首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Prey response to novel predators influences the impacts on prey populations of introduced predators, bio-control efforts, and predator range expansion. Predicting the impacts of novel predators on native prey requires an understanding of both predator avoidance strategies and their potential to reduce predation risk. We examine the response of island foxes (Urocyon littoralis) to invasion by golden eagles (Aquila chrysaetos). Foxes reduced daytime activity and increased night time activity relative to eagle-na?ve foxes. Individual foxes reverted toward diurnal tendencies following eagle removal efforts. We quantified the potential population impact of reduced diurnality by modeling island fox population dynamics. Our model predicted an annual population decline similar to what was observed following golden eagle invasion and predicted that the observed 11% reduction in daytime activity would not reduce predation risk sufficiently to reduce extinction risk. The limited effect of this behaviorally plastic predator avoidance strategy highlights the importance of linking behavioral change to population dynamics for predicting the impact of novel predators on resident prey populations.  相似文献   

2.
Invasive mammalian carnivores contribute disproportionately to declines in global biodiversity. In California, nonnative red foxes (Vulpes vulpes) have significantly impacted endangered ground‐nesting birds and native canids. These foxes derive primarily from captive‐reared animals associated with the fur‐farming industry. Over the past five decades, the cumulative area occupied by nonnative red fox increased to cover much of central and southern California. We used a landscape‐genetic approach involving mitochondrial DNA (mtDNA) sequences and 13 microsatellites of 402 nonnative red foxes removed in predator control programs to investigate source populations, contemporary connectivity, and metapopulation dynamics. Both markers indicated high population structuring consistent with origins from multiple introductions and low subsequent gene flow. Landscape‐genetic modeling indicated that population connectivity was especially low among coastal sampling sites surrounded by mountainous wildlands but somewhat higher through topographically flat, urban and agricultural landscapes. The genetic composition of populations tended to be stable for multiple generations, indicating a degree of demographic resilience to predator removal programs. However, in two sites where intensive predator control reduced fox abundance, we observed increases in immigration, suggesting potential for recolonization to counter eradication attempts. These findings, along with continued genetic monitoring, can help guide localized management of foxes by identifying points of introductions and routes of spread and evaluating the relative importance of reproduction and immigration in maintaining populations. More generally, the study illustrates the utility of a landscape‐genetic approach for understanding invasion dynamics and metapopulation structure of one of the world's most destructive invasive mammals, the red fox.  相似文献   

3.
Anti‐predator behavior can alter the dynamics of prey populations, but little is known about the rate at which anti‐predator behavior is lost from prey populations following predator removal. The Channel Islands differ in whether they have historically contained a top predator, the Island Fox (Urocyon littoralis), in evolutionary time (approximately 6200–10 000 yr). On a historically fox‐containing island and two historically fox‐free islands in 2007, I deployed live traps that contained olfactory cues of fox predators (fox feces), olfactory cues of an herbivore (horse feces) or a no‐feces control. Due to a captive breeding program, foxes on the historically fox‐containing island were effectively removed from 1998 to 2004. Rodents from one of the historically fox‐free islands did not respond to fox cues, whereas rodents on the historically fox‐containing island were more likely to be captured in a control trap and less likely to be captured in a fox‐cue trap. Results from the other historically fox‐free island that experienced a recent population bottleneck and period of captive rearing exhibited a preference for horse‐scented traps. These results suggest that, on islands where foxes are the primary predators, anti‐predator behavior in response to olfactory cues is not likely to be rapidly lost by short‐term removals of foxes, although the nature of anti‐predator behavior may depend upon founder events and recent population dynamics (e.g. population bottlenecks or several generations in captivity).  相似文献   

4.
In the twentieth century, red fox (Vulpes vulpes) expanded into the Canadian Arctic, where it competes with arctic fox (Vulpes lagopus) for food and shelter. Red fox dominates in physical interactions with the smaller arctic fox, but little is known about competition between them on the tundra. On Hershel Island, north Yukon, where these foxes are sympatric, we focused on natal den choice, a critical aspect of habitat selection. We tested the hypothesis that red fox displaces arctic fox from dens in prey-rich habitats. We applied an approach based on model comparisons to analyse a 10-year data set and identify factors important to den selection. Red fox selected dens in habitats that were more prey-rich in spring. When red foxes reproduced, arctic fox selected dens with good springtime access, notably many burrows unblocked by ice and snow. These provided the best refuge early in the reproductive season. In the absence of red foxes, arctic foxes selected dens offering good shelter (i.e. large isolated dens). Proximity to prey-rich habitats was consistently less important than the physical aspects of dens for arctic fox. Our study shows for the first time that red foxes in the tundra select dens associated primarily with prey-rich areas, while sympatric arctic foxes do not. These results fit a model of red fox competitively interfering with arctic fox, the first detailed study of such competition in a true arctic setting.  相似文献   

5.
The distribution of many predators may be limited by interactions with larger predator species. The arctic fox in mainland Europe is endangered, while the red fox is increasing its range in the north. It has been suggested that the southern distribution limit of the arctic fox is determined by interspecific competition with the red fox. This has been criticised, on the basis that the species co-exist on a regional scale. However, if the larger red fox is superior and interspecific competition important, the arctic fox should avoid close contact, especially during the breeding season. Consequently, the distribution of breeding dens for the two species would be segregated on a much smaller spatial and temporal scale, in areas where they are sympatric. We tested this hypothesis by analysing den use of reproducing arctic and red foxes over 9 years in Sweden. High quality dens were inhabited by reproducing arctic foxes more often when no red foxes bred in the vicinity. Furthermore, in two out of three cases when arctic foxes did reproduce near red foxes, juveniles were killed by red foxes. We also found that breeding arctic foxes occupied dens at higher altitudes than red foxes did. In a large-scale field experiment, red foxes were removed, but the results were not conclusive. However, we conclude that on the scale of individual territories, arctic foxes avoid areas with red foxes. Through interspecific interference competition, the red fox might thus be excluding the arctic fox from breeding in low altitude habitat, which is most important in years when food abundance is limited and competition is most fierce. With high altitude refuges being less suitable, even small-scale behavioural effects could scale up to significant effects at the population level.  相似文献   

6.
During the last century, the red fox (Vulpes vulpes) has expanded its distribution into the Arctic, where it competes with the arctic fox (Vulpes lagopus), an ecologically similar tundra predator. The red fox expansion correlates with climate warming, and the ultimate determinant of the outcome of the competition between the two species is hypothesized to be climate. We conducted aerial and ground fox den surveys in the northern Yukon (Herschel Island and the coastal mainland) to investigate the relative abundance of red and arctic foxes over the last four decades. This region has undergone the most intense warming observed in North America, and we hypothesized that this climate change led to increasing dominance of red fox over arctic fox. Results of recent surveys fall within the range of previous ones, indicating little change in the relative abundance of the two species. North Yukon fox dens are mostly occupied by arctic fox, with active red fox dens occurring sympatrically. While vegetation changes have been reported, there is no indication that secondary productivity and food abundance for foxes have increased. Our study shows that in the western Arctic of North America, where climate warming was intense, the competitive balance between red and arctic foxes changed little in 40?years. Our results challenge the hypotheses linking climate to red fox expansion, and we discuss how climate warming’s negative effects on predators may be overriding positive effects of milder temperatures and longer growing seasons.  相似文献   

7.
In food webs heavily influenced by multi‐annual population fluctuations of key herbivores, predator species may differ in their functional and numerical responses as well as their competitive ability. Focusing on red and arctic fox in tundra with cyclic populations of rodents as key prey, we develop a model to predict how population dynamics of a dominant and versatile predator (red fox) impacted long‐term growth rate of a subdominant and less versatile predator (arctic fox). We compare three realistic scenarios of red fox performance: (1) a numerical response scenario where red fox acted as a resident rodent specialist exhibiting population cycles lagging one year after the rodent cycle, (2) an aggregative response scenario where red fox shifted between tundra and a nearby ecosystem (i.e. boreal forest) so as to track rodent peaks in tundra without delay, and (3) a constant subsidy scenario in which the red fox population was stabilized at the same mean density as in the other two scenarios. For all three scenarios it is assumed that the arctic fox responded numerically as a rodent specialist and that the mechanisms of competition is of a interference type for space, in which the arctic fox is excluded from the most resource rich patches in tundra. Arctic fox is impacted most by the constant subsidy scenario and least by the numerical response scenario. The differential effects of the scenarios stemmed from cyclic phase‐dependent sensitivity to competition mediated by changes in temporal mean and variance of available prey to the subdominant predator. A general implication from our result is that external resource subsidies (prey or habitats), monopolized by the dominant competitor, can significantly reduce the likelihood for co‐existence within the predator guild. In terms of conservation of vulnerable arctic fox populations this means that the likelihood of extinction increases with increasing amount of subsidies (e.g. carcasses of large herbivores or marine resources) in tundra and nearby forest areas, since it will act to both increase and stabilize populations of red fox.  相似文献   

8.
A recent study has inferred that the red fox (Vulpes vulpes) is now widespread in Tasmania as of 2010, based on the extraction of fox DNA from predator scats. Heuristically, this inference appears at first glance to be at odds with the lack of recent confirmed discoveries of either road-killed foxes—the last of which occurred in 2006, or hunter killed foxes—the most recent in 2001. This paper demonstrates a method to codify this heuristic analysis and produce inferences consistent with assumptions and data. It does this by formalising the analysis in a transparent and repeatable manner to make inference on the past, present and future distribution of an invasive species. It utilizes Approximate Bayesian Computation to make inferences. Importantly, the method is able to inform management of invasive species within realistic time frames, and can be applied widely. We illustrate the technique using the Tasmanian fox data. Based on the pattern of carcass discoveries of foxes in Tasmania, we infer that the population of foxes in Tasmania is most likely extinct, or restricted in distribution and demographically weak as of 2013. It is possible, though unlikely, that that population is widespread and/or demographically robust. This inference is largely at odds with the inference from the predator scat survey data. Our results suggest the chances of successfully eradicating the introduced red fox population in Tasmania may be significantly higher than previously thought.  相似文献   

9.
Olfactory signals constitute an important mechanism in interspecific interactions, but little is known regarding their role in communication between predator species. We analyzed the behavioral responses of a mesopredator, the red fox (Vulpes vulpes), to an olfactory cue (scat) of an apex predator, the lynx (Lynx lynx) in Bia?owie?a Primeval Forest, Poland, using video camera traps. Red fox visited sites with scats more often than expected and the duration of their visits was longer at scat sites than at control sites (no scat added). Vigilant behavior, sniffing and scent marking (including over-marking) occurred more often at scat sites compared to control sites, where foxes mainly passed by. Vigilance was most pronounced during the first days of the recordings. Red fox behavior was also influenced by foxes previously visiting scat sites. They sniffed and scent marked (multiple over-marking) more frequently when the lynx scat had been over-marked previously by red fox. Fox visits to lynx scats may be seen as a trade-off between obtaining information on a potential food source (prey killed by lynx) and the potential risk of predation by an apex predator.  相似文献   

10.
Invasive predators are globally significant drivers of threatened fauna population decline and extinction, and the early detection of new incursions is critical to the chances of successful predator eradication and fauna conservation. Here, we provide evidence of the recent invasion of European red foxes (Vulpes vulpes) on to two large and internationally significant islands off the southeast coast of Queensland, Australia – Fraser Island (K'gari) and South Stradbroke Island. From camera trap footage collected on Fraser Island since 2009, foxes have now been observed on seven different occasions between 2012 and 2016. Two scats collected on South Stradbroke Island in 2013 and 2014 tested positive for fox DNA (and negative for Canis spp. DNA), with fox presence confirmed by subsequent camera trap footage in 2016. These data confirm the recent incursion of foxes on to these islands and suggest that small populations now exist there. Fraser Island and South Stradbroke Island represent key RAMSAR wetland areas of refuge for populations of multiple threatened fauna that have never been previously been exposed to foxes. Fox impacts on these fauna can only be expected to increase without management intervention to eradicate them before they become widespread.  相似文献   

11.
Widespread generalist predators may affect declining keystone prey populations. However, this phenomenon is not well understood. In this paper, we assessed whether the abundance and population growth of European rabbits Oryctolagus cuniculus, a keystone prey species in Mediterranean Iberia, was related to the abundance and diet of red foxes, Vulpes vulpes, a widespread generalist predator. In a locality in central Spain, where rabbit population abundance declined, we estimated rabbit abundance during almost 3 years and determined fox abundance and diet during two concurrent years. We calculated a fox predation index (percentage of consumed rabbit biomass × fox abundance) to assess the importance of rabbits to foxes. We employed a multi–model approach to explain rabbit abundance and population growth. Foxes consumed between 60 and 99 % rabbit biomass in their diets, and this was independent of rabbit abundance. Periods of higher fox predation index coincided with lower rabbit density and vice versa. Two models best explained rabbit abundance and four rabbit population growth. They included the fox predation index and its interaction with rabbit abundance during the previous month. Altogether, fox predation, intraspecific density dependence, and their interaction partly explained rabbit population dynamics. We conclude that in order to propel the recovery of the rabbit in Iberia, it is essential to better understand the role of these factors in driving the abundance of the species.  相似文献   

12.
Predation of nests and young is one of the limiting factors in the conservation of birds; understanding environmental covariates of predator distribution can assist with decisions regarding the best management strategies to reduce predation risk. The habitat of beach-nesting birds is often reshaped by storms in ways that may affect nest predation, such as by flattening vegetated dunes where mammals hunt, but human management of beaches tries to prevent the effects of storms on the landscape with unknown implications for predator distributions. Moreover, human development may affect predator distributions by subsidizing food and shelter. To determine the relationship between predator occupancy and landscape features in beach-nesting bird habitat, we repeated mammalian predator track surveys 8 times/year at 90 plots in southern New Jersey, USA, from 2015–2017. We used dynamic occupancy models to estimate the probability of use by red foxes (Vulpes vulpes) and to document changes in habitat use as related to landcover types over the avian breeding season within years. We had 373 red fox detections with years pooled. Detection probability for red foxes varied by year, and probability of use decreased as the distance to the nearest primary dune increased. We found no evidence that red fox habitat use depended on distance to human development. Our results suggest that conserving nesting habitat that includes open areas (i.e., storm overwash [whereby vegetation is scoured by tidal flooding]) may reduce predation risk because beach-nesting birds would not be forced into nesting close to dunes, which are typically used for hunting by red foxes. © 2020 The Wildlife Society.  相似文献   

13.
Aim We examined evidence for the mesopredator release hypothesis at a subcontinental scale by investigating the relationship between indices of abundance of the dingo Canis lupus dingo (top‐order predator) and the invasive red fox Vulpes vulpes (mesopredator) in three large regions across mainland Australia. The red fox is known to be one of the major threats to the persistence of small and medium‐sized native vertebrates across the continent. Location Australia. Methods Indices of abundance were calculated from three independently collected datasets derived from bounty returns and field surveys. Data were analysed using univariate parametric, semi‐parametric and nonparametric techniques. Results Predator abundance indices did not conform to a normal distribution and the relationships between dingo and fox abundance indices were not well described by linear functions. Semi‐parametric and nonparametric techniques revealed consistently negative associations between indices of dingo and fox abundance. Main conclusions The results provide evidence that mesopredator suppression by a top predator can be exerted at very large geographical scales and suggest that relationships between the abundances of top predators and mesopredators are not linear. Our results have broad implications for the management of canid predators. First, they suggest that dingoes function ecologically to reduce the activity or abundance of red foxes and thus are likely to dampen the predatory impacts of foxes. More generally, they provide support for the notion that the mesopredator‐suppressive effects of top predators could be incorporated into broad‐scale biodiversity conservation programmes in many parts of the world by actively maintaining populations of top predators or restoring them in areas where they are now rare. Determining the population densities at which the interactions of top predators become ecologically effective will be a critical goal for conservation managers who aim to maintain or restore ecosystems using the ecological interactions of top predators.  相似文献   

14.
We investigated diet composition, habitat selection and spatial behaviour of the red fox (Vulpes vulpes) in relation to the availability of wader nests in a coastal polder area in southwest Denmark. The predatory role of the red fox in wet grassland ecosystems has profound implications for conservation status of declining populations of grassland breeding waders. However, few studies have focussed on the foraging ecology and behaviour of the red fox in these landscapes. Faecal analyses revealed that fox diet consisted of birds (43 % of prey remains?/?32 % of biomass), rodents (39 %?/?21 %), sheep (mainly as carrion, 14 %?/?41 %) and lagomorphs (4 %?/?7 %). Charadriiformes (including waders) comprised 3–12 % of prey remains throughout the year. Telemetry data and spotlight counts indicated that foxes did not select areas with high densities of breeding waders, suggesting that foxes did not target wader nests while foraging. Foxes maintained stable home ranges throughout their lives, indicating that the area sustained a permanent fox population all year round. The population densities, estimated from spotlight surveys, were 0.74 visible foxes km?2 (95 % CI; 0.34–1.61) on the preferred breeding habitat for waders and 1.21 km?2 in other open habitats such as cultivated fields. Our results indicate that red fox predation on wader nests is incidental, consistent with the notion that red foxes are generalist predators that opportunistically subsist on many prey groups.  相似文献   

15.
Uncoordinated and isolated control programs are often used by land managers, property owners and recreational hunters to control numbers and reduce the impacts of European red foxes (Vulpes vulpes). However, decades of such attempts to eradicate this significant agricultural and biodiversity pest in many countries have failed. We investigated the effectiveness of an uncoordinated and isolated shooting program to determine if it caused any change in red fox population density. We also determined whether shooting is more cost effective than poison baiting for fox control. First, we estimated the density of foxes on an agricultural study property using distance sampling and rates of bait uptake before and after a control program. Second, we estimated the costs associated with undertaking the control program and compared it to the estimated costs of undertaking poison baiting. Prior to control, we estimated a density of 4.18 foxes per square kilometre. After the control exercise, which removed 47 individuals in 12 nights, we estimated a density of 3.26 foxes per square kilometre. Our results provide evidence that one-off control programs are not effective in greatly reducing red fox density, even if the control effort is intensive. Where large-scale control programs cannot be coordinated, isolated programs should therefore involve follow-up campaigns to reduce population recovery. On a local scale, combinations of shooting and baiting may also provide maximum control impact at minimal cost.  相似文献   

16.
Red fox Vulpes vulpes predation on roe deer Capreolus capreolus fawns has the potential to strongly affect prey population dynamics, but it is unclear whether this relationship is symmetrical or not. We analysed the spring–summer diet of adult foxes and of their cubs in a fragmented agricultural area of southeastern Norway, where a parallel study showed that the predator kills annually 25% of the radio-monitored roe deer fawns. The overall diet was highly varied and was dominated by small mammals (33% volume), especially Microtus agrestis, and medium-large mammals (25%), largely represented by fawns. The frequency of occurrence (FO) of fawns in the diet of adult foxes was highest in early spring, thus, supporting previous studies showing that the predator started actively hunting for fawns from the very beginning of the birth season. During the summer, the FO of both fawns and small mammals markedly declined, while that of berries and invertebrates increased. As expected for central-place foragers, cubs consumed a higher proportion of large prey items compared to adults. In particular, 25% of scats from cubs—versus 9% from adults—contained roe deer remains, suggesting a high profitability of fawns for vixens raising offspring. However, considering the wide food spectrum and the availability of several large prey items in our study area, it seems unlikely that the importance of fawns to the diet and population dynamics of red foxes could be as great as the impact of the predator on roe deer populations. This asymmetrical relationship implies that there are unlikely to be any stabilising feedback mechanisms in the predator–prey relationship.  相似文献   

17.
Naiveté in prey arises from novel ecological mismatches in cue recognition systems and antipredator responses following the arrival of alien predators. The multilevel naiveté framework suggests that animals can progress through levels of naiveté toward predator awareness. Alternatively, native prey may be preadapted to recognize novel predators via common constituents in predator odors or familiar predator archetypes. We tested predictions of these competing hypotheses on the mechanisms driving behavioral responses of native species to alien predators by measuring responses of native free‐living northern brown bandicoots (Isoodon macrourus) to alien red fox (Vulpes vulpes) odor. We compared multiple bandicoot populations either sympatric or allopatric with foxes. Bandicoots sympatric with foxes showed recognition and appropriate antipredator behavior toward fox odor via avoidance. On the few occasions bandicoots did visit, their vigilance significantly increased, and their foraging decreased. In contrast, bandicoots allopatric with foxes showed no recognition of this predator cue. Our results suggest that vulnerable Australian mammals were likely naïve to foxes when they first arrived, which explains why so many native mammals declined soon after fox arrival. Our results also suggest such naiveté can be overcome within a relatively short time frame, driven by experience with predators, thus supporting the multilevel naiveté framework.  相似文献   

18.
In transitional mixed forests in northern and central Belarus the influence of intensified felling on the diets of red foxes Vulpes vulpes L. and pine martens Martes martes L. was investigated in two model forested terrains with sandy and clay top-grounds. A total of 1904 scats of red foxes and 1624 scats of pine martens were analysed over two periods differed by logging rate. When logging rate was conservative, red fox and pine marten diets were found to be similar, but under heavy logging feeding of the predator species shifted. In both model woodlands we found the same pronounced dietary trend of higher consumption of rodents, first of all, Microtus voles. The dietary changes were well related to the registered increase in Microtus vole numbers and total number of rodents in felling areas. The increased preying on rodents caused lower consumption of other food items, particularly medium-sized mammals (year-round) or/and birds or/and fruits (in the warm season) or/and mammalian carrion (in the cold season). In the conditions of intensified felling the food niches of the red fox and pine marten diverged mostly because of the great difference in the species structure of rodents consumed. Red foxes turned to preying on Microtus voles more frequently, but less on bank voles Myodes glareolus; while pine martens increased their taking of Microtus voles, continued foraging for bank voles and began taking slightly more of Apodemus mice. Before heavy logging dietary similarity between the red fox and pine marten was high and did not vary considerably through seasons and study areas, whereas after felling was intensified their diet overlap became lower.  相似文献   

19.
Abstract: Range expansion and population increase by coyotes (Canis latrans), reduced hunting and trapping, and intensified agricultural practices in the Midwest have altered red fox (Vulpes vulpes) mortality, although relative impacts of these factors are unknown. We examined mortality causes and survival of red foxes in urban and rural agricultural areas of Illinois, using radio telemetry data from 335 foxes (Nov 1996 to May 2002). We used Akaike's Information Criterion to evaluate six survival models for foxes reflecting 1) environmental effects, 2) intrinsic effects, 3) temporal effects, 4) behavioral effects, 5) social effects, and 6) a global model. Environmental and intrinsic models of survival were optimal for adult foxes. Adult foxes with low (0-20%) and high (80-100%) percentages of row crops in their home ranges had higher survival than adults with moderate percentages (40-70%). Heavier adults at capture also survived better. A global model (all covariates) was optimal for juvenile foxes. Higher juvenile survival associated with larger litters, lower body fat, and reduced dispersal time. Yearly survival ranged from 0.18 for rural male juveniles to 0.44 for rural female adults. Adult survival rates (0.35) were 11% higher than juvenile survival rates (0.24). Yearly survival varied for urban foxes due to cyclic outbreaks of sarcoptic mange (Sarcoptes scabei). Thus, summer survival (May-Sep) of urban juveniles ranged from 0.10 (mange present) to 0.83 (no mange recorded). Mange was the most common (45% of all fatalities) source of mortality for urban foxes, followed by road kill (31%). We recorded only 4 mange fatalities (2%) for rural foxes. Rural foxes experienced low hunting mortality (7%) and equivalent road kill and coyote predation fatalities (40% each). Sources of mortality for midwestern foxes have dramatically changed since the 1970s when hunting was the major cause of mortality. Coyote predation has effectively replaced hunting mortality, and cyclic patterns of mange outbreaks in urban fox populations might indicate a dynamic source or sink relationship to surrounding rural fox populations. Absent mange, urban areas might provide refugia for red foxes where coyote populations persist at high densities in rural areas. Managers of sympatric urban and rural wildlife populations must understand survival dynamics influencing the population at the landscape level.  相似文献   

20.
Fox predation on cyclic field vole populations in Britain   总被引:3,自引:0,他引:3  
The diet of the red fox Vulpes vulpes L. was studied during three winter periods in spruce pklantations in Britain, during which time the cyclic field vole Microtus agrestis L. populations varied in abundance. Field voles and roe deer Capreolus capreolus L. were the two main prey species in the diet of the red fox. The contribution of lagomorphs to fox diet never exceeded 35% and species of small mammal other than field voles were of minor importance. The contribution of field voles was dependent on vole density. The non-linear density dependent relationship with a rather abrupt increase of field voles in fox did when vole density exceeded ca 100 voles ha−1 was consistent with a prey-switching response. The contribution of field voles to fox diet during the low phase of population cycles was lower in Kielder Forest than in other ecosystems with cyclic vole populations. The number of foxes killed annually by forestry rangers was consistent with the evidence from other studies that foxes preying on cyclic small rodents might show a delayed numerical response to changes in vole abundance. Estimates of the maximum predation rate of the fox alone (200–290 voles ha−1 of vole habitat year−1) was well above a previously predicted value for the whole generalist predator community in Kielder Forest. Our data on the functional response of red foxes and estimates of their predation rates suggest that foxes should have a strong stabilising impact on vole populations, yet voles show characteristic 3-4 yr cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号