holding capacity, leaching 20% of the applied water) and deficit irrigation (50% of the well watered), were applied. Subsequently, the plants were transplanted to the field and well irrigated (transplanting period), after which and until the end of the experiment they received no water (establishment period). At the end of the nursery period, both water deficit and mycorrhizae were seen to have altered the plant morphology. Mycorrhizal plants had lower leaf area and improved leaf color parameters, while the water deficit increased root dry weight and the root/shoot ratio. Mycorrhizal plants had higher leaf water potential values than non-inoculated plants. Mycorrhizae increased stomatal conductance and photosynthesis values, especially in stressed plants. Drought led to an osmotic adjustment and a decrease in the leaf water potential values at turgor loss point in the mycorrhizal plants. Cell wall rigidity, measured as increased bulk modulus of elasticity, was decreased by the mycorrhizae effect. After transplanting, no differences were found in the water relations or gas exchange values between treatments. During the establishment period, the plants that had been exposed to both drought and mycorrhizae showed a better water status (higher leaf water and turgor potential values) and higher gas exchange values. In conclusion, water deficit and mycorrhizal inoculation of A. unedo plants in nursery produced changes in tissue water relations, gas exchange, and growth, related with the acclimation process in the seedlings, which could provide better resistance to drought and stress conditions following planting.  相似文献   

16.
Salicylic acid (SA) is a common, plant-produced signal molecule that is responsible for inducing tolerance to a number of biotic and abiotic stresses. An experiment was therefore conducted to test whether the application of SA at various concentrations (0, 0.10, 0.50, or 1.00 mM) as a foliar spray would protect pistachio (Pistacia vera L.) seedlings subjected to salt stress (0, 30, 60, or 90 mM NaCl). SA improved growth rate of pistachio seedlings under salt stress and increased relative leaf chlorophyll content, relative water content, chlorophyll fluorescence ratio, and photosynthetic capacity as compared with the control at the end of salt stress. SA ameliorated the salt stress injuries by inhibiting increases in proline content and leaf electrolyte leakage. It appeared the best ameliorative remedies of SA obtained when pistachio seedlings were sprayed at 0.50 and 1.00 mM.  相似文献   

17.
Salinity adversely affects plant growth and development. Halotolerant plant-growth-promoting rhizobacteria (PGPR) alleviate salt stress and help plants to maintain better growth. In the present study, six PGPR strains were analyzed for their involvement in salt-stress tolerance in Arachis hypogaea. Different growth parameters, electrolyte leakage, water content, biochemical properties, and ion content were analyzed in the PGPR-inoculated plants under 100 mM NaCl. Three bacterial strains, namely, Brachybacterium saurashtrense (JG-06), Brevibacterium casei (JG-08), and Haererohalobacter (JG-11), showed the best growth of A. hypogaea seedlings under salt stress. Plant length, shoot length, root length, shoot dry weight, root dry weight, and total biomass were significantly higher in inoculated plants compared to uninoculated plants. The PGPR-inoculated plants were quite healthy and hydrated, whereas the uninoculated plant leaves were desiccated in the presence of 100 mM NaCl. The percentage water content (PWC) in the shoots and roots was also significantly higher in inoculated plants compared to uninoculated plants. Proline content and soluble sugars were significantly low, whereas amino acids were higher than in uninoculated plants. The MDA content was higher in uninoculated plants than in inoculated plants at 100 mM NaCl. The inoculated plants also had a higher K+/Na+ ratio and higher Ca2+, phosphorus, and nitrogen content. The auxin concentration was higher in both shoot and root explants in the inoculated plants. Therefore, it could be predicted that all these parameters cumulatively improve plant growth under saline conditions in the presence of PGPR. This study shows that PGPR play an important role in inducing salinity tolerance in plants and can be used to grow salt-sensitive crops in saline areas.  相似文献   

18.
化学诱抗剂诱导黄瓜抗盐性及其机理   总被引:4,自引:1,他引:4  
在200 mmol·L-1 NaCl胁迫条件下,采用根际注射结合叶面喷洒的诱导方法探讨了不同浓度水杨酸、油菜素内酯、壳聚糖、亚精胺4种化学诱抗剂对黄瓜幼苗生长及其生理生化特性的影响.结果表明,4种化学诱抗剂在适宜浓度范围内,显著地降低了黄瓜幼苗的盐害指数和死苗率,以油菜素内酯0.01 mg·L-1降低幅度最大,比对照分别降低了63.0%和75.0%;显著地促进了超氧化物歧化酶、过氧化物酶、过氧化氢酶等保护酶活性,从而显著降低了丙二醛含量和电解质渗出率,干重含水量显著升高;促进了幼苗的形态建成,植株茎粗、展开叶数及壮苗指数显著提高,壮苗指数以壳聚糖150 mg·L-1最大,比对照提高了30.9%.说明施用适宜浓度的化学诱抗剂可以诱导黄瓜幼苗的抗盐能力,减缓盐害症状.综合作用效果依次为:油菜素内酯0.005~0.05 mg·L-1、亚精胺150~200 mg·L-1、壳聚糖100~200 mg·L-1和水杨酸50~150 mg·L-1.  相似文献   

19.
Buffelgrass is a forage grass that reproduces mainly by apomixis. In species with this reproduction mode, in vitro selection allows the incorporation of alternatives in a breeding program. The aims were to define a protocol for in vitro selection, provide a molecular and morphological characterization of the progenies of regenerated plants, and evaluate them under water stress conditions. In the embryogenic callus induction medium (IM), the highest values of the variables fresh weight of embryogenic calli, proportion of embryogenic calli and number of regenerated seedlings (NRS) were obtained in the 25 mM mannitol treatment. The remaining concentrations of the osmotic agent (50, 75, 100 and 150 mM) had a negative effect on these variables. In the regeneration medium (RM), NRS was reduced at all mannitol concentrations. When embryogenic calli were induced and seedlings were regenerated maintaining mannitol concentrations in IM and RM, the highest NRS values were recorded at 25 mM mannitol. In vitro regenerated seedlings transplanted to an experimental plot exhibited different morphological characteristics from those of the anther donor plant. ISSR primers detected 22% of polymorphic bands and divergence between 0.20 and 0.37 in in vitro regenerated plants. Finally, water stress assays confirmed that S1 progenies exhibited a differential behavior from that of the parent material. Under 100 mM of mannitol used as selection pressure in IM or in both IM and RM, S1 progenies of two regenerated materials had higher height, fresh weight and dry weight at the end of water stress assay.  相似文献   

20.
Salicylic acid (SA) is a common plant-produced signal molecule that is responsible for inducing tolerance to a number of biotic and abiotic stresses. An experiment was, therefore, conducted to test whether acetyl salicylic acid (ASA) application at various concentrations through seed soaking or foliar spray would protect muskmelon [Cucumis melo L. (reticulatus group)] seedlings, subjected to drought stress. Twenty-three-day-old plants pre-treated with ASA (0, 0.1, 0.25, 0.50 or 1.0 mM) were subjected to drought stress for 1 week in a greenhouse. ASA applied either through seed soaking or through foliar spray was effective within the range of 0.1–1 mM in providing drought stress protection in muskmelon seedlings; however, there was no difference between application methods indicating that both methods provided similar levels of protection. ASA significantly affected all seedling growth and stress indicator variables measured except leaf number and root dry weight. The best protection appeared to be obtained from seedlings pre-treated with lower concentrations of ASA. Even though both methods provided similar means of protection, due to its simplicity and practicality, soaking muskmelon seeds prior to sowing in up to 0.5 mM ASA would be a more desirable method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号