首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
  • 1 For their larval development, parasitoids depend on the quality and quantity of resources provided by a single host. Therefore, a close relationship is predicted between the size of the host at parasitism and the size of the emerging adult wasp. This relationship is less clear for koinobiont than for idiobiont parasitoids.
  • 2 As size differentiation in host species exhibiting sexual size dimorphism (SSD) is likely to occur already during larval development, in koinobiont larval endoparasitoids the size of the emerging adult may also be constrained based on the sex of the host caterpillar.
  • 3 Sex‐specific growth trajectories were compared in unparasitised Plutella xylostella caterpillars and in second and fourth instar hosts that were parasitised by the solitary larval koinobiont endoparasitoid Diadegma semiclausum. Both species exhibit SSD, where females are significantly larger than males.
  • 4 Healthy female P. xylostella caterpillars developed significantly faster than their male conspecifics. Host regulation induced by D. semiclausum parasitism depended on the instar attacked. Parasitism in second‐instar caterpillars reduced growth compared to healthy unparasitised caterpillars, whereas parasitism in fourth‐instar caterpillars arrested development. The reduction in growth was most pronounced in hosts producing male D. semiclausum.
  • 5 Parasitism itself had the largest impact on host growth. SSD in the parasitoid is mainly the result of differences in growth rate of the parasitoid–host complex producing male and female wasps and differences in exploitation of the host resources. Female wasps converted host biomass more efficiently into adult biomass than males.
  相似文献   

2.
We evaluated the role of the larval parasitoid, Diadegma semiclausum Hellén (Hymenoptera: Ichneumonidae), in controlling Plutella xylostella (L.) (Lepidoptera: Plutellidae) by cage exclusion experiments and direct field observation during the winter season in southern Queensland, Australia. The cage exclusion experiment involved uncaged, open cage and closed cage treatments. A higher percentage (54–83%) of P. xylostella larvae on sentinel plants were lost in the uncaged treatment than the closed (4–9%) or open cage treatments (11–29%). Of the larvae that remained in the uncaged treatment, 72–94% were parasitized by D. semiclausum, much higher than that in the open cage treatment (8–37% in first trial, and 38–63% in second trial). Direct observations showed a significant aggregation response of the field D. semiclausum populations to high host density plants in an experimental plot and to high host density plots that were artificially set-up near to the parasitoid source fields. The degree of aggregation varied in response to habitat quality of the parasitoid source field and scales of the manipulated host patches. As a result, density-dependence in the pattern of parasitism may depend on the relative degree of aggregation of the parasitoid population at a particular scale. A high degree of aggregation seems to be necessary to generate density-dependent parasitism by D. semiclausum. Integration of the cage exclusion experiment and direct observation demonstrated the active and dominant role of this parasitoid in controlling P. xylostella in the winter season. A biologically based IPM strategy, which incorporates the use of D. semiclausum with Bt, is suggested for the management of P. xylostella in seasons or regions with a mild temperature.  相似文献   

3.
  • 1 An integrated pest management (IPM) system incorporating the introduction and field release of Diadegma semiclausum (Hellén), a parasitoid of diamondback moth (DBM) Plutella xylostella (L.), comprising the worst insect pest of the cabbage family, has been developed in Kenya to replace the pesticides‐only approach.
  • 2 Mathematical modelling using differential equations has been used in theoretical studies of host–parasitoid systems. Although, this method helps in gaining an understanding of the system's dynamics, it is generally less accurate when used for prediction. The artificial neural network (ANN) approach was therefore chosen to aid prediction.
  • 3 The ANN methodology was applied to predict the population density of the DBM and D. semiclausum, its larval parasitoid. Two data sets, each from different release areas in the Kenya highlands, and both collected during a 3‐year period after the release of the parasitoid, were used in the present study. Two ANN models were developed using these data.
  • 4 The ANN approach gave satisfactory results for DBM and for D. semiclausum. Sensitivity analysis suggested that pest populations may be naturally controlled by rainfall.
  • 5 The ANN provides a powerful tool for predicting host–parasitoid population densities and made few assumptions on the field data. The approach allowed the use of data collected at any appropriate scale of the system, bypassing the assumptions and uncertainties that could have occurred when parameters are imported from other systems. The methodology can be explored with respect to the development of tools for monitoring and forecasting the population densities of a pest and its natural enemies. In addition, the model can be used to evaluate the relative effectiveness of the natural enemies and to investigate augmentative biological control strategies.
  相似文献   

4.
  1. The Asian longhorned beetle (ALB) Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae) is an important wood-boring pest that has caused substantial damage to broadleaf trees in Asia, North America, and Europe.
  2. We used the modelling software CLIMEX to project the potential global distribution of ALB based on both historical (1987–2016) and future (2021–2050) climate conditions. ALB has possible hosts in 37 genera, and their known distributions were incorporated into the model to assess their effect on pest distribution.
  3. Suitable regions for ALB are predicted to be widely distributed under both historical and future climate conditions, and across all continents except Antarctica. With climate change, climate suitability would increase in the regions north of 30°N and decline in most regions south of 30°N.
  4. The area of most climate-suitable regions would be covered by potential hosts, and optimum hosts would dominate. The possibility of ALB outbreaks in the Northern Hemisphere is much higher than in the Southern Hemisphere, owing to the richer abundance of hosts.
  5. These results provide theoretical guidance for developing effective ALB monitoring and mitigation measures.
  相似文献   

5.
1. A host specialist parasitoid is thought to have greater efficiency in locating hosts or greater ability to overcome host defence than a generalist species. This leads to the prediction that a specialist should locate and parasitise more hosts than a generalist in a given arena. The work reported here tested these predictions by comparing the host‐searching behaviour of Diadegma semiclausum (a specialist) and Cotesia plutellae (an oligophagous species), two parasitoids of larval Plutella xylostella. 2. Both parasitoids employed antennal search and ovipositor search when seeking hosts but D. semiclausum also seemed to use visual perception in the immediate vicinity of hosts. 3. Larvae of P. xylostella avoided detection by parasitoids by moving away from damaged plant parts after short feeding bouts. When they encountered parasitoids, the larvae wriggled vigorously as they retreated and often hung from silk threads after dropping from a plant. 4. These two parasitoids differed in their responses to host defences. Diadegma semiclausum displayed a wide‐area search around feeding damage and waited near the silk thread for a suspended host to climb up to the leaf, then attacked it again. Cotesia plutellae displayed an area‐restricted search and usually pursued the host down the silk thread onto the ground. 5. Diadegma semiclausum showed a relatively fixed behavioural pattern leading to oviposition but C. plutellae exhibited a more plastic behavioural pattern. 6. The time spent by the two parasitoids on different plants increased with increasing host density, but the time spent either on all plants or a single plant by D. semiclausum was longer than that of C. plutellae. Diadegma semiclausum visited individual plants more frequently than C. plutellae before it left the patch, and stung hosts at more than twice the rate of C. plutellae. 7. The results indicated that the host‐location strategies employed by D. semiclausum were adapted better to the host's defensive behaviour, and thus it was more effective at detecting and parasitising the host than was C. plutellae.  相似文献   

6.
A population of the diamondback moth Plutella xylostella (L.) (Lepidoptera: Plutellidae) (DBM) was recently found to infest sugar snap- and snowpeas in the Rift Valley in Kenya, causing heavy damage. The influence of this host shift on host location preferences of two parasitoids was investigated: The indigenous Diadegma mollipla (Holmgren) regarded as a relative generalist, and Diadegma semiclausum(Hellen), regarded as highly specific to DBM. The attractiveness of different odour sources was compared for the two parasitoid species using a Y-tube olfactometer using naïve females. D. mollipla was not significantly attracted to any cabbage related odours but showed a significant preference for the DBM infested pea plant when tested against clean air. D. semiclausum was highly attracted to the undamaged cabbage plant and odours related to cabbage. On the other hand, peas infested with DBM, showed no attractiveness to this parasitoid. The results showed that specialisation of D. semiclausum is mediated by host plant signals, associated with crucifers, which are not encountered in DBM feeding on peas. For D. mollipla,although a frequent parasitoid on DBM in crucifers, volatiles emitted by these plants might not be used as primary cues for host location. This species may respond largely to chemicals yet unknown and associated with a variety of plant-herbivore interactions.  相似文献   

7.
We observed the foraging behavior of Diadegma semiclausum (Hymenoptera:Ichneumonidae), a larval parasitoid of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), in a wind tunnel to determine how interpatch distance affects patch time allocation. Individual female wasps were released onto an experimental patch infested with host larvae and were allowed freely to leave for an identically extrapatch placed upwind of the experimental patch with varying interpatch distances. The effects of interpatch distance and within-patch foraging experience on the patch-leaving tendency of the parasitoid were analyzed bymeans of the proportional hazards model. Increasing interpatch distance andunsuccessful host encounter as a result of host defense decreased the patch-leaving tendency, while successful oviposition and unsuccessful search time since last oviposition increased the patch-leaving tendency. Asa result, both patch residence time and number of ovipositions by D. semiclausum increased with increasing interpatch distance, which appears to agree with the general predictions of the marginal value theorem that a parasitoid should stay longer and parasitize more hosts with increasing interpatch distance.  相似文献   

8.
The role of primary plant chemistry on trophic interactions is not well studied. We examined the effect of primary plant metabolites, focusing on nitrogen, on several biological indices of second and third trophic level insects in a model tritrophic system, consisting of two strains of the crucifer, Brassica napus (canola) (SLM046 and RGS003), the specialist insect herbivore Plutella xylostella (L.) (Lepidoptera: Plutellidae), and its specialist koinobiont larval-pupal parasitoid Diadegma semiclausum (Hellén) (Hymenoptera: Ichneumonidae). In particular, we measured relative growth rate of the herbivore in relation to an index for plant quality (nitrogen content of leaf tissues), developmental time of the herbivore (sum of second, third, and fourth larval instars durations), and intrinsic rate of increase (r m ) of the herbivore and the parasitoid. Tritrophic studies were conducted on development, survivorship curve analysis, reproductive potential, life history, parasitism, and several other fitness correlates of the parasitoid. The life table parameters of D. semiclausum were determined under laboratory conditions. The intrinsic rate of increase (r m ) of the parasitoid was significantly higher on RGS003 than SLM046. In this tritrophic model, the results indicated that the bottom-up direct effect on the herbivore population growth rate was marginally as strong as the direct effect of top-down force due to the parasitoid population growth rate; but it was higher than its indirect counterpoint mediated with the parasitoid population growth rate. Consequently, D. semiclausum performed better on RGS003, which was the most inferior host to P. xylostella in comparison with another plant cultivar and had the lowest content of nitrogen in its leaves.  相似文献   

9.
Floral resources from native plants that are adapted to the local environment could be more advantageous than the use of nonnative plants. In Australia, there is a dearth of information on the benefits of native plants to natural enemies and their selectivity against pests. Accordingly, we examined the longevity of the parasitoids Diaeretiella rapae (McIntosh) and Cotesia glomerata (L.) (both Hymenoptera: Braconidae), and Diadegma semiclausum (Hellen) (Hymenoptera: Ichneumonidae) exposed to flowering shoots from Australian native plants which was compared with the nonnative buckwheat (Fagopyrum esculentum), often used in conservation biological control. Longevity of parasitoids was significantly enhanced by the Australian natives Westringia fruticosa, Mentha satureioides, Callistemon citrinus, Leptospermum cv. ‘Rudolph’, Grevillea cv. ‘Bronze Rambler’, Myoporum parvifolium, Lotus australis, and nonnative F. esculentum. The highest mean survival by native plant species was 3.4× higher for D. rapae with Leptospermum sp. and 4.3× higher for D. semiclausum with M. parvifolium. For C. glomerata, Grevillea sp. increased longevity by 6.9× compared with water only. Longevity of Plutella xylostella (L.) (Lepidoptera: Plutellidae), a major crop pest, was enhanced by all plants against which it was screened except Acacia baileyana, a species that had no effect on parasitoid longevity. Several Australian native plant species that benefit parasitoids were identified. None of the plant species provided a selective benefit to the parasitoid D. semiclausum compared with its host P. xylostella; however, the benefit of M. parvifolium and Grevillea sp. on the longevity of D. semiclausum was relatively higher compared with the pest. These results suggest the need for field studies to determine whether native Australian plants increase P. xylostella impact in nearby brassica crops.  相似文献   

10.
Seasonal distribution patterns of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), and its principal parasitoids Diadegma insulare (Cresson) (Hymenoptera: Ichneumonidae) and Microplitis plutellae (Muesebeck) (Hymenoptera: Braconidae) were investigated over three site-years in commercial fields of canola (Brassica napus L.) in southern Alberta, Canada. The sampling of P. xylostella, D. insulare, and M. plutellae from points arranged in grid patterns, together with the mapping and analysis of their spatial distributions over time, generated a detailed picture of the pattern of crop infestation by the herbivore and its parasitoids. Plutella xylostella exhibited significant aggregations on different scales most often when its host plants were in early flowering. Diadegma insulare adults exhibited significant aggregated distributions during early flowering and distributions subsequently became more uniform as the wasps moved into the crop later in the season. However, M. plutellae distributions were aggregated in mid flowering in only one site-year. The close spatial associations between densities of D. insulare and P. xylostella indicated that host abundance was the main determinant of parasitoid distribution patterns. Spatial distributions of nutrient contents in leaf tissue and their spatial associations with the herbivore and parasitoids were also investigated. Significant spatial associations existed between certain nutrients (e.g. nitrogen, sulfur, and potassium) and P. xylostella distributions. Sulfur exhibited a positive effect on the distributions of D. insulare but not of M. plutellae. We observed similar relationships between nutrients and the distribution of P. xylostella parasitoids as for nutrients and P. xylostella, but these relationships lacked consistency and may be the results of the spatial associations between the parasitoids and their hosts. Aggregated distributions of adults and larvae of P. xylostella hold promise for spatially targeted insecticidal applications as a means for reducing the environmental impact of insecticides on nontarget and beneficial species in canola agroecosystems.  相似文献   

11.
The host plant expansion of a diamondback moth, Plutella xylostella (L.) (DBM) strain to snowpea (Pisum sativum L.) raised the question whether a specialist parasitoid Diadegma semiclausum (DS) could be conditioned to locate and parasitize its host on the new host plant. In a specialist parasitoid a behavioural change towards a plant outside the normal host plant range of its host due to developmental experience is not expected. The responsive behaviour, parasitism rates and fitness of three subsequent DS generations were investigated on the snowpea-strain of DBM. After three generations of DS on the pea 62.5% of females chose an DBM-infested pea plant over DBM infested cabbage. Only 16.4% of cabbage-reared DS was attracted to infested pea. Rearing of the parasitoid in host larvae on peas significantly increased the number of larvae parasitized on this host plant in the first generation; however, there was no further increase in generations 2 and 3. Larval mortality was similar for all parasitoid/DBM combinations on both host plants, but significantly higher mortality occurred in parasitoid pupae from peas. Development time of the parasitoid was slightly prolonged on the pea strain of DBM. The number of females produced by parasitoids reared on the pea strain of DBM was significantly reduced as compared to D. semiclausum reared on the cabbage strain on both host strains. Results show that DS has the potential to change its responsive behaviour in order to locate its host on a new host plant. According to the current view, a specialist parasitoid is not expected to change its reaction to a plant outside the normal host plant range of its host. Within 3 generations, responsive behaviour towards snowpea could be increased. However, fitness trade-offs, especially an extreme shift in sex ratio to males reduced reproductive success.  相似文献   

12.
13.
Effects of mixed cropping and barrier crops on the population density and parasitism of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), were evaluated in field plots of cabbage grown in Bali, Indonesia. The densities of P. xylostella at larval and pupal stages, as well as the overall density at larval plus pupal stages, were significantly lower in cabbage/coriander mixed cropping subplots than in cabbage monoculture subplots. Parasitism of P. xylostella by the larval parasitoid Diadegma semiclausum (Hellen) (Hymenoptera: Ichneumonidae) was not significantly different between the mixed and monocultural cropping systems. These results do not support the so-called enemies hypothesis, but suggest that disruption of the host searching behavior of female moths by neighboring non-host plants is the mechanism behind the associational resistance observed in the coriander mixed cropping system. The inclusion of a Napier grass barrier between mixed crop and monoculture subplots did not affect the influence of mixed cropping on larval and pupal densities. Therefore, Napier grass, which is used locally as a fence for preventing livestock invasion of fields, would not obstruct the pest-reducing effect of coriander/cabbage mixed cropping.  相似文献   

14.
In conservation biological control, diversification of the agro ecosystem with flowering vegetation is seen as an important tool to support the broad range of predators and parasitoids that require nectar and pollen sources to survive and reproduce. In order to identify flowering plants that provide suitable food sources for natural enemies without supporting the pest species, we analyzed the exploitation of 19 flowering plants by two important lepidopteran cabbage pests, Pieris rapae and Plutella xylostella, and their hymenopteran parasitoids, Cotesia glomerata and Diadegma semiclausum. The experiments were conducted at 90% r.h., while Pieris rapae was tested both at 45% r.h. and at 90% r.h. At 45 ± 5% r.h., corresponding with field conditions at which P. rapae is predominantly active, the butterfly was unable to feed on a number of exposed floral nectar sources whose nectar was successfully exploited at 90% r.h. The broader nectar exploitation by P. rapae at the high humidity is presumably explained by the resulting decrease in nectar viscosity. When comparing D. semiclausum and its herbivorous host P. xylostella, the herbivore exploited a broader range of plants. However, those plants that benefited both the parasitoid and the herbivore had a much stronger effect on the longevity of the parasitoid. The results from the accessibility bioassay suggest that flowers where nectar is not accessible can have a negative impact on insect survival presumably by stimulating foraging without providing accessible nectar. Our results underline the importance of considering species-specific environmental conditions when fine-tuning the choice of nectar sources to be used in conservation biological control programs.  相似文献   

15.
Climate change and the outbreak ranges of two North American bark beetles   总被引:2,自引:0,他引:2  
Abstract
  • 1 One expected effect of global climate change on insect populations is a shift in geographical distributions toward higher latitudes and higher elevations. Southern pine beetle Dendroctonus frontalis and mountain pine beetle Dendroctonus ponderosae undergo regional outbreaks that result in large‐scale disturbances to pine forests in the south‐eastern and western United States, respectively.
  • 2 Our objective was to investigate potential range shifts under climate change of outbreak areas for both bark beetle species and the areas of occurrence of the forest types susceptible to them.
  • 3 To project range changes, we used discriminant function models that incorporated climatic variables. Models to project bark beetle ranges employed changed forest distributions as well as changes in climatic variables.
  • 4 Projected outbreak areas for southern pine beetle increased with higher temperatures and generally shifted northward, as did the distributions of the southern pine forests.
  • 5 Projected outbreak areas for mountain pine beetle decreased with increasing temperature and shifted toward higher elevation. That trend was mirrored in the projected distributions of pine forests in the region of the western U.S. encompassed by the study.
  • 6 Projected outbreak areas for the two bark beetle species and the area of occurrence of western pine forests increased with more precipitation and decreased with less precipitation, whereas the area of occurrence of southern pine forests decreased slightly with increasing precipitation.
  • 7 Predicted shifts of outbreak ranges for both bark beetle species followed general expectations for the effects of global climate change and reflected the underlying long‐term distributional shifts of their host forests.
  相似文献   

16.
ABSTRACT.
  • 1 A field study was made of foraging time allocation by a population of parasitic wasps, Diadegma spp. (Ichneumonidae), to plants containing different densities of their hosts, the caterpillars of Plutella xylostella (L.).
  • 2 The parasitoid population exhibited a clear aggregative response, spending more total time on higher density patches, which probably resulted from wasps making more and longer visits to these densities.
  • 3 Despite this aggregation, positive density dependent parasitism was not found. The functional response of the Diadegma population exhibited an upper asymptote at high host densities, probably due to an increase in the proportion of time spent handling hosts, which countered the effect of aggregation.
  • 4 While Diadegma may select and forage preferentially on plants with higher host density, they do not exhibit the tendency, predicted by some optional foraging models, to exploit progressively less profitable plants during a foraging bout. Some factors affecting patterns of parasitoid foraging in the field are discussed.
  相似文献   

17.
To explore the effects of bottom-up and top-down forces on the relationships between a host, Plutella xylostella (L.) (Lepidoptera, Plutellidae), and its parasitoid, Cotesia vestalis (Haliday) (Hymenoptera, Braconidae), a short-term field experiment was established as a factorial experiment using three different host plants (Brassica pekinensis cv. Yuki F1, Brassica oleracea var. capitata cv. Midorimaru F1 and B. oleracea var. botrytis cv. Snow Crown) in the presence of C. vestalis at two different levels (low and high initial release). The tritrophic interactions were monitored by census counts of live adults 20?days after parasitoid release. The mean numbers of P. xylostella and C. vestalis adults were compared using log-linear analysis of deviance. Also, differences in the levels of parasitism were analysed using logistic analysis of deviance. There was a significant effect of host plant type on the abundance of P. xylostella, the abundance of C. vestalis and the percentage parasitism of P. xylostella by C. vestalis. The mean number of P. xylostella adults per cage on common cabbage or cauliflower was significantly greater than that on Chinese cabbage. The mean number of C. vestalis adults and the proportion of hosts attacked by C. vestalis per cage were significantly greater on Chinese cabbage compared with common cabbage or cauliflower. Indeed, initial parasitoid release did not significantly affect the abundance of P. xylostella but there was a significant influence of initial parasitoid release on the abundance of C. vestalis and the levels of parasitism of P. xylostella by C. vestalis. The mean number of C. vestalis adults and the proportion of P. xylostella parasitised by C. vestalis per cage were greater in high level of parasitoid release compared with low level of parasitoid release. However, there were no significant interacting effect of the factors (plant type?×?parasitoid initial abundance) on the abundance of P. xylostella, the population size of C. vestalis and parasitism of P. xylostella by C. vestalis.  相似文献   

18.
The use of flowering field margins is often proposed as a method to support biological control in agro-ecosystems. In addition to beneficial insects, many herbivores depend on floral food as well. The indiscriminate use of flowering species in field margins can therefore lead to higher pest numbers. Based on results from field observations and laboratory experiments we assessed risks as well as benefits associated with the provision of nectar plants in field margins, using Brussels sprouts as a model system. Results show that Brussels sprouts bordered by nectar plants suitable for the cabbage white Pieris rapae L., suffered higher infestation levels by this herbivore. In contrast, nectar plants providing accessible nectar for the diamondback moth Plutella xylostella L., did not raise densities of P. xylostella larvae in the Brassica crop. Margins with Anethum graveolens L., selected on the basis of its suitability as nectar plant for parasitoids, significantly increased the number of adult Diadegma semiclausum Hellén in the crop. This didn’t translate into enhanced parasitism rates, as parasitism of P. xylostella by D. semiclausum exceeded 65 % in all treatments, irrespective of the plants in the field margin. Our findings emphasize the importance of taking a multitrophic approach when choosing flowering field margin plants for biocontrol or other ecosystem services.  相似文献   

19.
  1. The ability of parasitoid females to perceive chemical traces left by their hosts is of utmost importance in the host location process. The behaviours involved in such ability have thus most likely been promoted by natural selection in the course of the evolutionary time. For this to happen, however, there must be significant genetic variation in natural populations on which natural selection could act.
  2. Using the isofemale line method and motion analysis, we detected significant intra‐population genetic variation for several walking behaviour traits of the egg parasitoid Trissolcus brochymenae (Hymenoptera: Scelionidae) females responding to chemical traces left by its host Murgantia histrionica (Heteroptera: Pentatomidae).
  3. Besides opening new avenues of research on the reproductive strategies, behaviour, and biological control potential of parasitoid wasps, these results also have implications for understanding their life‐history evolution in general.
  相似文献   

20.
  1. Invasive alien species and climate change are two of the most serious global environmental threats. In particular, it is of great interest to understand how changing climates could impact the distribution of invaders that pose serious threats to ecosystems and human activities.
  2. In this study, we developed ensemble species distribution models for predicting the current and future global distribution of the signal crayfish Pacifastacus leniusculus and the red swamp crayfish Procambarus clarkii, two of the most highly problematic invaders of freshwater ecosystems worldwide. We collected occurrence records of the species, from native and alien established ranges worldwide. These records in combination with averaged observations of current climatic conditions were used to calibrate a set of 10 distinct correlative models for estimating the climatic niche of each species. We next projected the estimated niches into the geographical space for the current climate conditions and for the 2050s and 2070s under representative concentration pathway 2.6 and 8.5 scenarios.
  3. Our species distribution models had high predictive abilities and suggest that annual mean temperature is the main driver of the distribution of both species. Model predictions indicated that the two crayfish species have not fully occupied their suitable climates and will respond differently to future climate scenarios in different geographic regions. Suitable climate for P. leniusculus was predicted to shift poleward and to increase in extent in North America and Europe but decrease in Asia. Regions with suitable climate for P. clarkii are predicted to widen in Europe but contract in North America and Asia.
  4. This study highlights that invasive species with different thermal preference are likely to respond differently to future climate changes. Our results provide important information for policy makers to design and implement anticipated measures for the prevention and control of these two problematic species.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号