首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small RNAs regulate gene expression and most genes in the worm Caenorhabditis elegans are subject to their regulation. Here, we analyze small RNA data sets and use reproducible features of RNAs present in multiple data sets to discover a new class of small RNAs and to reveal insights into two known classes of small RNAs—22G RNAs and 26G RNAs. We found that reproducibly detected 22-nt RNAs, although are predominantly RNAs with a G at the 5′ end, also include RNAs with A, C, or U at the 5′ end. These RNAs are synthesized downstream from characteristic sequence motifs on mRNA and have U-tailed derivatives. Analysis of 26G RNAs revealed that they are processed from a blunt end of double-stranded RNAs and that production of one 26G RNA generates a hotspot immediately downstream for production of another. To our surprise, analysis of RNAs shorter than 18 nt revealed a new class of RNAs, which we call NU RNAs (pronounced “new RNAs”) because they have a NU bias at the 5′ end, where N is any nucleotide. NU RNAs are antisense to genes and originate downstream from U bases on mRNA. Although many genes have complementary NU RNAs, their genome-wide distribution is distinct from that of previously known classes of small RNAs. Our results suggest that current approaches underestimate reproducibly detected RNAs that are shorter than 18 nt, and theoretical considerations suggest that such shorter RNAs could be used for sequence-specific gene regulation in organisms like C. elegans that have small genomes.  相似文献   

2.
Increasing evidence suggests that long non-coding RNAs(lnc RNAs) play significant roles in plants.However,little is known about lnc RNAs in Panax ginseng C.A.Meyer,an economically significant medicinal plant species.A total of3,688 m RNA-like non-coding RNAs(mlnc RNAs),a class of lnc RNAs,were identified in P.ginseng.Approximately 40% of the identified mlnc RNAs were processed into small RNAs,implying their regulatory roles via small RNA-mediated mechanisms.Eleven mi RNA-generating mlnc RNAs also produced si RNAs,suggesting the coordinated production of mi RNAs and si RNAs in P.ginseng.The mlnc RNA-derived small RNAs might be 21-,22-,or 24-nt phased and could be generated from both or only one strand of mlnc RNAs,or from super long hairpin structures.A full-length mlnc RNA,termed MAR(multiple-function-associated mlnc RNA),was cloned.It generated the most abundant si RNAs.The MAR si RNAs were Researchpredominantly 24-nt and some of them were distributed in a phased pattern.A total of 228 targets were predicted for 71 MAR si RNAs.Degradome sequencing validated 68 predicted targets involved in diverse metabolic pathways,suggesting the significance of MAR in P.ginseng.Consistently,MAR was detected in all tissues analyzed and responded to methyl jasmonate(Me JA) treatment.It sheds light on the function of mlncRNAs in plants.  相似文献   

3.
Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants   总被引:2,自引:0,他引:2  
Small, non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved through a series of pathways. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs have a similar structure, function, and biogenesis as miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences. Besides their roles in growth and development and maintenance of genome integrity, small RNAs are also important components in plant stress responses. One way in which plants respond to environmental stress is by modifying their gene expression through the activity of small RNAs. Thus, understanding how small RNAs regulate gene expression will enable researchers to explore the role of small RNAs in biotic and abiotic stress responses. This review focuses on the regulatory roles of plant small RNAs in the adaptive response to stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.  相似文献   

4.
Bifunctional RNAs that possess both protein-coding and noncoding functional properties were less explored and poorly understood. Here we systematically explored the characteristics and functions of such human bifunctional RNAs by integrating tandem mass spectrometry and RNA-seq data. We first constructed a pipeline to identify and annotate bifunctional RNAs, leading to the characterization of 132 high-confidence bifunctional RNAs. Our analyses indicate that bifunctional RNAs may be involved in human embryonic development and can be functional in diverse tissues. Moreover, bifunctional RNAs could interact with multiple miRNAs and RNA-binding proteins to exert their corresponding roles. Bifunctional RNAs may also function as competing endogenous RNAs to regulate the expression of many genes by competing for common targeting miRNAs. Finally, somatic mutations of diverse carcinomas may generate harmful effect on corresponding bifunctional RNAs. Collectively, our study not only provides the pipeline for identifying and annotating bifunctional RNAs but also reveals their important gene-regulatory functions.  相似文献   

5.
S Brown 《Journal of bacteriology》1991,173(5):1835-1837
4.5S RNAs of eubacteria and 7S RNAs of archaebacteria and eukaryotes exist in a hairpin conformation. The apex of this hairpin displays structural and sequence similarities among both 4.5S and 7S RNAs. Furthermore, a hyphenated sequence of 16 nucleotides is conserved in all eubacterial 4.5S RNAs examined. In this article I report that 7S RNAs that contain this 16-nucleotide sequence are able to replace 4.5S RNAs and permit growth of Escherichia coli.  相似文献   

6.
7.
Non-coding RNAs are involved in a multitude of cellular processes but the biochemical function of many small non-coding RNAs remains unclear. The family of small non-coding Y RNAs is conserved in vertebrates and related RNAs are present in some prokaryotic species. Y RNAs are also homologous to the newly identified family of non-coding stem-bulge RNAs (sbRNAs) in nematodes, for which potential physiological functions are only now emerging. Y RNAs are essential for the initiation of chromosomal DNA replication in vertebrates and, when bound to the Ro60 protein, they are involved in RNA stability and cellular responses to stress in several eukaryotic and prokaryotic species. Additionally, short fragments of Y RNAs have recently been identified as abundant components in the blood and tissues of humans and other mammals, with potential diagnostic value. While the number of functional roles of Y RNAs is growing, it is becoming increasingly clear that the conserved structural domains of Y RNAs are essential for distinct cellular functions. Here, we review the biochemical functions associated with these structural RNA domains, as well as the functional conservation of Y RNAs in different species. The existing biochemical and structural evidence supports a domain model for these small non-coding RNAs that has direct implications for the modular evolution of functional non-coding RNAs.  相似文献   

8.
Small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are important regulators of plant development and gene expression. The acquisition of high-quality small RNAs is the first step in the study of its expression and function analysis, yet the extraction method of small RNAs in recalcitrant plant tissues with various secondary metabolites is not well established, especially for tropical and subtropical plant species rich in polysaccharides and polyphenols. Here, we developed a simple and efficient method for high quality small RNAs extraction from recalcitrant plant species. Prior to RNA isolation, a precursory step with a CTAB-PVPP buffer system could efficiently remove compounds and secondary metabolites interfering with RNAs from homogenized lysates. Then, total RNAs were extracted by Trizol reagents followed by a differential precipitation of high-molecular-weight (HMW) RNAs using polyethylene glycol (PEG) 8000. Finally, small RNAs could be easily recovered from supernatant by ethanol precipitation without extra elimination steps. The isolated small RNAs from papaya showed high quality through a clear background on gel and a distinct northern blotting signal with miR159a probe, compared with other published protocols. Additionally, the small RNAs extracted from papaya were successfully used for validation of both predicted miRNAs and the putative conserved tasiARFs. Furthermore, the extraction method described here was also tested with several other subtropical and tropical plant tissues. The purity of the isolated small RNAs was sufficient for such applications as end-point stem-loop RT-PCR and northern blotting analysis, respectively. The simple and feasible extraction method reported here is expected to have excellent potential for isolation of small RNAs from recalcitrant plant tissues rich in polyphenols and polysaccharides.  相似文献   

9.
In plants, each pollen mother cell undergoes two rounds of cell divisions to form a mature pollen grain, which contains a vegetative cell(VC) and two sperm cells(SC). As a companion cell, the VC carries the SCs to an ovule by germinating a pollen tube. In-depth sequencing analyses of mature pollen showed that micro RNAs(mi RNAs) and short interfering RNAs(si RNAs) are present in both the VC and SCs. Additionally, epigenetically-regulated transposable elements(TEs) are reactivated in the VC and these TE m RNAs are further processed into 21-nt epigenetically reactivated si RNA(easiR NA) in SCs, which prevent 24-nt si RNA accumulation and sequester mi RNA loading. Small RNAs are thought to move from the VC to SCs, where they regulate gene expression and reinforce TE silencing. Here, we summarize current knowledge of the biogenesis and function of mi RNAs, si RNAs, and easi RNAs in pollen, emphasizing how these different small RNAs coordinately contribute to sperm cell formation and TE silencing.  相似文献   

10.
真菌小RNA的发生及其作用机制   总被引:1,自引:0,他引:1  
小RNA是真核生物体内一种含量丰富的内源性非编码RNA,通过与其靶m RNA完全或非完全互补结合调控真核生物的基因表达。本文全面综述了真菌中已发现的小RNA种类、小RNA发生相关蛋白因子以及小RNA的具体作用机制,为进一步研究小RNA对真菌生长发育的调控机制提供重要参考。  相似文献   

11.
Transcriptome-wide discovery of circular RNAs in Archaea   总被引:3,自引:0,他引:3  
  相似文献   

12.
13.
Uninfected mouse kidney cells and mouse leukemia cells L1210 in cluture contained a series of 4.5S RNAs which was structurally identical to the series of 4.5S RNAs associated with genomic RNAs of murine retroviruses and poly(A)-containing RNAs from virus infected cells. Normal rat kidney cells and baby hamster kidney cells in culture also contained a series of 4.5S RNAs. The strucutre of the 4.5S RNAs from mouse, rat and hamster cells were very similar, but not identical. These 4.5S RNAs were not found in cultured cells of other vertebrates, such as human, monkey, cat, mink, rabbit and chicken cells.  相似文献   

14.
15.
Small RNAs in sea urchins were examined in order to characterize developmental changes in their level, subcellular localization, synthesis, and association with proteins and other RNAs. Small RNAs such as the U snRNAs, 5S and 5.8S rRNAs, and 7S RNAs were identified by their mobility on highly cross-linked acrylamide gels. In addition, 7SL and U1 RNAs were identified by northern blot hybridization to cloned human and sea urchin probes, respectively. The level, subcellular localization, and association with proteins or RNA do not change for most small RNAs from fertilization to blastula, even though this is the time when the stored maternal pool of many small RNAs is being supplemented and replaced by embryonically synthesized RNAs. New embryonic synthesis of small RNAs was first detected at the 8-12 hr blastula stage. Although the predicted subsets of the total small RNA pool can be found in the appropriate subcellular compartments, newly synthesized small RNAs have a predominantly cytoplasmic localization: All of the newly synthesized small RNAs were found to be constituents of small RNPs. The RNPs containing newly synthesized small RNAs had sedimentation rates indistinguishable from their maternal counterparts. Thus, on the basis of sedimentation rate, no gross differences could be detected between maternal and embryonic small RNP pools. These small RNPs include a cytoplasmic RNP containing newly synthesized U1 snRNA and the sea urchin signal recognition particle (SRP) containing the 7SL, RNA. We have also identified a small RNP bearing the 5S rRNA which is present in both eggs and embryos. The presence of multiple, abundant, small RNAs and RNPs that are maintained at constant levels in particular subcellular fractions throughout development suggests that small RNAs may be involved in many more cellular activities than have so far been described.  相似文献   

16.
Generalized structures of the 5S ribosomal RNAs.   总被引:15,自引:14,他引:1       下载免费PDF全文
The sequences of 5S ribosomal RNAs from a wide-range of organisms have been compared. All sequences fit a generalized 5S RNA secondary structural model. Twenty-three nucleotide positions are found universally, i.e., in 5S RNAs of eukaryotes, prokaryotes, archaebacteria, chloroplasts and mitochondria. One major distinguishing feature between the prokaryotic and eukaryotic 5S RNAs is the number of nucleotide positions between certain universal positions, e.g., prokaryotic 5S RNAs have three positions between the universal positions PuU40 and G44 (using the E. coli numbering system) and eukaryotic 5S RNAs have two. The archaebacterial 5S RNAs appear to resemble the eukaryotic 5S RNAs to varying degrees depending on the species of archaebacteria although all the RNAs conform with the prokaryotic "rule" of chain length between PuU40 and G44. The green plant chloroplast and wheat mitochondrial 5S RNAs appear prokaryotic-like when comparing the number of positions between universal nucleotides. Nucleotide positions common to eukaryotic 5S RNAs have been mapped; in addition, nucleotide sequences, helix lengths and looped-out residues specific to phyla are proposed. Several of the common nucleotides found in the 5S RNAs of metazoan somatic tissue differ in the 5S RNAs of oocytes. These changes may indicate an important functional role of the 5S RNA during oocyte maturation.  相似文献   

17.
The nucleotide sequences of 4.5S RNAs associated with poly-(A)-containing RNAs of mouse and hamster cells were determined. These RNAs have 91 to 94 nucleotides, a high content of G (almost 40%) and no modified nucleoside. The 5'-termini are pppG, but the 3'-termini lack uniformity in the number of uridylate residues. These molecules contain two sets of repeating sequences, and a central purine-rich sequence. There is only one base exchange between mouse and hamster 4.5S RNAs. Possible binding sites of these RNAs to poly(A)-containing RNAs are discussed.  相似文献   

18.
19.
20.
Evidence is accumulating that small, noncoding RNAs are important regulatory molecules. Computational and experimental searches have led to the identification of ~60 small RNA genes in Escherichia coli. However, most of these studies focused on the intergenic regions and assumed that small RNAs were >50 nt. Thus, the previous screens missed small RNAs encoded on the antisense strand of protein-coding genes and small RNAs of <50 nt. To identify additional small RNAs, we carried out a cloning-based screen focused on RNAs of 30–65 nt. In this screen, we identified RNA species corresponding to fragments of rRNAs, tRNAs and known small RNAs. Several of the small RNAs also corresponded to 5′- and 3′-untranslated regions (UTRs) and internal fragments of mRNAs. Four of the 3′-UTR-derived RNAs were highly abundant and two showed expression patterns that differed from the corresponding mRNAs, suggesting independent functions for the 3′-UTR-derived small RNAs. We also detected three previously unidentified RNAs encoded in intergenic regions and RNAs from the long direct repeat and hok/sok elements. In addition, we identified a few small RNAs that are expressed opposite protein-coding genes and could base pair with 5′ or 3′ ends of the mRNAs with perfect complementarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号