首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Potato is the fourth most widely consumed staple food in the world. This study investigated the effectiveness of 0.2% wood distillate (WD), a biostimulant derived from the pyrolysis of waste plant biomass, in boosting the nutritional quality of potato tubers. The results showed that application of WD significantly increased the content of soluble sugars (sucrose +56.3%; glucose +44.9%; fructose +62.2%), starch (+35.1%) and total carbohydrates (+16.8%). Antioxidants (total antioxidant power, polyphenols, flavonoids) and most mineral elements (K, Mg, Ca, Na, Fe, Zn) were not affected. A lower content of Cu (−17.8%) and P (−24.5%) was found in WD-treated potato.  相似文献   

2.
First, we report the results of the longest‐known field study (9 years) to examine the effects of elevated carbon dioxide (CO2) on leaf miner densities in a scrub‐oak community at Kennedy Space Center, Florida. Here, the densities of all leaf miner species (6) on all host species (3) were lower in every year in elevated CO2 than they were in ambient CO2. Second, meta‐analyses were used to review the effects of elevated CO2 on both plants (n=59 studies) and herbivores (n=75 studies). The log of the response ratio was chosen as the metric to calculate effect sizes. Results showed that elevated CO2 significantly decreased herbivore abundance (−21.6%), increased relative consumption rates (+16.5%), development time (+3.87%) and total consumption (+9.2%), and significantly decreased relative growth rate (−8.3%), conversion efficiency (−19.9%) and pupal weight (−5.03%). No significant differences were observed among herbivore guilds. Host plants growing under enriched CO2 environments exhibited significantly larger biomass (+38.4%), increased C/N ratio (+26.57%), and decreased nitrogen concentration (−16.4%), as well as increased concentrations of tannins (+29.9%) and other phenolics. Effects of changes on plant primary and secondary chemistry due to elevated CO2 and consequences for herbivore growth and development are discussed.  相似文献   

3.
Salt stress has multiple damaging effects on plants including physiological damage, reduced growth, and productivity. Plant growth-promoting rhizobacteria (PGPR) are one of the valuable options to mitigate the negative effects of this stress. In the present study, native bacteria from chickpea’s rhizosphere were isolated, and checked for their salt tolerance and plant growth-promoting attributes (phosphate (P) solubilization, siderophores, indole-3-acetic acid (IAA) production, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase production). One isolate, subsequently identified as Pantoea dispersa, showed appreciable production of IAA (218.3 µg/ml) and siderophores (60.33% SU), P-solubilization (3.64 µg/ml) and ACC deaminase activity (207.45 nmol/mg/h) in the presence of 150 mM NaCl, under laboratory conditions. Salt stress in uninoculated chickpea (GPF2 cultivar) plants induced high accumulation of Na+ ions (3.86 mg g?1 dw) in the leaves, along with significant reduction in K+ uptake, membrane integrity, chlorophyll concentration, and leaf water content, thus resulting in impaired growth of the plant and yield (pods and seeds) in a salt concentration-dependent manner. The damage due to salt stress was restored significantly in plants inoculated with P. dispersa. A significant improvement in biomass (32–34%), pods number (31–34.5%), seeds number (32–35.7%), pods weight (30–32.6%), and seeds weight (27–35%) per plant occurred in salt stress-affected plants, which was associated with significant reduction in Na+ uptake, reduced membrane damage, significantly improved leaf water content, chlorophyll content, and K+ uptake. This study suggests for the first time that native P. dispersa strain PSB3 can be used to alleviate the negative effects of salt stress on chickpea plants and holds the potential to be used as a biofertilizer.  相似文献   

4.
We studied the alterations in phenolic compounds in grape seeds during their stratification and germination under optimal conditions (+25 °C) and at low temperature (+10 °C). Biological materials in the study were seeds of Vitis riparia. Phenolic compounds were extracted from defatted seeds using 80 % methanol or 80 % acetone. The content of total phenolics was determined with the Folin-Ciocalteau reagent, while the content of tannins was determined by vanillin assay and the protein (BSA) precipitation method. The RP-HPLC method was used to determine phenolic compounds (phenolic acids, catechins) in the extracts. High amounts of tannins, catechins, gallic acid and lesser amounts of p-coumaric acid were found in the seeds. The content of total phenolics in acetone extracts was higher than that obtained using methanol. The amounts of phenolic acids and tannins found in V. riparia seeds after stratification were much lower. It may confirm a possible role of these compounds in dormancy of V. riparia seeds. After 72 h of low temperature treatment, inhibition of grape root growth and biochemical changes in seeds were detected. The chilling stimulated increased accumulation of some phenolic compounds (free gallic acid and catechins) in the seeds. These substances can protect plants against some abiotic stressors.  相似文献   

5.
Two plant growth-promoting rhizobacteria (PGPR), viz., Pseudomonas fluorescens strain Pf4 and P. aeruginosa strain Pag, protected chickpea (Cicer arietinum) plants from Sclerotium rolfsii infection when applied singly or in combination as seed treatment. Pag gave the best protection to the seedlings, applied either singly (mortality 16%) or in combination with Pf4 (mortality 17%) compared with 44% and 24% mortality in control and Pf4 treatment, respectively. The two PGPR strains induced the synthesis of specific phenolic acids, salicylic acid (SA), as well as total phenolics at different growth stages of chickpea seedlings with varied amount. The maximum amount of total phenolics was recorded in all the aerial parts of 4-week-old plants. Gallic, ferulic, chlorogenic, and cinnamic acids were the major phenolic acids detected in high-performance liquid chromatography (HPLC) analysis. Induction of such phenolic acids in the seedlings was observed up to 6 weeks in comparison with control. Salicylic acid (SA) was induced frequently during the first 3 weeks of growth only. Between the two strains, Pag was more effective in inducing phenolic acid synthesis applied either singly or in combination with strain Pf4 during the entire 6 weeks of growth of chickpea. In the presence of a culture filtrate of S. rolfsii, the two Pseudomonas strains induced more phenolic acids in treated than in non-treated and control plants. The occurrence of salicylic acid was frequent in the first 24 h, but infrequent at 48 and 96 h. Foliar spray of Pseudomonas strains also enhanced the phenolic acid content as well as total phenolics within 24 h of application. Gallic, chlorogenic, and cinnamic acids were consistently discerned in the treated leaves, whereas SA was absent even up to 96 h of application. Resistance in chickpea plants by Pseudomonas strains through induction of phenolic compounds as well as induced systemic resistance via SA-dependent pathway was evident. Received: 1 April 2002 / Accepted: 4 May 2002  相似文献   

6.
Drought stress and associated low soil moisture can decrease N status of forage plants by reducing nitrogen (N) uptake. Conversely, rainfall and associated favorable soil moisture can improve plant N status. Yet, it is unclear to which degree drought combined with rewetting can buffer negative effects of drought on N status of forage plants and their populations. Here, we compared shoot N status (N concentration, total N uptake and C/N ratio) of four temperate grass species. Particularly, we investigated ecotypes (populations) grown from seeds from four to six European provenances/species after a drought treatment combined with rewetting (10 day harvest delay) versus continuously watered conditions for control.The experimental combination of drought and rewetting significantly increased shoot N concentration (+96%), N uptake (+31%); and decreased C/N ratio (−46%), biomass production (−29%) and C concentration (−1.4%) compared to control. Shoot N status was found to be different between target grass species and also within their populations under drought combined with rewetting treatment. Presumably drought-adapted populations did not perform better than populations from moist sites indicating no evidence of local adaptation.The drought combined with rewetting event could buffer the negative effects of drought. Shoot N status of grasses after drought and rewetting even exceeded control plants. This surprising finding can potentially be explained by higher N uptake, lack of growth dilution effects or delayed plant maturation. Furthermore, within-species shoot N status responses to drought combined with rewetting event were ecotype-specific, hinting at diverse responses of different population. For rangeland management, we recommend that if a drought event occurs during the growing season, harvesting should be delayed beyond a following rain event.  相似文献   

7.
In recent years, due to the rise in food consumption, much of the attention has been focused to increase the yield of the agricultural crops which resulted in compromised nutritional quality. Efforts have to be undertaken to enhance the nutritional attributes of legumes, cereals and staple food crops by increasing amino acids and mineral content. In the present study, we evaluated a protoplast fusant (H. lixii MTCC 5659) for its ability to enhance nutritional value and defence activity in chickpea. Essential amino acids; methionine (9.82 mg kg?1 dw), cysteine (2.61 mg kg?1 dw), glycine (11.34 mg kg?1 dw), valine (9.26 mg kg?1 dw), and non-essential amino acids; aspartic acid (39.19 mg kg?1 dw) and serine (17.53 mg kg?1 dw) were significantly higher in seeds of fusant inoculated chickpea. Fusant significantly improved accumulation of mineral nutrients i.e. Cu (157.73 mg kg?1 dw), Co (0.06 mg kg?1 dw), Ni (1.85 mg kg?1 dw), Zn (157.73 mg kg?1 dw) and S (16.29 mg kg?1 dw) in seeds. Biocontrol and defence activities of chickpea increased from 20 to 35% in fusant inoculated plants suggesting its potential to ameliorate biotic stress. To the best of our knowledge, this is the first report of an increase in amino acids and mineral content of chickpea by fusant inoculation.  相似文献   

8.
The seeds of chickpea provide an exceptional source of dietary proteins and is one of the important legumes in both developed and developing countries over the world. The available germplasm of cultivated chickpea is deficient in desired biochemical signatures. To identify new sources of variations for breeding, reduced subsets of germplasm such as mini-core collection can be explored as an effective resource. In the present investigation, mini-core collections consisting of 215 accessions of chickpea were extensively evaluated for tapping biochemical diversity. Analysis included ten biochemical parameters comprising total protein, total free amino acids, phytic acid, tannin, total phenolics, total flavonoids, lectin, DPPH radical scavenging activity, in vitro digestibility of protein and starch. The spectrum of diversity was documented for total protein (4.60–33.90%), total free amino acids (0.092–9.33 mg/g), phytic acid (0.009–4.06 mg/g), tannin (0.232–189.63 mg/g), total phenolics (0.15–0.81 mg/g), total flavonoids (0.04–1.57 mg/g), lectin (0.07–330.32 HU/mg), DPPH radical scavenging activity (26.74–49.11%), in vitro protein digestibility (59.45–76.22%) and in vitro starch digestibility (45.63–298.39 mg of maltose/g). The principal component analysis revealed association of chickpea higher protein content to the lower level of total phenolics and flavonoid contents. The dendrogram obtained by unweighted pair group method using arithmetic average cluster analysis grouped the chickpea accessions into two major clusters. This is the first comprehensive report on biochemical diversity analysed in the mini-core chickpea accessions. The ultimate purpose of conducting such studies was to deliver information on nutritional characteristics for effective breeding programmes. Depending on the objectives of the breeding aforesaid accessions could be employed as a parent.  相似文献   

9.
Summary This field study was undertaken to determine the effect of inoculation withGlomus mosseae on N2 fixation and P uptake by soybean. The inoculation withGlomus mosseae was achieved using a new type of inoculant, alginate-entrapped (AE) endomycorrhizal fungus. N2 fixation was assessed using the A value method. In P-fertilized plots, inoculation with AEGlomus mosseae increased the harvest index based on dry weight (+20%) and N content of seeds (+17%), the A value (+31%) and %N derived from fixation (+75%). Inoculation with AEGlomus mosseae decreased the coefficient of variation for the A value and for the dry weights of the different plant parts.  相似文献   

10.
In order to investigate the effects of Glomus species on some physiological characteristics of two chickpea types (Pirouz cultivar of Desi type and ILC-482 of Kabuli type) under non-stress (NS) and drought stress, an experiment was conducted using a factorial arrangement based on completely randomized design with three replications. Drought stress decreased shoot and total dry weight in plants. However inoculation of plants with mycorrhiza improved these traits. Leaf chlorophyll content was decreased, but leaf proline content and guaiacol peroxidases (EC 1.11.1.7) (POD), catalase (EC 1.11.1.6) (CAT), and ascorbate peroxidase (EC 1.11.1.11) (APX) activities were increased as a result of drought stress. Drought stress had no significant effect on soluble protein content and polyphenol oxidase (EC 1.10.3.1) (PPO) enzymatic activity in chickpea plants. In general, drought stress and especially severe drought stress increased membrane lipid peroxidation (MDA) in chickpea plants, which was more evident in non-inoculated than in inoculated plants. Inoculation of chickpea by AM significantly increased POD and PPO activities compared with non-inoculated chickpea, but had no effect on CAT activity and proline content of leaves. The reaction of chickpea cultivars to inoculation by AM species and irrigation levels were different. ILC-482 showed that antioxidant enzymes activities were more and thus less MDA compared with Pirouz cultivar. In general, the most POD and PPO activities were recorded for inoculated plants with G. etunicatum and G. versiform species, and the most APX activity was observed in plants inoculated with G. intraradices.  相似文献   

11.
Fischer RC  Richter A  Hadacek F  Mayer V 《Oecologia》2008,155(3):539-547
Ant-dispersed plants usually produce seeds with appendages (elaiosomes) as reward for ants. Plants that produce high-quality elaiosomes benefit because ants preferentially disperse their diaspores. We therefore hypothesized that seeds and elaiosomes differ in chemical composition in ways that make elaiosomes of high nutritional quality for ants, capable of providing essential dietary components that explain the increased fitness and higher gyne production documented for colonies with elaiosome consumption. To test the hypothesis we analysed the content and composition of lipids, amino acids, soluble carbohydrates, proteins and starch in seeds and elaiosomes of 15 central European ant-dispersed plants. After separating the different fractions, total lipids were determined gravimetrically, fatty acids and soluble carbohydrates were detected by gas chromatography (GC) and GC–mass spectrometry, free amino acids by an amino acid analyser while starch and protein were analysed photometrically. Seeds accumulated high molecular weight compounds such as proteins and starch, whereas elaiosomes accumulated more easily digestible low molecular weight compounds such as amino acids and monosaccharides. Analysis of similarities and similarity percentages analysis demonstrated that the composition of fatty acids, free amino acids and carbohydrates differed markedly between elaiosomes and seeds. The most important difference was in total amino acid content, which was on average 7.5 times higher in elaiosomes than in seeds. The difference was especially marked for the nitrogen-rich amino acid histidine. The availability of essential nutrients and, in some species, the higher nitrogen content in elaiosomes suggest that their nutritional value for larvae plays a key role in this interaction. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Soybean (Glycine max [L.] Merr. var. Glabrous D62-7812) plants were grown in aerated Hoagland and Arnon mineral nutrient solution containing 0 or 2.6 mum S-ethyl dipropylthiocarbamate (EPTC) in a growth chamber. After 19 days exposure to EPTC, total leaf fresh weight was reduced 18% by 2.6 mum EPTC while total leaf fatty acid content was reduced 63%. Galactolipid content decreased while phospholipid content increased. Linolenic acid content decreased from 67.5% of the leaf total fatty acid content to 31.5% with 2.6 mum EPTC treatment. Equivalent increases were observed in palmitic (+6.3%), stearic (+1.1%), oleic (14.4%), and linoleic (+13.9%) acids.  相似文献   

13.
Effects of exogenous folic acid (FA) on the productivity ofPisum sativum L. andHordeum vulgare L. have been studied. After flowering, the plants were treated with optimum concentration of FA (25 mg per 1 water). This treatment increased the weight of the seeds by 17–19% (samplings of 1000 pcs were compared), whereas the yield became 26–29% higher. Amino acid analysis revealed a notable increase in the content of folate-dependent amino acids (e.g., glutamate, glycin, and methionine). Analysis of total folate content demonstrated that tetrahydrofolic coenzymes were significantly increased in experimental seeds. Treatment of the plants with exogenous FA increased both the content of chlorophyll in the leaves and their continuance of function. The results obtained led to the conclusion that FA treatment increases the productivity of pea and barley, by affecting the yield, weight, and quality of the seed.  相似文献   

14.
Germinating seeds tend to release a variety of proteins into their surrounding surfaces; some of which have an inhibitory action against plant pathogens. The aim of this study was to investigate and identify defence proteins present in the exudates from water-imbibed and chitosan-imbibed (0.1% w/v) seeds of chickpea (Cicer arietinum L). Chickpea seeds imbibed in chitosan released a higher amount of proteins in the exudate when compared to the seeds imbibed in water. The obtained exudates were analysed in regard to specific protein activities by enzymatic assays and SDS-PAGE analysis. Results showed that the exude obtained from chickpea seeds imbibed in chitosan solution exhibited a new isoform of chitinase, chitosanase and protease inhibitors. These exudates also have an “in vitro” inhibitory effect on the growth of the fungus, Fusarium oxysporum f.sp. ciceri. Our results suggest that seed exudates protect seeds during their germination from soil pathogens.  相似文献   

15.
Summary A rice plant resistant to 5-methyltryptophan (5MT) was selected from mutagenized M3 seeds (Oryza sativa L. var. Sasanishiki) originating from panicles treated with ethylene imine (0.2%) 2 h after flowering. When germinated on 5MT-containing medium, the seeds (M4) from selfed plants segregated with a 3 resistant:1 sensitive ratio, indicating that the plant was heterozygous for a resistance gene and that the resistance was dominant. The resistance was also expressed in callus derived from seeds. Analysis of the free amino acids in seeds, seedlings, and calli showed that homozygous resistant plants (TR1) contained higher levels of total free amino acids than sensitive plants. In particular the levels of tryptophan, phenylalanine, and histidine were, respectively, 8.5, 5.4, and 4.9 times higher than those in the sensitive plants.  相似文献   

16.
The present attempt was made to study the role of exogenously applied salicylic acid (SA) and putrescine (Put) on the phytoremediation of heavy metals and on the growth parameters of chickpea grown in sandy soil. The SA and Put were applied alone as well as in combination with plant growth promoting rhizobacteria (PGPR). The PGPRs, isolated from the rhizosphere of chickpea, were characterized on the basis of colony morphology and biochemical traits through gram staining, catalase and oxidase tests, and identified by 16S-rRNA gene sequencing as Bacillus subtilis, Bacillus thuringiensis and Bacillus megaterium. The chickpea seeds were soaked in 24 h old fresh cultures of isolates for 2–3 h prior to sowing. The growth regulators (PGRs), SA and Put (150 mg/L), were applied to the seedlings as foliar spray at three-leaf stage. The result revealed that plants treated with SA and Put alone or in combination with PGPRs, significantly enhanced the accumulation of heavy metals in plant shoot. PGPR induces Ni accumulation in sensitive variety and Pb in both the varieties, the PGR in combination augment the bioremediation effects of PGPR and both sensitive and tolerant variety showed significant accumulation of Ni, Cd, and Pb. SA was more effective in accumulating Ni and Cd whereas, significant accumulation of Pb was recorded in Put. PGPRs further augmented the PGRs induced accumulation of heavy metals and macronutrients in chickpea shoot and in rhizosphere. SA increased the proline content of tolerant variety while decreasing the lipid peroxidation and proline content of the sensitive variety but decreased the stimulating effect of PGPR in proline production. Interactive effects of PGPR and PGRs are recommended for inducing phytoremediation in chickpea plants under drought stress.  相似文献   

17.
Under greenhouse conditions, a pot experiment was conducted to clarify the potential of using some legumes as intercropped plants for reducing the root-knot nematode Meloidogyne incognita infecting sugar beet (Beta vulgaris L.) cv. DS-9004 compared to non-legume plant, garlic and non-intercropped plants. The obtained results revealed that all legumes including chickpea, Egyptian clover, faba bean, fenugreek, lentil and lupin significantly (p ≤ 0.05) reduced nematode criteria on the roots of sugar beet at different degrees. Chickpea and Egyptian clover reduced the number of galls on the roots of sugar beet as the percentage of reductions were 54 and 50%, respectively, followed by lupin and fenugreek, while garlic achieved 72% reduction compared to non-intercropped plants. Lupin reduced the number of egg masses by 59% followed by Egyptian clover and fenugreek (32%), three months after the treatment. On the other hand, six months after the treatment, chickpea reduced the number of galls by 55.7% followed by lupin (53.4%) and Egyptian clover (52.3%) and the percentage of reduction of egg masses behaved the same trend. Also, the treatments improved plant growth criteria of sugar beet, weight of roots (tubers) and the percentage of total soluble solids (TSS).  相似文献   

18.
Two plant growth-promoting rhizobacteria (PGPR), viz., Pseudomonas fluorescens strain Pf4 and P. aeruginosa strain Pag, protected chickpea ( Cicer arietinum) plants from Sclerotium rolfsii infection when applied singly or in combination as seed treatment. Pag gave the best protection to the seedlings, applied either singly (mortality 16%) or in combination with Pf4 (mortality 17%) compared with 44% and 24% mortality in control and Pf4 treatment, respectively. The two PGPR strains induced the synthesis of specific phenolic acids, salicylic acid (SA), as well as total phenolics at different growth stages of chickpea seedlings with varied amount. The maximum amount of total phenolics was recorded in all the aerial parts of 4-week-old plants. Gallic, ferulic, chlorogenic, and cinnamic acids were the major phenolic acids detected in high-performance liquid chromatography (HPLC) analysis. Induction of such phenolic acids in the seedlings was observed up to 6 weeks in comparison with control. Salicylic acid (SA) was induced frequently during the first 3 weeks of growth only. Between the two strains, Pag was more effective in inducing phenolic acid synthesis applied either singly or in combination with strain Pf4 during the entire 6 weeks of growth of chickpea. In the presence of a culture filtrate of S. rolfsii, the two Pseudomonas strains induced more phenolic acids in treated than in non-treated and control plants. The occurrence of salicylic acid was frequent in the first 24 h, but infrequent at 48 and 96 h. Foliar spray of Pseudomonas strains also enhanced the phenolic acid content as well as total phenolics within 24 h of application. Gallic, chlorogenic, and cinnamic acids were consistently discerned in the treated leaves, whereas SA was absent even up to 96 h of application. Resistance in chickpea plants by Pseudomonas strains through induction of phenolic compounds as well as induced systemic resistance via SA-dependent pathway was evident.  相似文献   

19.
该研究以二倍体紫菜薹为材料,采用浓度为0.1%、0.2%和0.3%的秋水仙素溶液,在二倍体紫菜薹生长至子叶期时对植株茎尖生长点进行4次点滴处理,鉴定筛选同源四倍体紫菜薹并进行二倍体和四倍体紫菜薹的营养品质比较。结果表明:(1)使用浓度为0.2%秋水仙素溶液点滴4次对紫菜薹的处理效果最好,四倍体紫菜薹的诱导率为6.62%。(2)在形态学上,四倍体植株的叶片、花簇、花器官、角果和种子与二倍体相比都在巨大性上呈现出明显差异;在解剖学上,四倍体植株在气孔密度减小的同时气孔变大,其花粉表现出矩形、梯形以及其他一些不规则的形状;在细胞学上,四倍体和二倍体植株的染色体数目分别为40条和20条;流式细胞仪鉴定结果显示,四倍体植株的DNA分子荧光强度(2 092 385.03)约为二倍体植株(956 725.15)的2倍。(3)植株营养品质方面,四倍体紫菜薹的游离氨基酸、叶绿素总浓度分别比二倍体植株显著增加了228.58%、110.02%,但四倍体紫菜薹的硝态氮、可溶性蛋白、维生素C、可溶性糖、纤维素总含量分别比二倍体植株显著减少了48.99%、43.20%、45.81%、44.50%、59.97%。(4)与二倍体植株相比,四倍体紫菜薹的单株质量、十叶厚、叶宽、叶柄宽都有不同程度的增加,叶片开展度有一定程度的降低。研究发现,秋水仙素诱导产生四倍体紫菜薹的最适浓度为0.2%;四倍体紫菜薹表现出明显的高产性,但多数营养品质极显著低于二倍体紫菜薹。  相似文献   

20.
Orobanche foetida Poir. is a parasitic plant widely distributed in the Western Mediterranean area. It typically parasitizes wild plants but has recently been described as an agricultural problem in legume crops in Tunisia. The pattern of genetic variation within and among O. foetida populations growing on chickpea and faba bean was analyzed by RAPD markers. The UPGMA cluster analysis based on Dice distance matrix showed a clear differentiation among O. foetida samples collected on chickpea and those on faba bean, suggesting a host-differentiation process. Although an AMOVA analysis revealed substantial internal variation among individuals within O. foetida populations (69.8%), there was a significant divergence between parasites on the two hosts considered (30.2%). Moreover, germination of O. foetida seeds collected on chickpea and faba bean in the presence of both host roots was studied. Germination percentages of O. foetida seeds varied depending on the host used both for collecting the seeds and evaluating the trait. According to these results, possible explanations for the origin of this new weedy parasite and the host differentiation process are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号