首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The Tet-On advanced inducible gene expression system in vitro is known for genarating robust expression of the desired gene in target cells. The system offers many advantages over other inducible mammalian gene expression systems, such as high specificity, high inducibility, and high absolute expression levels. In this study, the Tet-On advanced inducible gene expression system was applied to induce the expression of the trophoblast cell-surface antigen 2 (Trop-2) gene in vitro and explore the biological functions of Trop-2. 293/pTet-On-Advanced cell lines were generated, and a recombinant vector containing the Trop-2 gene was constructed and transfected into stable cell lines to improve Trop-2 protein expression. In the presence of doxycycline (DOX), the proliferation assay, transwell assay, and wound healing assay were performed to analyze the efficacy of Trop-2. The results showed that the Tet-On advanced inducible gene expression system was established successfully in the cell line 293, Trop-2 protein level in cells was significantly increased, and Trop-2 could enhance growth, migration, and aggression in the cell line 293. This study suggests that the Tet-On advanced inducible gene expression system can induce the expression of interest genes specifically and artificially in vitro and provides a viable and convenient platform for the study of gene function.  相似文献   

2.
3.
We have investigated the ability of the integrase from the Streptomyces C31 ‘phage to either delete or invert 1 Mb of DNA around the centromere of the human Y chromosome in chicken DT40 hybrid somatic cells. Reciprocal and conservative site-specific recombination was observed in 54% of cells expressing the integrase. The sites failed to recombine in the remaining cells because the sites had been damaged. The sequences of the damaged sites indicated that the damage arose as a result of repair of recombination intermediates by host cell pathways. The liability of recombination intermediates to damage is consistent with what is known about the mechanism of serine recombinase reactions. The structures of the products of the chromosome rearrangements were consistent with the published sequence of the Y chromosome indicating that the assembly of the highly repeated region between the sites is accurate to a resolution of about 50 kb. Mini-chromosomes lacking a centromere were not recovered which also suggested that neo-centromere formation occurs infrequently in vertebrate somatic cells. No ectopic recombination was observed between a C31 integrase attB site and the chicken genome.  相似文献   

4.
Streptomyces phage phiC31 integrase was found to mediate site-specific integration of foreign genes at pseudo attP sites of genomes in human, mouse, rat, and Drosophila. This paper reports that phiC31 integrase can also mediate homologous recombination between attB and pseudo attP sites in bovine cells and foreign gene integration was increased at least 2-fold in bovine fibroblasts or Madin-Darby bovine kidney (MDBK) cells. Two intrinsic pseudo attP sites named BpsF1 and BpsM1 located in the inter-gene regions on chromosome 28 and 19, respectively, were identified in bovine genome. These pseudo attP sites shared similar characteristics with those from other species as previously described. Our study demonstrated that the phiC31 integrase system provides a new potential for genetic engineering of the bovine genome and might be beneficial for the research on ruminant.  相似文献   

5.
Currently two site-specific recombinases are available for engineering the mouse genome: Cre from P1 phage and Flp from yeast. Both enzymes catalyze recombination between two 34-base pair recognition sites, lox and FRT, respectively, resulting in excision, inversion, or translocation of DNA sequences depending upon the location and the orientation of the recognition sites. Furthermore, strategies have been designed to achieve site-specific insertion or cassette exchange. The problem with both recombinase systems is that when they insert a circular DNA into the genome (trans event), two cis-positioned recognition sites are created, which are immediate substrates for excision. To stabilize the trans event, functional mutant recognition sites had to be identified. None of the systems, however, allowed efficient selection-free identification of insertion or cassette exchange. Recently, an integrase from Streptomyces phage phiC31 has been shown to function in Schizosaccharomyces pombe and mammalian cells. This enzyme recombines between two heterotypic sites: attB and attP. The product sites of the recombination event (attL and attR) are not substrates for the integrase. Therefore, the phiC31 integrase is ideal to facilitate site-specific insertions into the mammalian genome.  相似文献   

6.
Achieving high expression levels of recombinant human serum albumin (HSA) for purification is a solution for the large amount of plasma-derived HSA needed in therapeutic applications. Here, we employed phiC31 integrase system and chicken hypersensitive site-4 (cHS4) insulators to construct a HSA expression vector for high-level HSA expression. The phiC31 integrase system mediated efficient transgene integration in bovine mammary epithelial cells (bMECs). A preferred pseudo attP site, which had 38 % identity with the 39 bp wild-type attP sequence, was detected in six out of 55 bMEC colonies. Addition of the cHS4 insulator to the phiC31 integrase system resulted in 8–20-fold increases of HSA expression compared with that of using integrase alone. Moreover, the reverse-oriented cHS4 insulator in the phiC31 integrase system provided the optimal level of HSA expression in bMECs.  相似文献   

7.
BACKGROUND: Phage phiC31 integrase has emerged as a potent tool for achieving long-term gene expression in different tissues. The present study investigated the activity of phiC31 integrase in murine lungs. METHODS: Transfections in murine alveolar epithelial (MLE12) cells were performed with Lipofectamine 2000. For in vivo gene delivery, DNA was complexed with polyethylenimine (PEI) and PEI-DNA complexes were injected intravenously into mice. Expression of luciferase in mice was monitored by in vivo bioluminsecence imaging. Genomic integration and integration into a previously described 'hotspot' were confirmed by polymerase chain reaction (PCR). RESULTS: phiC31 integrase mediated intramolecular recombination between wild-type attB and attP sites in MLE12 cells. Long-term gene expression could be observed in MLE12 cells in the presence of integrase without any selection pressure. Long-term expression of luciferase after intravenous injection of PEI-DNA complexes could be observed only in the lungs of mice which were co-injected with the integrase-encoding plasmid. Increased amounts of integrase plasmid and administration of a second dose had no effect on the level of luciferase expression achieved with a single dose, which was three orders of magnitude lower than the values observed on 'day 1' post application. Genomic integration of the transgene in the mouse lungs was confirmed by PCR. Seven out of the fifteen treated mice showed integration at the mpsL1 site, a previously described 'hot spot' from liver. CONCLUSIONS: These results provide evidence for the activity of phiC31 integrase in lungs but also emphasize the need for optimization of the system to maintain long-term gene expression at high levels.  相似文献   

8.
phiC31 integrase-based gene delivery has been developed. However, the expression of integrated transgenes is often suppressed by a negative position effect. To improve this system, we constructed a new phiC31 integrase-based expression vector that contains attB, an expression unit placed in reverse orientation with two sea urchin-derived Ars-insulators to avoid position effects. In vitro and in vivo transfection experiments revealed that this new system produces higher levels of transgene expression as well as continued gene expression. Thus, the present gene delivery system will facilitate reverse genetics-based molecular biological studies.  相似文献   

9.
Phage integrases are required for recombination of the phage genome with the host chromosome either to establish or exit from the lysogenic state. ϕC31 integrase is a member of the serine recombinase family of site-specific recombinases. In the absence of any accessory factors integrase is unidirectional, catalysing the integration reaction between the phage and host attachment sites, attP × attB to generate the hybrid sites, attL and attR. The basis for this directionality is due to selective synapsis of attP and attB sites. Here we show that mutations in attB can block the integration reaction at different stages. Mutations at positions distal to the crossover site inhibit recombination by destabilizing the synapse with attP without significantly affecting DNA-binding affinity. These data are consistent with the proposal that integrase adopts a specific conformation on binding to attB that permits synapsis with attP. Other attB mutants with changes close to the crossover site are able to form a stable synapse but cleavage of the substrates is prevented. These mutants indicate that there is a post-synaptic DNA recognition event that results in activation of DNA cleavage.  相似文献   

10.
Streptomyces phage phiC31 integrase is widely used to mediate the integration of exogenous genes into host genomes for gene therapy and genomic modification, as it autonomously performs efficient, unidirectional, site-specific integration into pseudo attP sites of the host genome. Although pseudo attP sites are rarely found within exons, it is necessary to map their precise locations to avoid the risk of insertion mutagenesis. High-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR) is a technique that has been developed to recover genomic sequences that flank insertion tags. We have found, however, that this technique is poorly efficient, as it amplifies many non-specific targets and frequently does not generate sufficient product for downstream analysis. Therefore, we have modified the hiTAIL-PCR procedure and re-designed the random primers. As a result, both the amount and specificity of the reaction product were enhanced for each integration site. Restriction analysis of known sequences within the integrated vector, which co-amplified with the flanking genomic sequences, validated 90% of these bands for sequencing. In contrast, only 30% of the bands produced by previous hiTAIL-PCR could be validated. Compared with the original hiTAIL-PCR, our improved hiTAIL-PCR procedure identified phiC31 integration sites more accurately and efficiently.  相似文献   

11.
Binary expression systems are of key interest to functional gene analysis by over- or misexpression. The application of such systems in diverse organisms would allow the study of many biological problems not addressable in model organisms. Here we report a set of constructs and an effective kinetic approach to quantitatively compare a series of diverse binary expression systems based on GAL4/UAS, LexA/(LL)(4) and tetracycline-controlled tTA/TRE. By the use of these constructs, we could show that in Drosophila melanogaster the yeast-derived GAL4/UAS systems are more effective in activating responder gene expression than the bacterial-derived LexA/(LL)(4) and tTA/TRE systems. The constructs are embedded in broad-range piggyBac-based transposon vectors and the transactivators are driven by the widely applicable 3xP3 promoter. These constructs should therefore be transferable to evaluate the functionality of binary expression systems in non-model insect species.  相似文献   

12.
We have used the phiC31 integrase to introduce large DNA sequences into a vertebrate genome and measure the efficiency of integration of intact DNA as a function of insert size. Inserts of 110 kb and 140 kb in length may be integrated with about 25% and 10% efficiency respectively. In order to overcome the problems of constructing transgenes longer than approximately 150 kb we have established a method that we call; 'Iterative Site Specific Integration' (ISSI). ISSI combines the activities of phiC31 integrase and Cre recombinase to enable the iterative and serial integration of transgenic DNA sequences. In principle the procedure may be repeated an arbitrary number of times and thereby allow the integration of tracts of DNA many hundreds of kilobase pairs long. In practice it may be limited by the time needed to check the accuracy of integration at each step of the procedure. We describe two ISSI experiments, in one of which we have constructed a complex array of vertebrate centromeric sequences of 150 kb in size. The principle that underlies ISSI is applicable to transgenesis in all organisms. ISSI may thus facilitate the reconstitution of biosynthetic pathways encoded by many different genes in transgenic plants, the assembly of large vertebrate loci as transgenes and the synthesis of complete genomes in bacteria.  相似文献   

13.
14.
BACKGROUND: Gene transfer to synovium in joints has been shown to be an effective approach for treating pathologies associated with rheumatoid arthritis (RA) and related joint disorders. However, the efficiency and duration of gene delivery has been limiting for successful gene therapy for arthritis. The transient gene expression that often accompanies non-viral gene delivery can be prolonged by integration of vector DNA into the host genome. We report a novel approach for non-viral gene therapy to joints that utilizes phage phiC31 integrase to bring about unidirectional genomic integration. METHODS: Rabbit and human synovial cells were co-transfected with a plasmid expressing phiC31 integrase and a plasmid containing the transgene and an attB site. Cells were cultured with or without G418 selection and the number of neo-resistant colonies or eGFP cells determined, respectively. Plasmid rescue, PCR query, and DNA sequence analysis were performed to reveal integration sites in the rabbit and human genomes. For in vivo studies, attB-reporter gene plasmids and a plasmid expressing phiC31 integrase were intra-articularly injected into rabbit knees. Joint sections were used for histological analysis of beta-gal expression, and synovial cells were isolated to measure luciferase expression. RESULTS: We demonstrated that co-transfection of a plasmid expressing phiC31 integrase with a plasmid containing the transgene and attB increased the frequency of transgene expression in rabbit synovial fibroblasts and primary human RA synoviocytes. Plasmid rescue and DNA sequence analysis of plasmid-chromosome junctions revealed integration at endogenous pseudo attP sequences in the rabbit genome, and PCR query detected integration at previously characterized integration sites in the human genome. Significantly higher levels of transgene expression were detected in vivo in rabbit knees after intra-articular injection of attB-reporter gene plasmids and a plasmid expressing phiC31 integrase. CONCLUSION: The ability of phiC31 integrase to facilitate genomic integration in synovial cells and increase transgene expression in the rabbit synovium suggests that, in combination with more efficient DNA delivery methods, this integrase system could be beneficial for treatment of rheumatoid arthritis and other joint disorders.  相似文献   

15.
16.
A binary vector containing two reporter gene cassettes has been developed. This vector is ideal for optimising new plant transformation systems. Following optimisation, one of the reporter genes can be replaced with a gene of interest; the second can be used as a marker to confirm transgenic lines, and to estimate locus number and determine zygosity. This allows simple, efficient and economical screening for homozygous single-insert lines and azygous controls.  相似文献   

17.
18.
Cross-species research in drug development is novel and challenging. A bivariate mixture model utilizing information across two species was proposed to solve the fundamental problem of identifying differentially expressed genes in microarray experiments in order to potentially improve the understanding of translation between preclinical and clinical studies for drug development. The proposed approach models the joint distribution of treatment effects estimated from independent linear models. The mixture model posits up to nine components, four of which include groups in which genes are differentially expressed in both species. A comprehensive simulation to evaluate the model performance and one application on a real world data set, a mouse and human type II diabetes experiment, suggest that the proposed model, though highly structured, can handle various configurations of differential gene expression and is practically useful on identifying differentially expressed genes, especially when the magnitude of differential expression due to different treatment intervention is weak. In the mouse and human application, the proposed mixture model was able to eliminate unimportant genes and identify a list of genes that were differentially expressed in both species and could be potential gene targets for drug development.  相似文献   

19.
Cloning with tandem gene systems for high level gene expression.   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

20.
We ccnsider a Goodwin-type model for cyclic gene systems involving endproduct repression. The model is described by a very general system of functic nal differential equations which include as special cases continuous analogues of cyclic models studied previously via computer simulation by other investigators (Fraser & Tiwari, 1974). We establish global stability of equilibrium solutions with arguments which are valid for any number (odd or even) of genes in the cyclic loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号