首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
  1. Managed low-severity surface fires are frequently implemented in efforts to restore disturbance processes to forests of North America; although the effects of managed fire on forest structure are well-studied, few studies investigate whether these disturbances cascade to impact pollinator communities.
  2. We analysed bee-habitat relationships in fire-treated (1- and 3-years post-treatment) and non-treated ponderosa pine stands in Colorado to test wild bee population responses.
  3. Observed bee richness and α-diversity were highest in stands 1-year post-fire and had more Anthophora, Bombus, Osmia and Lasioglossum spp. in comparison to 3-year post-fire and non-treated stands. Bee functional groups were responsive to treatments, with more below-ground nesting taxa present in stands 3 years post-fire.
  4. Floral richness was the highest mid-growing season (June, July) and within 1-year post-fire stands.
  5. A model analysing the effects of foraging and nesting habitat variation on bee assemblages indicated positive association between floral richness and bee α-diversity, but negative relationships with stand basal area. Nesting habitat was not associated with variation in bee assemblages.
  6. We conclude that managed fire has positive short-term effects on bee biodiversity that are likely mediated by floral richness. However, these effects were not detectable by 3 years post-treatment in the southern Rocky Mountain region.
  相似文献   

4.
5.
  1. Pollinators are introduced to agroecosystems to provide pollination services. Introductions of managed pollinators often promote ecosystem services, but it remains largely unknown whether they also affect evolutionary mutualisms between wild pollinators and plants.
  2. Here, we developed a model to assess effects of managed honey bees on mutualisms between plants and wild pollinators. Our model tracked how interactions among wild pollinators and honey bees affected pollinator and plant populations.
  3. We show that when managed honey bees have a competitive advantage over wild pollinators, or a greater carrying capacity, the honey bees displace the wild pollinator. This leads to reduced plant density because plants benefit less by visits from honey bees than wild pollinators that coevolved with the plants.
  4. As wild pollinators are displaced, plants evolve by increasing investment in traits that are attractive for honey bees but not wild pollinators. This evolutionary switch promotes wild pollinator displacement. However, higher mutualism investment costs by the plant to the honey bee can promote pollinator coexistence.
  5. Our results show plant evolution can promote displacement of wild pollinators by managed honey bees, while limited plant evolution may lead to pollinator coexistence. More broadly, effects of honey bees on wild pollinators in agroecosystems, and effects on ecosystem services, may depend on the capacity of plant populations to evolve.
  相似文献   

6.
7.
8.
  • 1 Declining numbers in honeybees and various wild bee species pose a threat to global pollination services. The identification and quantification of the pollination service provided by different taxa within the pollinator guild is a prerequisite for the successful establishment of nature conservation and crop management regimes.
  • 2 Wild bees and hoverflies are considered to be valuable pollinators in agricultural and natural systems. Although some information on pollination efficiency of individual pollinator species is available, comparative studies of both taxa at different densities are rare. In the present study, the efficiency of the solitary mason bee Osmia rufa and two hoverfly species (Eristalis tenax and Episyrphus balteatus) as pollinators of oilseed rape Brassica napus was examined in a standardized caged plant breeding regime. Honeybee Apis mellifera colonies were used as a reference pollinator taxon.
  • 3 Yield parameters responded differently to pollinator density and identity. Fruit set and number of seeds per pod increased with increasing pollinator density, although these were stronger in the mason bee than the hoverfly treatment. Weight per 1000 seeds did not respond to any pollinator treatment, indicating that seed quality was not affected. Oilseed rape yield in the highest tested densities of both pollinator taxa resulted in yield values close to the efficiency of small honeybee colonies.
  • 4 Hoverflies required approximately five‐fold densities of the red mason bees to reach a similar fruit set and yield. Thus, mason bees are more efficient in plant breeding and managed pollination systems. Both natural pollinator taxa, however, are of potential value in open and closed crop production systems.
  相似文献   

9.
  1. Wild bees provide invaluable ecosystem services in agricultural landscapes such as pollination. However, in recent decades, pollinator biodiversity, especially in wild bees, is declining on a global scale, with potentially far‐reaching consequences for crop production. Thus, there is an urgent need to determine whether wild bees are present in agricultural systems, such as fruit orchards.
  2. In the present study, we examined the wild bee fauna at species and community levels during the period of bee activity (May to August) in apple and high‐bush blueberry orchards in New England.
  3. Bee communities are crop‐specific and dominated by very few species, which fluctuate according to crop and season. The blueberry associated bee fauna was more diverse. In apple, communities were phylogenetically clustered at the genus level and dominated by solitary ground nesting bees within the genus Andrena. Species fluctuated widely in presence and abundance throughout the season, leading to differences in community composition and functional trait structure.
  4. The results obtained in the present study show that apple and blueberry harbour a distinct and diverse bee fauna that performs vital pollination services in orchards. Our results provide essential baseline data for wild bees in blueberry and apple orchards and this can be used to improve management and conservation strategies for wild bee preservation in these crops.
  相似文献   

10.
  1. Mid-field woodlots play an important role in maintaining biodiversity in agricultural landscapes. However, it is not clear whether non-linear or linear woodlots are most beneficial for wild bee conservation.
  2. We assessed the attractiveness of two common types of woodlots in an agricultural landscape in northern Poland (non-linear and linear: 7 and 9 sites, respectively) in terms of wild bee abundance, species richness, and functional diversity.
  3. Linear habitats had higher abundance of wild bees. However, woodlot type did not affect wild bee species composition or functional trait composition. Species composition responded significantly to measures of syntaxonomic heterogeneity and landscape heterogeneity. Woodlot area, landscape context (isolation and landscape heterogeneity), and syntaxonomic heterogeneity explained most of the differences among habitats (non-linear vs. linear) in wild bee abundance and species richness, regardless of the habitat type. The higher attractiveness of linear woodlots was due to increased food availability in the herbaceous layer in the spring–summer (June) and summer (July–August) periods.
  4. Linear woodlots have the potential to be used as tools for integrating agricultural production with biodiversity conservation and ecosystem services.
  相似文献   

11.
  1. The expansion of intensive agriculture has severely altered landscapes, a process that has been aggravated by the increase of greenhouse agriculture. However, few studies have considered the combined effects of habitat loss/degradation and greenhouse farming on insect visitors to native plants.
  2. We analysed how habitat loss/degradation and greenhouse farming are related to the composition, abundance, and richness of the insect assemblages visiting flowers in a semiarid keystone shrub (Ziziphus lotus) in southeast Spain, home to Europe's largest area of greenhouses. We studied 21 populations distributed across a gradient of greenhouse intensification and habitat loss.
  3. The composition, abundance, and richness of the Ziziphus insect assemblage substantially varied between populations and were differently affected by natural habitat-remnant and landscape degradation and population isolation.
  4. Insect abundance was negatively affected by habitat loss at population level but positively affected at individual Ziziphus scale. Honey-bee relative abundance increased in highly degraded landscapes and isolated populations, being positively associated with hoverflies and negatively with ants and bee-flies. Wild bees, carrion flies, and wasps remain neutral along the degradation axes. Insect visitor abundance per plant affected positively the flower visitation rate, which was also favoured by the relative abundance of honey bees, wild bees, and hoverflies. Species richness was not influenced by anthropogenic degradation, and did not affect flower visitation rate.
  5. Our results highlight the fragility of wild pollinator communities to landscape and habitat degradation, and the need to regulate intensive farming practices to preserve wild insect pollinator assemblages in semiarid habitats.
  相似文献   

12.
  1. Bees are prolific, vital pollinators in agricultural and natural settings, but some taxa are declining. Surveying bees is crucial to understand the needs of these taxa; however, we lack a fine-grained understanding of assemblages associated with different sampling methods that would enable us to analyse data range-wide.
  2. Here we examine the difference in abundance and richness of bees (bee bowls and vane traps only) and bumble bees (genus Bombus; bee bowls, blue vane traps and target netting) sampled with these methods from mixed-grass prairie to alpine habitats in Wyoming, USA.
  3. We collected four times more bees and twice as many genera of bees in vane traps than bee bowls. Vane traps captured more individuals of abundant genera than bee bowls.
  4. Bombus species abundance did not vary between vane traps and target netting; however, richness was higher in vane traps. Bee bowls captured few Bombus species.
  5. Overall, we recommend using vane traps to sample most bees, and a combination of vane traps and target netting to collect bumble bees. We evaluated how three sampling techniques perform when surveying for wild bees, which will aid in identifying declining species as well as monitoring species of conservation concern.
  相似文献   

13.
  1. Increasing landscape heterogeneity, both in terms of composition and configuration, can promote natural enemies and biological control in agricultural landscapes. However, relatively poor information exists about the effects of landscape heterogeneity on lacewings, which are a major group of predators. Furthermore, temporal changes of landscape effects on natural enemy dynamics remain largely unexplored.
  2. Here, we investigated how landscape composition and configuration affect lacewings and their biological control potential on leafhoppers. Lacewings and leafhoppers were sampled from April to July in 10 vineyards located in southwestern France. The vineyards were selected along a gradient of a proportion of semi‐natural habitats in the landscape.
  3. The proportion of semi‐natural habitats positively affected the abundance of adults and eggs, as well as species richness, of lacewings, alone or in interaction with the sampling month. Landscape configuration was never found to enhance abundance or species richness of lacewings. Finally, the predator–prey ratio increased through time but did not respond to landscape composition or configuration.
  4. Our study highlights that the proportion of semi‐natural habitats increases both abundance and diversity of lacewings in vineyard landscapes but that this effect varies over time. This result indicates the need to assess the variability of landscape effects over time to maximize biological pest control services in agricultural landscapes.
  相似文献   

14.
  • 1 Pollination is a key ecosystem service. Although bees are the most important pollinators, they are endangered by intensive agricultural practices. The present study investigated the effects of farmland management and environmental factors at local and landscape scales on bees in Central Hungary.
  • 2 Bees were sampled in winter cereal fields that varied in the amount of applied fertilizer and insecticide use. Measurements included total, small and large bee species richness and abundance; stability of total species richness and abundance (coefficient of variation, CV); the nitrogen content of fertilizers; the number of insecticide applications; within‐field location; species richness and abundance of insect‐pollinated plants; and the percentage of semi‐natural areas in a 500‐m radius circle around the fields under study.
  • 3 Increasing the amount of fertilizer decreased total and small bee abundance and increased the CV of total bee abundance. Insecticide use had a significant negative effect on total and small bee species richness and on large bee abundance. The percentage of semi‐natural habitats in a 500‐m radius did not influence bee species richness and abundance.
  • 4 The results obtained confirms that the intensification of farmland management poses a threat to bee diversity, and thus may reduce pollination services. Recently‐introduced agri‐environment schemes are one potential approach for managing agricultural land use: reduced amounts of fertilizer and a cessation of insecticide application might lead to high bee species richness and abundance and ensure the pollination of wild plants and flowering crops.
  相似文献   

15.
  1. Neonicotinoid-coated corn and soybean seeds are a common crop in Canada and the US. A growing body of research is demonstrating that, through various exposure routes, neonicotinoids can impact a suite of nontarget organisms including beneficial insects such as bees. However, to date, only a few studies have examined the effects of neonicotinoids in field settings.
  2. We assessed the relationship between agricultural crop soil neonicotinoid levels and wild bee abundance and diversity at 16 agricultural sites representing different soil neonicotinoid levels. We detected clothianidin at 11 sites, thiamethoxam at three sites; imidacloprid was not detected.
  3. Hedgerow and crop soils were consistent in terms of where clothianidin was detected; thiamethoxan was not detected in hedgerow soils. Based on model outcomes, fields with higher levels of soil neonicotinoids exhibited significantly lower wild bee abundance and diversity than those with low or no neonicotinoids detected.
  4. Crop soil neonicotinoid level, hedgerow floral resource abundance and crop type were consistent predictors of bee abundance across models; only neonicotinoid level and crop type were significant predictors of diversity.
  5. Our results are consistent with recent findings in the midwestern US, and underscore the potential risk of soil neonicotinoids to wild bee populations across regions and crop systems.
  相似文献   

16.
  • Orchids are a classic angiosperm model for understanding biotic pollination. We studied orchid species within two species‐rich herbaceous communities that are known to have either hymenopteran or dipteran insects as the dominant pollinators, in order to understand how flower colour relates to pollinator visual systems.
  • We analysed features of the floral reflectance spectra that are significant to pollinator visual systems and used models of dipteran and hymenopteran colour vision to characterise the chromatic signals used by fly‐pollinated and bee‐pollinated orchid species.
  • In contrast to bee‐pollinated flowers, fly‐pollinated flowers had distinctive points of rapid reflectance change at long wavelengths and a complete absence of such spectral features at short wavelengths. Fly‐pollinated flowers also had significantly more restricted loci than bee‐pollinated flowers in colour space models of fly and bee vision alike.
  • Globally, bee‐pollinated flowers are known to have distinctive, consistent colour signals. Our findings of different signals for fly pollination is consistent with pollinator‐mediated selection on orchid species that results from the distinctive features of fly visual systems.
  相似文献   

17.
  1. Crop pollination generally increases with pollinator diversity and wild pollinator visitation. To optimize crop pollination, it is necessary to investigate the pollination contribution of different pollinator species. In the present study, we examined this contribution of honey bees and non‐Apis bees (bumble bees, mason bees and other solitary bees) in sweet cherry.
  2. We assessed the pollination efficiency (fruit set of flowers receiving only one visit) and foraging behaviour (flower visitation rate, probability of tree change, probability of row change and contact with the stigma) of honey bees and different types of non‐Apis bees.
  3. Single visit pollination efficiency on sweet cherry was higher for both mason bees and solitary bees compared with bumble bees and honey bees. The different measures of foraging behaviour were variable among non‐Apis bees and honey bees. Adding to their high single visit efficiency, mason bees also visited significantly more flower per minute, and they had a high probability of tree change and a high probability to contact the stigma.
  4. The results of the present study highlight the higher pollination performance of solitary bees and especially mason bees compared with bumble bees and honey bees. Management to support species with high pollination efficiency and effective foraging behaviour will promote crop pollination.
  相似文献   

18.
  1. Species exhibit a range of specialisation in diet and other niche axes, with specialists typically thought to be more efficient in resource use but more vulnerable to extinction than generalists. Among herbivorous insects, dietary specialists seem more likely to lack acceptable host plants during the insect's feeding stage, owing to fluctuations in host-plant abundance or phenology. Like other herbivores, bee species vary in host breadth from pollen specialisation (oligolecty) to generalisation (polylecty).
  2. Several studies have shown greater interannual variation in flowering phenology for earlier-flowering plants than later-flowering plants, suggesting that early-season bees may experience substantial year-to-year variation in the floral taxa available to them.
  3. It was therefore reasoned that, among bees, early phenology could be a more viable strategy for generalists, which can use resources from multiple floral taxa, than for specialists. Consequently, it was expected that the median dates of collection of adult specimens to be earlier for generalist species than for specialists. To test this, phenology data and pollen diet information on 67 North American species of the bee genus Osmia was obtained.
  4. Controlling for latitude and phylogeny, it was found that dietary generalisation is associated with significantly earlier phenology, with generalists active, on average, 11–14 days earlier than specialists.
  5. This result is consistent with the generalist strategy being more viable than the specialist strategy for species active in early spring, suggesting that dietary specialisation may constrain the evolution of bee phenology—or vice versa.
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号