首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HIV-1/AIDS remains one of the worst pandemics in human history. Despite tremendous efforts, no effective vaccine has been found. Recent reports give new insights into the structure and dynamics of the HIV-1 Env trimer and renew hopes that a better understanding of Env will translate into new vaccine candidates and more-effective antiretroviral therapies.  相似文献   

2.
3.
4.
Most secretion pathways in bacteria and eukaryotic cells are challenged by the requirement for their substrate proteins to mature after they traverse a membrane barrier and enter a reactive oxidizing environment. For Gram-positive bacteria, the mechanisms that protect their exported proteins from misoxidation during their post-translocation maturation are poorly understood. To address this, we separated numerous bacterial species according to their tolerance for oxygen and divided their proteomes based on the predicted subcellular localization of their proteins. We then applied a previously established computational approach that utilizes cysteine incorporation patterns in proteins as an indicator of enzymatic systems that may exist in each species. The Sec-dependent exported proteins from aerobic Gram-positive Actinobacteria were found to encode cysteines in an even-biased pattern indicative of a functional disulfide bond formation system. In contrast, aerobic Gram-positive Firmicutes favor the exclusion of cysteines from both their cytoplasmic proteins and their substantially longer exported proteins. Supporting these findings, we show that Firmicutes, but not Actinobacteria, tolerate growth in reductant. We further demonstrate that the actinobacterium Corynebacterium glutamicum possesses disulfide-bonded proteins and two dimeric Dsb-like enzymes that can efficiently catalyze the formation of disulfide bonds. Our results suggest that cysteine exclusion is an important adaptive strategy against the challenges presented by oxidative environments.  相似文献   

5.
YVH1 was one of the first eukaryotic dual specificity phosphatases cloned, and orthologues posses a unique C-terminal zinc-coordinating domain in addition to a cysteine-based phosphatase domain. Our recent results revealed that human YVH1 (hYVH1) protects cells from oxidative stress. This function requires phosphatase activity and the zinc binding domain. This current study provides evidence that the thiol-rich zinc-coordinating domain may act as a redox sensor to impede the active site cysteine from inactivating oxidation. Furthermore, using differential thiol labeling and mass spectrometry, it was determined that hYVH1 forms intramolecular disulfide bonds at the catalytic cleft as well as within the zinc binding domain to avoid irreversible inactivation during severe oxidative stress. Importantly, zinc ejection is readily reversible and required for hYVH1 activity upon returning to favorable conditions. This inimitable mechanism provides a means for hYVH1 to remain functionally responsive for protecting cells during oxidative stimuli.Human YVH1 (hYVH12; also known as DUSP12) is a member of the dual specificity phosphatase (DUSP) subfamily of protein-tyrosine phosphatases (PTPs) (1, 2). It is constructed of an N-terminal DUSP catalytic domain and a unique C-terminal zinc coordinating domain (3). Poor characterization and lack of mitogen-activated protein kinase targeting motifs further classify this enzyme as an atypical DUSP (1). YVH1 orthologues exhibit high evolutionary conservation and similar domain organization (3). Deletion of the yvh1 gene in yeast disrupts normal growth processes (4), whereas insertion and expression of the hyvh1 gene is capable of restoring a normal yeast growth phenotype (3). Amplification of the dusp12/hyvh1 gene has been reported in multiple sarcomas, implicating a role for hYVH1 in human disease (57).Recently, deletion studies from our laboratory have shown that the C-terminal zinc binding domain of hYVH1 is not essential for intrinsic phosphatase activity in vitro; however, it is required for interaction with the ATPase domain of heat shock protein 70 (8). Similarly, overexpression of wild type hYVH1 but not catalytically dead or zinc coordinating domain deletion mutants prevents cell death induced by Fas receptor activation, heat shock, and hydrogen peroxide (H2O2) (8). Despite these findings, current information on hYVH1 enzymatic and physiological functions remains limited.PTPs and DUSPs share similar active site architecture and catalytic mechanism, characterized by the conserved HCX5R(S/T) motif (9, 10). The unique microenvironment within the HCX5R(S/T) motif reduces the pKa value of the active site cysteine, enhancing both nucleophilicity and oxidation susceptibility (11, 12). Stimulated or constituent generation of ROS can result in oxidative second messenger signaling responses capable of transient and reversible post-translational inactivation of both PTPs and DUSPs through oxidation of the catalytic cysteine (1315).This oxidative susceptibility and modification varies among PTPs and DUSPs, a likely consequence of slight variations in active site conformations or mediated through unique regulatory domains (1618). Accumulating evidence suggests that redox-mediated oxidation of PTPs is a dynamic modification that can differentially regulate PTPs (13, 19). Sulfenic acid, cyclic sulfenamide, and disulfide bond formation have all been shown to facilitate stable, reversible active site modifications among various PTPs and DUSPs (12, 14, 20). Furthermore, evidence suggests that oxidation predominantly and rapidly targets the active site cysteine, whereas other cysteinyl residues remain in the reduced state (15, 20).This study investigated the relationship between the zinc-coordinating C-terminal domain and the catalytic domain of hYVH1 during oxidative conditions. We provide data suggesting that the zinc binding domain can serve as a reducing agent during oxidative stress to impede the oxidation of the active site cysteine. Increased exposure to oxidative conditions readily induces disulfide bond formation within the zinc-coordinating and catalytic domains, resulting in concomitant zinc ejection and enzymatic inactivation. Zinc ejection is readily reversible and required for hYVH1 activity upon returning to reducing conditions. Thus, we propose a mechanism for phosphatase active site protection through the intrinsic redox buffering capacity of this unique zinc binding domain.  相似文献   

6.
7.
It is well established that glycosylation is essential for assembly of enveloped viruses, but no information is yet available as to the function of carbohydrates on the nonenveloped but glycosylated rotavirus. We show that tunicamycin and, more pronouncedly, a combination of tunicamycin and brefeldin A treatment caused misfolding of the luminal VP7 protein, leading to interdisulfide bond aggregation. While formation of VP7 aggregates could be prevented under reducing conditions, they reoccurred in less than 30 min after a shift to an oxidizing milieu. Furthermore, while glycosylated VP7 interacted during maturation with protein disulfide isomerase, nonglycosylated VP7 did not, suggesting that glycosylation is a prerequisite for protein disulfide isomerase interaction. While native NSP4, which does not possess S-S bonds, was not dependent on N-linked glycosylation or on protein disulfide isomerase assistance for maturation, nonglycosylated NSP4 was surprisingly found to interact with protein disulfide isomerase, further suggesting that protein disulfide isomerase can act both as an enzyme and as a chaperone. In conclusion, our data suggest that the major function of carbohydrates on VP7 is to facilitate correct disulfide bond formation and protein folding.  相似文献   

8.
中国株HIV-1外膜蛋白真核表达载体的构建与表达   总被引:4,自引:1,他引:4  
获得性免疫缺陷综合征(Acquired immunode- ficiency syndrome,AIDS)是由人类免疫缺陷病毒(Human immunodeficiency virus,HIV)引起的世界广泛流行、严重危害人类健康的疾病.  相似文献   

9.
To construct the eukaryotic expression vector of HIV-1 gp120 gene and observe its expression in vitro, the recombinant expression vector pVAX1GP120 was constructed by inserting the gp120 gene into the eukaryotic expression vector pVAX1. The pVAX1GP120 was transfected into Vero cells by lipofectamine and the expressed product was detected by indirect immunofluore- scence.Restriction enzymes digestion analysis and sequencing results revealed that the recombinant expression vector pVAX1GP120 has been constructed successfully. The indirect immunofluorescence result showed green fluorescence on the membrane of transfected cells. The constructed eukaryotic expression vector of HIV-1 gp120 can be expressed in vitro, which lay the foundation for the further study of HIV-1 DNA vaccine.  相似文献   

10.
Human antibody 10E8 targets the conserved membrane proximal external region (MPER) of envelope glycoprotein (Env) subunit gp41 and neutralizes HIV-1 with exceptional potency. Remarkably, HIV-1 containing mutations that reportedly knockout 10E8 binding to linear MPER peptides are partially neutralized by 10E8, producing a local plateau in the dose response curve. Here, we found that virus partially neutralized by 10E8 becomes significantly less neutralization sensitive to various MPER antibodies and to soluble CD4 while becoming significantly more sensitive to antibodies and fusion inhibitors against the heptad repeats of gp41. Thus, 10E8 modulates sensitivity of Env to ligands both pre- and post-receptor engagement without complete neutralization. Partial neutralization by 10E8 was influenced at least in part by perturbing Env glycosylation. With unliganded Env, 10E8 bound with lower apparent affinity and lower subunit occupancy to MPER mutant compared to wild type trimers. However, 10E8 decreased functional stability of wild type Env while it had an opposite, stabilizing effect on MPER mutant Envs. Clade C isolates with natural MPER polymorphisms also showed partial neutralization by 10E8 with altered sensitivity to various gp41-targeted ligands. Our findings suggest a novel mechanism of virus neutralization by demonstrating how antibody binding to the base of a trimeric spike cross talks with adjacent subunits to modulate Env structure and function. The ability of an antibody to stabilize, destabilize, partially neutralize as well as alter neutralization sensitivity of a virion spike pre- and post-receptor engagement may have implications for immunotherapy and vaccine design.  相似文献   

11.
Entry of HIV-1 into target cells requires binding of the viral envelope glycoprotein (Env) to cellular receptors and subsequent conformational changes that culminates in fusion of viral and target cell membranes. Recent structural information has revealed that these conformational transitions are regulated by three conserved but potentially flexible layers stacked between the receptor-binding domain (gp120) and the fusion arm (gp41) of Env. We hypothesized that artificial insertion of a covalent bond will ‘snap’ Env into a conformation that is less mobile and stably expose conserved sites. Therefore, we analyzed the interface between these gp120 layers (layers 1, 2 and 3) and identified residues that may form disulfide bonds when substituted with cysteines. We subsequently probed the structures of the resultant mutant gp120 proteins by assaying their binding to a variety of ligands using Surface Plasmon Resonance (SPR) assay. We found that a single disulfide bond strategically inserted between the highly conserved layers 1 and 2 (C65-C115) is able to ‘lock’ gp120 in a CD4 receptor bound conformation (in the absence of CD4), as indicated by the lower dissociation constant (Kd) for the CD4-induced (CD4i) epitope binding 17b antibody. When disulfide-stabilized monomeric (gp120) and trimeric (gp140) Envs were used to immunize rabbits, they were found to elicit a higher proportion of antibodies directed against both CD4i and CD4 binding site epitopes than the wild-type proteins. These results demonstrate that structure-guided stabilization of inter-layer interactions within HIV-1 Env can be used to expose conserved epitopes and potentially overcome the sequence diversity of these molecules.  相似文献   

12.
13.
P-glycoprotein (P-gp) is an ATP-binding cassette drug pump that protects us from toxic compounds and confers multidrug resistance. The protein is organized into two halves. The halves contain a transmembrane domain (TMD) with six transmembrane segments and a nucleotide-binding domain (NBD). The drug- and ATP-binding sites reside at the TMD1/TMD2 and NBD1/NBD2 interfaces, respectively. ATP-dependent drug efflux involves changes between the open inward-facing (NBDs apart, extracellular loops (ECLs) close together) and the closed outward-facing (NBDs close together, ECLs apart) conformations. It is controversial, however, whether the open conformation only exists transiently in intact cells because of the presence of high levels of ATP. To test for the presence of an open conformation in intact cells, reporter cysteines were placed in extracellular loops 1 (A80C, N half) and 4 (R741C, C half). The rationale was that cysteines A80C/R741C would only come close enough to form a disulfide bond in an open conformation (6.9 Å apart) because they are separated widely (30.4 Å apart) in the closed conformation. It was observed that the mutant A80C/R741C cross-linked spontaneously (>90%) when expressed in cells. In contrast to previous reports showing that trapping P-gp in a closed conformation highly activated ATPase activity, here we show that A80C/R741C cross-linking inhibited ATPase activity and drug efflux. Both activities were restored when the cross-linked mutant was treated with a thiol-reducing agent. The results show that an open conformation can be readily detected in cells and that cross-linking of cysteines placed in ECLs 1 and 4 inhibits activity.  相似文献   

14.
15.
16.
17.
Type I ribonucleotide reductases (RNRs) are conserved across diverse taxa and are essential for the conversion of RNA into DNA precursors. In Neurospora crassa, the large subunit of RNR (UN-24) is unusual in that it also has a nonself recognition function, whereby coexpression of Oak Ridge (OR) and Panama (PA) alleles of un-24 in the same cell leads to growth inhibition and cell death. We show that coexpressing these incompatible alleles of un-24 in N. crassa results in a high molecular weight UN-24 protein complex. A 63-amino-acid portion of the C terminus was sufficient for un-24PA incompatibility activity. Redox active cysteines that are conserved in type I RNRs and essential for their catalytic function were found to be required for incompatibility activity of both UN-24OR and UN-24PA. Our results suggest a plausible model of un-24 incompatibility activity in which the formation of a complex between the incompatible RNR proteins is potentiated by intermolecular disulfide bond formation.  相似文献   

18.
19.
Broadly neutralizing antibodies (bNAbs) isolated from chronically HIV-1 infected individuals reveal important information regarding how antibodies target conserved determinants of the envelope glycoprotein (Env) spike such as the primary receptor CD4 binding site (CD4bs). Many CD4bs-directed bNAbs use the same heavy (H) chain variable (V) gene segment, VH1-2*02, suggesting that activation of B cells expressing this allele is linked to the generation of this type of Ab. Here, we identify the rhesus macaque VH1.23 gene segment to be the closest macaque orthologue to the human VH1-2 gene segment, with 92% homology to VH1-2*02. Of the three amino acids in the VH1-2*02 gene segment that define a motif for VRC01-like antibodies (W50, N58, flanking the HCDR2 region, and R71), the two identified macaque VH1.23 alleles described here encode two. We demonstrate that immunization with soluble Env trimers induced CD4bs-specific VH1.23-using Abs with restricted neutralization breadth. Through alanine scanning and structural studies of one such monoclonal Ab (MAb), GE356, we demonstrate that all three HCDRs are involved in neutralization. This contrasts to the highly potent CD4bs-directed VRC01 class of bNAb, which bind Env predominantly through the HCDR2. Also unlike VRC01, GE356 was minimally modified by somatic hypermutation, its light (L) chain CDRs were of average lengths and it displayed a binding footprint proximal to the trimer axis. These results illustrate that the Env trimer immunogen used here activates B cells encoding a VH1-2 gene segment orthologue, but that the resulting Abs interact distinctly differently with the HIV-1 Env spike compared to VRC01.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号