首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chytridiomycosis caused by fungus Batrachochytrium dendrobatidis (Bd) is one of the decline global causes of amphibians. Currently, it is distributed throughout a broad range of climates and ecosystems around the world. An epidemic wave of chytridiomycosis began in North America, resulting in population decline and local extinction of many species, reconfiguring species composition of amphibian communities in the Americas. In Mexico, Bd has caused an amphibian population decrease, and its potential distribution area has not been determined. We reviewed the number of species infected, obtaining Bd frequency of infection by land use and vegetation type, and by elevation range. We examined the known distribution of Bd, estimated the potential distribution, and obtained the bioclimate variables relevant for Bd. Our results indicate that in Mexico, Bd has been detected in 78 species of amphibians in 10 families, from 29 different land use and vegetation types, with cloud forest having the highest number of cases (139) and infected species (15). Bd occurs over an elevation range of 1–3,300 m asl and is most frequent at 1,200–1,500 m asl (36%). In addition to the regions previously described as suitable for Bd, our model included desert, coastal, and tropical forest regions, revealing an increase in the area where amphibians could be at risk of infection. Distribution of Bd is mainly associated with temperature of the wettest quarter and potential evapotranspiration of the warmer quarter. We offer an estimate of the ideal conditions for Bd in Mexico, also information for future studies on Bd and the conservation of amphibians. Abstract in Spanish is available with online material.  相似文献   

2.
The fungal pathogen Batrachochytrium dendrobatidis (Bd) infects amphibians on every continent where they occur and is linked to the decline of over 200 amphibian species worldwide. At present, only three published Bd surveys exist for mainland Asia, and Bd has been detected in South Korea alone. In this article, we report the first survey for Bd in Peninsular Malaysia. We swabbed 127 individuals from the six amphibian families that occur on Peninsular Malaysia, including two orders, 27 genera, and 47 species. We detected Bd on 10 out of 127 individuals from four of five states and five of 11 localities, placing the 95% confidence interval for overall prevalence at 4–14%. We detected no variation in Bd prevalence among regions, elevations, or taxonomic groups. The infection intensity ranged from 1 to 157,000 genome equivalents. The presence of Bd infections in native species without clinical signs of disease suggests that Bd may be endemic to the region. Alternately, Bd may have been introduced from non-native amphibians because of the substantial amphibian food trade in Peninsular Malaysia. Under both scenarios, management efforts should be implemented to limit the spread of non-native Bd and protect the tremendous amphibian diversity in Peninsular Malaysia.  相似文献   

3.
The amphibian fungal disease chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), poses a great threat to global amphibian biodiversity. In Peruvian cloud forests of the Kosñipata Valley of Manu National Park where chytrid infection is highly prevalent, we have monitored species-rich amphibian communities since 1996. An epizootic of chytridiomycosis is thought to have caused the disappearance of 35% of species richness in the early 2000s. We investigated the post-epizootic Bd prevalence and infection intensity within the remnant amphibian community from 2008 to 2015, and modeled Bd dynamics as a function of species, season, reproductive mode, life stage, and elevation. Prevalence was higher in 2012–2015 than in 2008–2009, but overall prevalence has remained fairly constant (~50%) post-epizootic. We also found that while prevalence decreased with elevation during the wet season, it generally increased with elevation during the dry season, potentially due to seasonal changes in temperature and precipitation. In aquatic habitats, Bd is likely maintained through a single, stream-breeding, putative reservoir species (which survived epizootics, in contrast to other aquatic-breeding species). The now-dominant terrestrial-breeding species allow Bd to persist and spread in terrestrial habitats, possibly through individual dispersal into naïve areas. We conclude that Bd prevalence in the Kosñipata Valley has stabilized over time, suggesting that Bd is now enzootic. Long-term monitoring of host infection is important because temporal changes in prevalence and infection intensity can cause changes in host species richness and abundance, which in turn may alter the trajectory of host–pathogen dynamics.  相似文献   

4.
Dispersal and exposure to amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) is not confined to the aquatic habitat, but little is known about pathways that facilitate exposure to wild terrestrial amphibians that do not typically enter bodies of water. We explored the possible spread of Bd from an aquatic reservoir to terrestrial substrates by the emergence of recently metamorphosed infected amphibians and potential deposition of Bd-positive residue on riparian vegetation in Cusuco National Park, Honduras (CNP). Amphibians and their respective leaf perches were both sampled for Bd presence and the pathogen was detected on 76.1% (35/46) of leaves where a Bd-positive frog had rested. Although the viability of Bd detected on these leaves cannot be discerned from our quantitative PCR results, the cool air temperature, closed canopy, and high humidity of this cloud forest environment in CNP is expected to encourage pathogen persistence. High prevalence of infection (88.5%) detected in the recently metamorphosed amphibians and frequent shedding of Bd-positive residue on foliage demonstrates a pathway of Bd dispersal between aquatic and terrestrial habitats. This pathway provides the opportunity for environmental transmission of Bd among and between amphibian species without direct physical contact or exposure to an aquatic habitat.  相似文献   

5.
The fungal infection caused by Batrachochytrium dendrobatidis (Bd) in amphibians is known to be lethal when infection intensity values exceed loads of 10,000 zoospores per individual. We investigated Bd infection intensity in 100 anurans of southern Brazil. Almost half of the individuals were infected and the intensity ranged from four to about 156,000 zoospore genomic equivalents. We found no clinical signs of chytridiomycosis and no evidence of mortality. However, we observed a reduction in the number of infected individuals with loads above 10,000 zoospores. This fact could be considered indirect evidence that individuals with high loads are removed from the population.  相似文献   

6.
Amphibian declines worldwide have been linked to the fungal disease chytridiomycosis. Its causative agent (Batrachochytrium dendrobatidis, hereafter Bd), however, also infects many nondeclining species. Experimental infections have shown species-specific and temperature-dependent frog responses to Bd infection. Although Bd infection may be eliminated by housing amphibians at temperatures above those tolerated by the fungus, the question of whether frogs can eliminate infection under more favorable conditions remains unanswered. Repeated diagnostics using real-time polymerase chain reaction (rt–PCR) assays of postmetamorphic individuals at 28, 38, 45, 53, and 62 days after exposure demonstrated that Hypsiboas crepitans is able to clear infection within a few weeks at 23°C. Thus, we demonstrate a temperature-independent and likely immunological mechanism for the clearance of Bd in a resistant amphibian species. Future studies are needed to determine the generality of this mechanism among amphibians and to describe the immune factors affecting different outcomes of Bd exposure including resistance to infection, tolerance of infection, and clearance of infection.  相似文献   

7.
The chytrid fungus Batrachochytrium dendrobatidis (Bd) is a threat to the survival of amphibians worldwide, a situation that is compounded by several other factors. In this study, we determined the prevalence of Bd and its relationship to biotic and abiotic variables for six amphibian communities in two cloud forest fragments and four coffee agroecosystems in central Veracruz, Mexico. A sampling effort of 768 person-hours and 109 skin swabs resulted in the detection of B. dendrobatidis in four amphibian species belonging to three families. The co-inertia model showed the following as the most important variables: tree density, fern species, temperature and elevation, fragment or site size, and structural index. Conversely, we did not find a clear relationship between Bd prevalence and the habitat management gradient. The highest prevalence was found in the second cloud forest, but a very similar result was found in one of the traditional agroecosystems; the lowest levels of prevalence were found in another second traditional agroecosystem and the first cloud forest. The degree of infection was highest in the cloud forests where the diversity of trees, orchids, and elevation was higher. Ecnomiohyla miotympanum was the most abundant species and was found to be infected in four of the five sites, presenting the highest degree of infection.  相似文献   

8.
Symbiotic bacterial communities are crucial to combating infections and contribute to host health. The amphibian skin microbiome plays an important role in protecting their hosts against pathogens such as Batrachochytrium dendrobatidis (Bd), one of the causative agents of chytridiomycosis, which is responsible for dramatic amphibian population declines worldwide. Although symbiotic skin bacteria are known to inhibit Bd growth, an understanding of the relationship between Bd genetic variability, environmental conditions, and skin bacterial communities is limited. Therefore, we examined the associations between Bd infection load, Bd genetic diversity and skin bacterial communities in five populations of Hyliola regilla (hypochondriaca) from environmentally contrasting sites in Baja California, Mexico. We observed differences in Bd genetics and infection load among sites and environments. Genetic analysis of Bd isolates revealed patterns of spatial structure corresponding to the five sites sampled. Amphibian skin bacterial diversity and community structure differed among environments and sites. Bacterial community composition was correlated with Bd genetic differences and infection load, with specific bacterial taxa enriched on infected and un-infected frogs. Our results indicate that skin-associated bacteria and Bd strains likely interact on the host skin, with consequences for microbial community structure and Bd infection intensity.  相似文献   

9.
Global amphibian declines have been attributed to several factors including the chytrid fungal pathogen, Batrachochytrium dendrobatidis (Bd), that infects hosts’ skin and causes death by inhibiting immune response and impairing osmoregulatory function. Here, we integrate extensive new field data with previously published locality records of Bd in Colombia, a megadiverse and environmentally heterogeneous country in northwestern South America, to determine the relative importance of environmental variables and reproductive mode for predicting the risk of Bd infection in amphibians. We surveyed 81 localities across Colombia and sampled 2876 individual amphibians belonging to 14 taxonomic families. Through a combination of end‐point PCR and real‐time PCR analyses, Bd was detected in 338 individuals (12%) representing 43 localities (53%) distributed from sea level to 3200 m. We found that annual mean temperature and variables related with seasonality in precipitation and temperature appeared to define the most suitable areas for the establishment of the pathogen. In addition, prevalence of infection appeared to be higher in species with a terrestrial reproductive mode. Our study provides the first large‐scale study of the current and potential distribution of Bd in the biodiversity hotspot centered on Colombia. We hope the newly provided information on the extent of the distribution of the pathogen and the potential areas where Bd may impact the amphibian fauna will inform decision making by environmental authorities and future conservation action.  相似文献   

10.
For the past 17 years, scientists have been compiling a list of amphibian species susceptible to infection by the amphibian‐killing chytrid fungus, Batrachochytrium dendrobatidis (Bd), all over the world, with >500 species infected on every continent except Antarctica (Olson et al. 2013 ). Where Bd has been found, the impacts on amphibians has been one of two types: either Bd arrives into a naïve amphibian population followed by a mass die‐off and population declines (e.g. Lips et al. 2006 ), or Bd is present at some moderate prevalence, usually infecting many species but at apparently nonlethal intensities for a long time. In this issue of Molecular Ecology, Rodriguez et al. ( 2014 ) discover that the Atlantic Coastal Forest of Brazil is home to two Bd lineages: the Global Pandemic Lineage (Bd‐GPL) – the strain responsible for mass die‐offs and population declines – and a lineage endemic to Brazil (Bd‐Bz). Even more surprising was that both lineages have been present in this area for the past 100 years, making these the oldest records of Bd infecting amphibians. The team also described a moderate but steady prevalence of ~20% across all sampled anuran families for over 100 years, indicating that Brazil has been in an enzootic disease state for over a century. Most amphibians were infected with Bd‐GPL, suggesting this lineage may be a better competitor than Bd‐Bz or may be replacing the Bd‐Bz lineage. Rodriguez et al. ( 2014 ) also detected likely hybridization of the two Bd lineages, as originally described by Schloegel et al. ( 2012 ).  相似文献   

11.
The Amazon forest is known for its astonishing amphibian diversity, yet the potential distribution and underlying impacts of the most important amphibian pathogen is unknown for most of Amazonia. In this retrospective survey of preserved Leptodactylus frogs, collected over a 119 yr period, we used quantitative PCR to detect the fungal pathogen Batrachochytrium dendrobatidis (Bd) and performed spatial scan analyses to identify spatiotemporal clusters of Bd. We also quantified the potential effect of environmental factors on the likelihood of Bd occurrence and generated an updated suitability map for Bd in the Amazon that included our retrospective sampling. We detected Bd in lowland Amazon as early as 1935, in the state of Pará, Brazil, and we found low prevalence (~ 3.8%) over time. We identified two statistically significant spatiotemporal clusters of Bd: a recent and narrow cluster in the Amazon River delta and a spatiotemporally broad cluster in the southern edge of Amazon and Brazilian savanna. Furthermore, we found an increase in Bd‐positive samples in the southwestern Amazon after the 1990s, coinciding with reported amphibian declines in neighboring high elevation sites on Andean slopes of Peru. Spatial regressions indicated that higher human interference, higher precipitation, and lower temperatures were significant predictors of Bd occurrence. Environmental niche modeling predicted some narrow areas of suitable climates along the Amazon's periphery and generally low climatic suitability for Bd in the central Amazon; although, we found clusters of Bd‐positive samples with unexpectedly high infection loads in areas of predicted low suitability. Our study indicates that accelerated human development may put Amazonian amphibians at risk from Bd introductions, and it highlights the potential need to monitor Bd dynamics near Amazonian port cities.  相似文献   

12.
Aim Panzootic chytridiomycosis caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd) is the proximate cause of rapid amphibian declines across diverse biomes. While the origin of Bd remains unclear, increasingly the global trade in amphibians is associated with the spread of the infection. Global samples of Bd genotypes from previously unsampled regions are essential to test this hypothesis. In this paper, we present a study of the prevalence and phylogeny of Bd in both invasive and native amphibian species in markets and in the wild in ten provinces of China. Location China. Method We used a nested PCR assay to amplify the ribosomal internal transcribed spacer region of Bd followed by sequencing. Result Our results showed 246 of 2734 amphibians testing positive for Bd, with 157 positive samples in the wild (7.6%) and 89 in markets (13.5%). 30 haplotypes of Bd were identified, including 20 first detections. Introduced Lithobates catesbeianus had the highest prevalence of infection and the largest number of Bd haplotypes in both the wild and markets. Phylogenetic analysis based on 73 haplotypes (57 from Asia and 16 from other continents) showed that a unique, well‐supported, basal haplotype is present in Asia. Phylogeographical analyses revealed that some geographical structure exists amongst a subset of global haplotypes. Main conclusions Strains of the basal haplotype infected Babina pleuraden, an amphibian that is endemic to China, and Andrias japonicus, endemic to Japan, showing that Southeast Asia harbours a novel endemic lineage of amphibian‐associated Bd. Our data suggest that Bd in Asia pre‐dates the expansion of a globalized lineage of Bd, a finding that is indicative of a broader association of amphibians and chytrids than has previously been recognized. More genetic data from Bd isolates are needed to reveal the phylogenetic relationship of Bd in China compared to that found elsewhere.  相似文献   

13.
Chytridiomycosis, due to the fungus Batrachochytrium dendrobatidis (Bd), has been associated with the alarming decline and extinction crisis of amphibians worldwide. Because conservation programs are implemented locally, it is essential to understand how the complex interactions among host species, climate and human activities contribute to Bd occurrence at regional scales. Using weighted phylogenetic regressions and model selection, we investigated geographic patterns of Bd occurrence along a latitudinal gradient of 1500 km within a biodiversity hot spot in Chile (1845 individuals sampled from 253 sites and representing 24 species), and its association with climatic, socio‐demographic and economic variables. Analyses show that Bd prevalence decreases with latitude although it has increased by almost 10% between 2008 and 2013, possibly reflecting an ongoing spread of Bd following the introduction of Xenopus laevis. Occurrence of Bd was higher in regions with high gross domestic product (particularly near developed centers) and with a high variability in rainfall regimes, whereas models including other bioclimatic or geographic variables, including temperature, exhibited substantially lower fit and virtually no support based on Akaike weights. In addition, Bd prevalence exhibited a strong phylogenetic signal, with five species having high numbers of infected individuals and higher prevalence than the average of 13.3% across all species. Taken together, our results highlight that Bd in Chile might still be spreading south, facilitated by a subset of species that seem to play an important epidemiological role maintaining this pathogen in the communities, in combination with climatic and human factors affecting the availability and quality of amphibian breeding sites. This information may be employed to design conservation strategies and mitigate the impacts of Bd in the biodiversity hot spot of southern Chile, and similar studies may prove useful to disentangle the role of different factors contributing to the emergence and spread of this catastrophic disease.  相似文献   

14.
Aim Amphibian chytridiomycosis, an emerging infectious disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), is associated with global amphibian population declines and species extinctions. Current evidence indicates that the pathogen has recently spread globally from an enzootic focus, with Xenopus spp. (family Pipidae) in South Africa having been identified as a likely source. The aim of this study was to investigate further the likelihood of African Xenopus spp. as the original source of Bd. Location We examined 665 museum specimens of 20 species of African and South American pipid frogs collected between 1844 and 1994 and held in the collection of the Natural History Museum, London. Methods Skin brushings taken from adult amphibians and brushings from the mouthparts, lips and developing hind limbs of larval pipid frogs were examined for the presence of Bd using real‐time PCR. Results We found six cases of Bd infection in three Xenopus spp. (from Africa), but none of the South American pipids was positive, although only 45 South American frogs were available for examination. The earliest case of Bd infection was in a specimen of Xenopus fraseri collected from Cameroon in 1933. A consistently low prevalence of infection over time indicates that a historical equilibrium existed between Xenopus spp. and Bd infection in Africa. Main conclusions Our results suggest that Bd infection was present in Xenopus spp. across sub‐Saharan Africa by the 1930s, providing additional support for the ‘out of Africa’ hypothesis. If this hypothesis is correct, it strengthens the argument for stringent control of human‐assisted movements of amphibians and other wildlife world‐wide to minimize the likelihood of pathogen introduction and disease emergence that can threaten species globally. Our findings help inform species selection for conservation in the face of the current Bd pandemic and also guide future research directions for selecting Bd isolates for sequencing and virulence testing.  相似文献   

15.
The chytrid fungus, Batrachochytrium dendrobatidis (Bd), has been identified as a major cause of the recent worldwide amphibian decline. Numerous species in North America alone are under threat or have succumbed to Bd-driven population extinctions. The American bullfrog (Lithobates catesbeianus) has been reported as a tolerant carrier of Bd. In this report, we used a qPCR assay to test 120 archived American bullfrog specimens collected between 1924 and 2007 in California, USA and Baja California, Mexico. The overall prevalence of Bd infection in this archived population of L. catesbeianus was 19.2%. The earliest positive specimen was collected in Sacramento County, California, USA in 1928 and is to date the earliest positive archived Bd specimen reported globally. These data demonstrate that Bd-infected wild amphibians have been present in California longer than previously known.  相似文献   

16.
17.
The chytrid fungus, Batrachochytrium dendrobatidis (Bd) has been linked to extinction and decline of numerous amphibians. We studied the population-level effects of Bd in two post-decline anuran species, Eleutherodactylus coqui and E. portoricensis, at El Yunque National Forest, Puerto Rico. Data on amphibian abundance was updated to report long-term population trends. Mark–recapture data was used to monitor Bd-infection status and estimate survival probabilities of infected versus uninfected adults. Prevalence of Bd (number of infected/total sampled) and individual infection level (number of zoospores) were compared among age classes at Palo Colorado Forest (661 m) and Elfin Forest (850 m). Results revealed that both species continued to decrease in Palo Colorado Forest, while in the Elfin Forest, E. portoricensis recuperated from drastic declines. Age class, season, and locality significantly predicted zoospore load. Age was also significantly associated with high zoospores loads among Bd-positive frogs, and the prevalence of Bd was higher in juveniles than adults in all populations studied. We suggest that early age represents a critical life stage in the survival of direct-developing frogs infected by this fungus. Survival probability was always higher for uninfected frogs, but recapture rates of infected versus uninfected adults were significantly different only in Palo Colorado, alerting that the negative effect of Bd infection under enzootic conditions is greater at mid-elevations. This work contributes to our understanding of how direct-developing amphibians persist with Bd, pointing to critical life stages and synergistic interactions that may induce fluctuations and/or declines in the wild.  相似文献   

18.
Chytridiomycosis, caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd), is one of the largest threats to wildlife and is putatively linked to the extirpation of numerous amphibians. Despite over a decade of research on Bd, conflicting results from a number of studies make it difficult to forecast where future epizootics will occur and how to manage this pathogen effectively. Here, we emphasize how resolving these conflicts will advance Bd management and amphibian conservation efforts. We synthesize current knowledge on whether Bd is novel or endemic, whether amphibians exhibit acquired resistance to Bd, the importance of host resistance versus tolerance to Bd, and how biotic (e.g. species richness) and abiotic factors (e.g. climate change) affect Bd abundance. Advances in our knowledge of amphibian–chytrid interactions might inform the management of fungal pathogens in general, which are becoming more common and problematic globally.  相似文献   

19.
The global emergence of the amphibian chytrid pathogen Batrachochytrium dendrobatidis (Bd) is one of the most compelling, and troubling, examples of a panzootic. Only discovered in 1998, Bd is now recognized as a proximate driver of global declines in amphibian diversity and is now widely acknowledged as a key threatening process for this ancient class of vertebrates. Moreover, Bd has become a member of a small group of highly virulent multihost pathogens that are known to have had effects on entire vertebrate communities and the ecosystem‐level effects of Bd‐driven amphibian declines are starting to emerge as a consequence of regional decreases in amphibian diversity. Despite the speed at which this species of aquatic chytrid has become a focus of research efforts, major questions still exist about where Bd originated, how it spreads, where it occurs and what are Bd’s effects on populations and species inhabiting different regions and biomes. In this issue, Goka et al. (2009 ) make an important contribution by publishing the first nationwide surveillance for Bd in Asia. Although previous data had suggested that amphibians in Asia are largely uninfected by Bd, these surveys were limited in their extent and few firm conclusions could be drawn about the true extent of infection. Goka et al. herein describe a systematic surveillance of Japan for both native and exotic species in the wild, as well as amphibians housed in captivity, using a Bd‐specific nested PCR reaction on a sample of over 2600 amphibians. Their results show that Bd is widely prevalent in native species across Japan in at least three of the islands that make up the archipelago, proving for the first time that Asia harbours Bd.  相似文献   

20.
The fungal pathogen Batrachochytrium dendrobatidis (Bd) infects the skin of amphibians and has caused severe declines and extinctions of amphibians globally. In this study, we investigate the interaction between Bd and the bacterial skin microbiome of the endangered Sierra Nevada yellow‐legged frog, Rana sierrae, using both culture‐dependent and culture‐independent methods. Samples were collected from two populations of R. sierrae that likely underwent Bd epizootics in the past, but that continue to persist with Bd in an enzootic disease state, and we address the hypothesis that such “persistent” populations are aided by mutualistic skin microbes. Our 16S rRNA metabarcoding data reveal that the skin microbiome of highly infected juvenile frogs is characterized by significantly reduced species richness and evenness, and by strikingly lower variation between individuals, compared to juveniles and adults with lower infection levels. Over 90% of DNA sequences from the skin microbiome of highly infected frogs were derived from bacteria in a single order, Burkholderiales, compared to just 54% in frogs with lower infection levels. In a culture‐dependent Bd inhibition assay, the bacterial metabolites we evaluated all inhibited the growth of Bd. Together, these results illustrate the disruptive effects of Bd infection on host skin microbial community structure and dynamics, and suggest possible avenues for the development of anti‐Bd probiotic treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号