首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of membrane potential, acetylcholine, carbachol and atropine on the myometrium plasmatic membrane Ca2+/H+ exchange was estimated. The change of artificially directed membrane potential from -40 to +20 mV was defined to provide for increasing the input of Ca2+ into vesicules and output of H+ from them in their concentration gradients. The similar changes of cations in membranes were registered under acetylcholine (10(-8)-10(-4) M) and carbachol (0.1 mM) action. Atropine displayed itself as decreasing the cholinomimetics effect to the tested ions transport. The exogenous 0.5 mM Ca2+ free of directed membrane potential as well stimulated the output of protons from vesicles. The supposition was made regarding H output strengthening and pH possible local increase of cytoplasm under the smooth cells activation by the membrane potential and acetylcholine.  相似文献   

2.
Summary We have examined the effect of second messengers on ATP-driven H+ transport in an H+ ATPase-bearing endosomal fraction isolated from rabbit renal cortex. cAMP (0.1mm) had no effect on H+ transport. Acridine orange fluorescence in the presence of 0.5mm Ca2+ (+1mm EGTA) was 19±6% of control. Inhibition of ATP-driven H+ transport by Ca2+ was concentration dependent; 0.25 and 0.5mm Ca2+ (+1mm EGTA) inhibited acridine orange fluorescence by 50 and 80%, respectively. Ca2+ also produced a concentration-dependent increase in the rate of pH-gradient dissipation. Ca2+ did not affect ATP hydrolysis. ATP-dependent Br uptake was virtually unchanged in the presence of 0.5mm Ca2+ (+1mm EGTA). These vesicles were also shown to transport Ca2+ in an ATP-dependent mode. Inositol 1, 4, 5-trisphosphate had no effect on ATP-dependent Ca2+ uptake. These results are consistent with the co-existence of an H+ ATPase and an H+/Ca2+ exchanger on these endosomes, the latter transport system using the H+ gradient to energize Ca2+ uptake. Attempts to demonstrate an H+/Ca2+ antiporter in the absence of ATP have been unsuccessful. Yet, when a pH gradient was established by preincubation with ATP and residual ATP was subsequently removed by hexokinase + glucose, stimulation of Ca2+ uptake could be demonstrated. A Ca2+-dependent increase in H+ permeability and an ATP-dependent Ca2+ uptake might have important implications for the regulation of vacuolar H+ ATPase activity as well as the homeostasis of cytosolic Ca2+ concentration.  相似文献   

3.
The Ca2+ transport ATPase (SERCA) of sarcoplasmic reticulum (SR) plays an important role in muscle cytosolic signaling, as it stores Ca2+ in intracellular membrane bound compartments, thereby lowering cytosolic Ca2+ to induce relaxation. The stored Ca2+ is in turn released upon membrane excitation to trigger muscle contraction. SERCA is activated by high affinity binding of cytosolic Ca2+, whereupon ATP is utilized by formation of a phosphoenzyme intermediate, which undergoes protein conformational transitions yielding reduced affinity and vectorial translocation of bound Ca2+. We review here biochemical and biophysical evidence demonstrating that release of bound Ca2+ into the lumen of SR requires Ca2+/H+ exchange at the low affinity Ca2+ sites. Rise of lumenal Ca2+ above its dissociation constant from low affinity sites, or reduction of the H+ concentration by high pH, prevent Ca2+/H+ exchange. Under these conditions Ca2+ release into the lumen of SR is bypassed, and hydrolytic cleavage of phosphoenzyme may yield uncoupled ATPase cycles. We clarify how such Ca2+pump slippage does not occur within the time length of muscle twitches, but under special conditions and in special cells may contribute to thermogenesis.  相似文献   

4.
Native or recombinant SERCA (sarco(endo)plasmic reticulum Ca(2+) ATPase) was adsorbed on a solid supported membrane and then activated with Ca(2+) and ATP concentration jumps through rapid solution exchange. The resulting electrogenic events were recorded as electrical currents flowing along the external circuit. Current transients were observed following Ca(2+) jumps in the absence of ATP and following ATP jumps in the presence of Ca(2+). The related charge movements are attributed to Ca(2+) reaching its binding sites in the ground state of the enzyme (E(1)) and to its vectorial release from the enzyme phosphorylated by ATP (E(2)P). The Ca(2+) concentration and pH dependence as well as the time frames of the observed current transients are consistent with equilibrium and pre-steady state biochemical measurements of sequential steps within a single enzymatic cycle. Numerical integration of the current transients recorded at various pH values reveal partial charge compensation by H(+) in exchange for Ca(2+) at acidic (but not at alkaline) pH. Most interestingly, charge movements induced by Ca(2+) and ATP vary over different pH ranges, as the protonation probability of residues involved in Ca(2+)/H(+) exchange is lower in the E(1) than in the E(2)P state. Our single cycle measurements demonstrate that this difference contributes directly to the reduction of Ca(2+) affinity produced by ATP utilization and results in the countertransport of two Ca(2+) and two H(+) within each ATPase cycle at pH 7.0. The effects of site-directed mutations indicate that Glu-771 and Asp-800, within the Ca(2+) binding domain, are involved in the observed Ca(2+)/H(+) exchange.  相似文献   

5.
The human cell line U937 differentiates to monocyte macrophage-like cells in response to tumour-promoting phorbol esters. This effect is attributed to activation of protein kinase C. We show here that U937 cell differentiation induced by 12-O-tetradecanoylphorbol 13-acetate (TPA) is associated with cytoplasmic alkalinization. Ethyl-isopropyl-amiloride (EIPA), a potent inhibitor of Na+/H+ exchange, blocked both cytoplasmic alkalinization and cell differentiation. Cell acidification by addition of 2-4 mM sodium propionate also blocked TPA-induced U937 cell differentiation. These results suggest that a sustained cell alkalinization mediated by activation of Na+/H+ exchange is essential for TPA-induced differentiation in U937 cells. The increase of cytoplasmic free calcium concentration ([Ca2+]i) by addition of the calcium ionophore ionomycin enhanced TPA-induced alkalinization by increasing the apparent affinity of the Na+/H+ antiporter for intracellular H+. Treatment with ionomycin also potentiated differentiation of U937 cells induced by TPA. This synergism suggests that [Ca2+]i either potentiates the activation of protein kinase C or triggers additional transducing mechanisms. The key events of this interaction occur during the first 30 min of treatment, even though cell differentiation manifests much later.  相似文献   

6.
Control of cytoplasmic pH (pHi) by a Na+/H+ antiport appears a general property of most eukaryotic cells. In human platelets activation of the Na+/H+ exchanger enhances Ca2+ mobilization and aggregation induced by low concentrations of thrombin (Siffert, W., and Akkerman, J. W. N. (1987) Nature 325, 456-458). Several observations indicate that the exchanger is regulated by protein kinase C. (i) Inhibitors of protein kinase C (trifluoperazine, sphingosine) inhibit the increase in pHi seen during thrombin stimulation as well as Ca2+ mobilization; artificially increasing pHi by monensin or NH4Cl then restores Ca2+ mobilization. (ii) Direct activation of protein kinase C by 1-oleoyl-2-acetylglycerol initiates an increase in pHi that depends on the presence of extracellular Na+ and is sensitive to inhibition by ethylisopropylamiloride. The pHi sensitivity of thrombin-induced Ca2+ mobilization is particularly evident in the range between pH 6.8 and 7.4 and at low thrombin concentrations, whereas thrombin concentrations of more than 0.2 unit/ml bypass the pH sensitivity. In the absence of thrombin an increase in pHi, either induced artificially (by addition of the ionophores nigericin or monensin) or via activation of protein kinase C (by addition of 1-oleoyl-2-acetylglycerol), does not induce Ca2+ mobilization. We conclude that activation of protein kinase C is essential for Ca2+ mobilization in platelets stimulated by low concentrations of thrombin and that protein kinase C exerts this effect via activation of the Na+/H+ exchanger.  相似文献   

7.
8.
Over the last years, there is accumulating evidence that acidic organelles can accumulate and release Ca2+ upon cell activation. Hence, reliable recording of Ca2+ dynamics in these compartments is essential for understanding the physiopathological aspects of acidic organelles. Genetically encoded Ca2+ indicators (GECIs) are valuable tools to monitor Ca2+ in specific locations, although their use in acidic compartments is challenging due to the pH sensitivity of most available fluorescent GECIs. By contrast, bioluminescent GECIs have a combination of features (marginal pH sensitivity, low background, no phototoxicity, no photobleaching, high dynamic range and tunable affinity) that render them advantageous to achieve an enhanced signal-to-noise ratio in acidic compartments. This article reviews the use of bioluminescent aequorin-based GECIs targeted to acidic compartments. A need for more measurements in highly acidic compartments is identified.  相似文献   

9.
A large number of plant Ca2+/H+ exchangers have been identified in endomembranes, but far fewer have been studied for Ca2+/H+ exchange in plasma membrane so far. To investigate the Ca2+/H+ exchange in plasma membrane here, inside-out plasma membrane vesicles were isolated from Arabidopsis thaliana leaves using aqueous two-phase partitioning method. Ca2+/H+ exchange in plasma membrane vesicles was measured by Ca2+-dependent dissipation of a pre-established pH gradient. The results showed that transport mediated by the Ca2+/H+ exchange was optimal at pH 7.0, and displayed transport specificity for Ca2+ with saturation kinetics at K m = 47 μM. Sulfate and vanadate inhibited pH gradient across vesicles and decreased the Ca2+-dependent transport of H+ out of vesicles significantly. When the electrical potential across plasma membrane was dissipated with valinomycin and potassium, the rate of Ca2+/H+ exchange increased comparing to control without valinomycin effect, suggesting that the Ca2+/H+ exchange generated a membrane potential (interior negative), i.e. that the stoichiometric ratio for the exchange is greater than 2H+:Ca2+. Eosin Y, a Ca2+-ATPase inhibitor, drastically inhibited Ca2+/H+ exchange in plasma membrane as it does for the purified Ca2+-ATPase in proteoliposomes, indicating that measured Ca2+/H+ exchange activity is mainly due to a plasma membrane Ca2+ pump. These suggest that calcium (Ca2+) is transported out of Arabidopsis cells mainly through a Ca2+-ATPase-mediated Ca2+/H+ exchange system that is driven by the proton-motive force from the plasma membrane H+-ATPase.  相似文献   

10.
Phospholemman (PLM), when phosphorylated at serine 68, relieves its inhibition on Na(+)-K(+)-ATPase but inhibits Na(+)/Ca(2+) exchanger 1 (NCX1) in cardiac myocytes. Under stress when catecholamine levels are high, enhanced Na(+)-K(+)-ATPase activity by phosphorylated PLM attenuates intracellular Na(+) concentration ([Na(+)](i)) overload. To evaluate the effects of PLM on NCX1 on in vivo cardiac contractility, we injected recombinant adeno-associated virus (serotype 9) expressing either the phosphomimetic PLM S68E mutant or green fluorescent protein (GFP) directly into left ventricles (LVs) of PLM-knockout (KO) mice. Five weeks after virus injection, ~40% of isolated LV myocytes exhibited GFP fluorescence. Expression of S68E mutant was confirmed with PLM antibody. There were no differences in protein levels of α(1)- and α(2)-subunits of Na(+)-K(+)-ATPase, NCX1, and sarco(endo)plasmic reticulum Ca(2+)-ATPase between KO-GFP and KO-S68E LV homogenates. Compared with KO-GFP myocytes, Na(+)/Ca(2+) exchange current was suppressed, but resting [Na(+)](i), Na(+)-K(+)-ATPase current, and action potential amplitudes were similar in KO-S68E myocytes. Resting membrane potential was slightly lower and action potential duration at 90% repolarization (APD(90)) was shortened in KO-S68E myocytes. Isoproterenol (Iso; 1 μM) increased APD(90) in both groups of myocytes. After Iso, [Na(+)](i) increased monotonically in paced (2 Hz) KO-GFP but reached a plateau in KO-S68E myocytes. Both systolic and diastolic [Ca(2+)](i) were higher in Iso-stimulated KO-S68E myocytes paced at 2 Hz. Echocardiography demonstrated similar resting heart rate, ejection fraction, and LV mass between KO-GFP and KO-S68E mice. In vivo closed-chest catheterization demonstrated enhanced contractility in KO-S68E compared with KO-GFP hearts stimulated with Iso. We conclude that under catecholamine stress when [Na(+)](i) is high, PLM minimizes [Na(+)](i) overload by relieving its inhibition of Na(+)-K(+)-ATPase and preserves inotropy by simultaneously inhibiting Na(+)/Ca(2+) exchanger.  相似文献   

11.
The PMC1 gene in Saccharomyces cerevisiae encodes a vacuolar Ca2+ ATPase required for growth in high-Ca2+ conditions. Previous work showed that Ca2+ tolerance can be restored to pmc1 mutants by inactivation of calcineurin, a Ca2+/calmodulin-dependent protein phosphatase sensitive to the immunosuppressive drug FK506. We now report that calcineurin decreases Ca2+ tolerance of pmc1 mutants by inhibiting the function of VCX1, which encodes a vacuolar H+/Ca2+ exchanger related to vertebrate Na+/Ca2+ exchangers. The contribution of VCX1 in Ca2+ tolerance is low in strains with a functional calcineurin and is high in strains which lack calcineurin activity. In contrast, the contribution of PMC1 to Ca2+ tolerance is augmented by calcineurin activation. Consistent with these positive and negative roles of calcineurin, expression of a vcx1::lacZ reporter was slightly diminished and a pmc1::lacZ reporter was induced up to 500-fold by processes dependent on calcineurin, calmodulin, and Ca2+. It is likely that calcineurin inhibits VCX1 function mainly by posttranslational mechanisms. Activities of VCX1 and PMC1 help to control cytosolic free Ca2+ concentrations because their function can decrease pmc1::lacZ induction by calcineurin. Additional studies with reporter genes and mutants indicate that PMR1 and PMR2A, encoding P-type ion pumps required for Mn2+ and Na+ tolerance, may also be induced physiologically in response to high-Mn2+ and -Na+ conditions through calcineurin-dependent mechanisms. In these situations, inhibition of VCX1 function may be important for the production of Ca2+ signals. We propose that elevated cytosolic free Ca2+ concentrations, calmodulin, and calcineurin regulate at least four ion transporters in S. cerevisiae in response to several environmental conditions.  相似文献   

12.
Coated microvesicles isolated from bovine neurohypophyses could be loaded with Ca2+ in two different ways, either by incubation in the presence of ATP or by imposition of an outwardly directed Na+ gradient. Na+, but not K+, was able to release Ca2+ accumulated by the coated microvesicles. These results suggest the existence of an ATP-dependent Ca2+-transport system as well as of a Na+/Ca2+ carrier in the membrane of coated microvesicles similar to that present in the membranes of secretory vesicles from the neurohypophysis. A kinetic analysis of transport indicates that the apparent Km for free Ca2+ of the ATP-dependent uptake was 0.8 microM. The average Vmax. was 2 nmol of Ca2+/5 min per mg of protein. The total capacity of microvesicles for Ca2+ uptake was 3.7 nmol/mg of protein. Both nifedipine (10 microM) and NH4Cl (50 mM) inhibited Ca2+ uptake. The ATPase activity in purified coated-microvesicles fractions from brain and neurohypophysis was characterized. Micromolar concentrations of Ca2+ in the presence of millimolar concentrations of Mg2+ did not change enzyme activity. Ionophores increasing the proton permeability across membranes activated the ATPase activity in preparations of coated microvesicles from brain as well as from the neurohypophysis. Thus the enzyme exhibits properties of a proton-transporting ATPase. This enzyme seems to be linked to the ion accumulation by coated microvesicles, although the precise coupling of the proton transport to Ca2+ and Na+ fluxes remains to be determined.  相似文献   

13.
14.
Platelet activation is accompanied by an increase of cytosolic free Ca2+ concentration, [Ca2+]i, (due to both extracellular Ca2+ influx and Ca2+ movements from the dense tubular system) and an Na+ influx associated with H+ extrusion. The latter event is attributable to the activation of Na+/H+ exchange, which requires Na+ in the extracellular medium and is inhibited by amiloride and its analogs. The present study was carried out to determine whether a link exists between Ca2+ transients (measured by the quin2 method and the 45CaCl2 technique) and Na+/H+ exchange activation (studied with the pH-sensitive intracellular probe, 6-carboxyfluorescein) during platelet stimulation. Washed human platelets, stimulated with thrombin and arachidonic acid, showed: (1) a large and rapid [Ca2+]i rise, mostly due to a Ca2+ influx through the plasma membrane; (2) a marked intracellular alkalinization. Both phenomena were markedly inhibited in the absence of extracellular Na+ or in the presence of an amiloride analog (EIPA). Monensin, a cation exchanger which elicits Na+ influx and alkalinization, and NH4Cl, which induces alkalinization only, were able to evoke an increase in [Ca2+]i, mostly as an influx from the extracellular medium. Our results suggest that Ca2+ influx induced by thrombin and arachidonic acid in human platelets is strictly dependent on Na+/H+-exchange activation.  相似文献   

15.
Data in the previous paper suggest that epinephrine can mobilize a small pool of arachidonic acid via an enzymatic pathway distinct from phospholipase C and that this pathway is blocked by perturbations that block Na+/H+ exchange. The present studies demonstrate that epinephrine and ADP stimulate a phosphatidylinositol-hydrolyzing phospholipase A2 activity in human platelets. This occurs even when measurable phospholipase C activation, platelet secretion, and secondary aggregation are blocked with the thromboxane A2 receptor antagonist SQ29548. Furthermore, perturbants of Na+/H+ exchange diminish lysophosphatidylinositol production in response to epinephrine, ADP, and thrombin, but not to the Ca2+ ionophore A23187. Artificial alkalinization of the platelet interior with methylamine reverses the effect of the Na+/H+ antiporter inhibitor, ethylisopropylamiloride, on thrombin-stimulated lysolipid production, suggesting that the alkalinization of the platelet interior which would occur secondary to activation of Na+/H+ exchange might play an important role in phospholipase A2 activation. In addition, treatment of platelets with methylamine increases the sensitivity of phospholipase A2 to activation by the Ca2+ ionophore A23187, suggesting that changes in pH and Ca2+ may regulate phospholipase A2 activity synergistically. Finally, epinephrine causes a prompt decrease in platelet-chlortetracyclin fluorescence even in the presence of cyclooxygenase inhibitors, suggesting that epinephrine is able to mobilize membrane-bound Ca2+ independent of phospholipase C activation. Taken together, the data suggest that epinephrine-provoked stimulation of phospholipase A2 activity may occur as a result of Ca2+ mobilization and a concomitant intraplatelet alkalinization resulting from accelerated Na+/H+ exchange.  相似文献   

16.
Simultaneous measurements of oxygen consumption and transmembrane transport of Ca2+, H+, and phosphate show that the efflux of Ca2+ from respiring tightly coupled rat liver mitochondria takes place by an electroneutral Ca2+/2H+ antiport process that is ruthenium red-insensitive and that is regulated by the oxidation-reduction state of the mitochondrial pyridine nucleotides. When mitochondrial pyridine nucleotides are kept in a reduced steady state, the efflux of Ca2+ is inhibited; when they are in an oxidized state, Ca2+ efflux is activated. These processes were demonstrated by allowing phosphate-depleted mitochondria respiring on succinate in the presence of rotenone to take up Ca2+ from the medium. Upon subsequent addition of ruthenium red to block Ca2+ transport via the electrophoretic influx pathway, and acetoacetate, to bring mitochondrial pyridine nucleotides into the oxidized state, Ca2+ efflux and H+ influx ensued. The observed H+ influx/Ca2+ efflux ratio was close to the value 2.0 predicted for the operation of an electrically neutral Ca2+/2H+ antiport process.  相似文献   

17.
Transfected Chinese hamster ovary cells stably expressing thebovine cardiacNa+/Ca2+exchanger (CK1.4 cells) were used to determine the range of cytosolic Ca2+ concentrations([Ca2+]i)that activateNa+/Ca2+exchange activity. Ba2+ influx wasmeasured in fura 2-loaded, ionomycin-treated cells under conditions inwhich the intracellular Na+concentration was clamped with gramicidin at ~20 mM.[Ca2+]iwas varied by preincubating ionomycin-treated cells with either theacetoxymethyl ester of EGTA or medium containing 0-1 mM added CaCl2. The rate ofBa2+ influx increased in asaturable manner with[Ca2+]i,with the half-maximal activation value of 44 nM and a Hill coefficientof 1.6. When identical experiments were carried out with cellsexpressing a Ca2+-insensitivemutant of the exchanger, Ba2+influx did not vary with[Ca2+]i.The concentration for activation of exchange activity was similar tothat reported for whole cardiac myocytes but approximately an order ofmagnitude lower than that reported for excised, giant patches. Thereason for the difference in Ca2+regulation between whole cells and membrane patches is unknown.

  相似文献   

18.
Ethanol, at low concentrations, specifically stimulates the Na(+)-dependent Ca2(+)-efflux in brain mitochondria. In addition, at higher concentrations, ethanol inhibits the Na(+)-independent Ca2(+)-efflux. The electrogenic Ca(+)-uptake system is not affected by ethanol. The specific stimulation of Na+/Ca2+ exchange reaches a maximum of 60% stimulation, with half-maximal stimulation at 130 mM ethanol. The inhibition of the Na(+)-independent efflux is proportional to the ethanol concentration, becoming significant only above 200 mM, with 50% inhibition at 0.5 M. The inhibition of the Na(+)-independent efflux is, in large part, due to an inhibition of the activation of the Cyclosporin-sensitive pore. Long-term ethanol-feeding had no effect on the Ca2+ transport systems and their sensitivity to acute ethanol treatment. It is suggested that the stimulation of the Na(+)-dependent Ca2(+)-efflux, which is the dominant Ca2+ efflux pathway in brain mitochondria, contributes to the intoxicating effects of ethanol.  相似文献   

19.
The endoplasmic reticulum (ER) and acidic organelles (endo-lysosomes) act as separate Ca2+ stores that release Ca2+ in response to the second messengers IP3 and cADPR (ER) or NAADP (acidic organelles). Typically, trigger Ca2+ released from acidic organelles by NAADP subsequently recruits IP3 or ryanodine receptors on the ER, an anterograde signal important for amplification and Ca2+ oscillations/waves. We therefore investigated whether the ER can signal back to acidic organelles, using organelle pH as a reporter of NAADP action. We show that Ca2+ released from the ER can activate the NAADP pathway in two ways: first, by stimulating Ca2+-dependent NAADP synthesis; second, by activating NAADP-regulated channels. Moreover, the differential effects of EGTA and BAPTA (slow and fast Ca2+ chelators, respectively) suggest that the acidic organelles are preferentially activated by local microdomains of high Ca2+ at junctions between the ER and acidic organelles. Bidirectional organelle communication may have wider implications for endo-lysosomal function as well as the generation of Ca2+ oscillations and waves.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号