首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Seasonal tropical forests show rhythms in reproductive activities due to water stress during dry seasons. If both seed dispersal and seed germination occur in the best environmental conditions, mortality will be minimised and forest regeneration will occur. To evaluate whether non-seasonal forests also show rhythms, for 2 years we studied the seed rain and seedling emergence in two sandy coastal forests (flooded and unflooded) in southern Brazil. In each forest, one 100 x 30-m grid was marked and inside it 30 stations comprising two seed traps (0.5 x 0.5 m each) and one plot (2 x 2 m) were established for monthly monitoring of seed rain and a seedling emergence study, respectively. Despite differences in soil moisture and incident light on the understorey, flooded and unflooded forests had similar dispersal and germination patterns. Seed rain was seasonal and bimodal (peaks at the end of the wetter season and in the less wet season) and seedling emergence was seasonal and unimodal (peaking in the wetter season). Approximately 57% of the total species number had seedling emergence 4 or more months after dispersal. Therefore, both seed dormancy and the timing of seed dispersal drive the rhythm of seedling emergence in these forests. The peak in germination occurs in the wetter season, when soil fertility is higher and other phenological events also occur. The strong seasonality in these plant communities, even in this weakly seasonal climate, suggests that factors such as daylength, plant sensitivity to small changes in the environment (e.g. water and nutrient availability) or phylogenetic constraints cause seasonal rhythms in the plants.  相似文献   

2.
The relationship between gross primary productivity (GPP) and net primary productivity (NPP) is not fully understood. One of the uncertainties relevant to this issue is the magnitude of woody tissue respiration. Although some data exist for temperate and boreal zones, measurements of woody tissue respiration in tropical forests are sparse. We made in situ chamber measurements of woody tissue respiration in two tropical rain forests, one in the Brazilian Amazon (Reserva Jarú) and one in Central Cameroon (Mbalmayo Reserve). We made measurements on a wide range of species at each site and over a range of stem diameters from 0·02 to 1·4 m. The rate of efflux of carbon dioxide (CO2) from bark at 25 °C, Rt, varied from 0·1 to 5·2 µmol m?2 s?1 across the two sites, and the efflux was related to both volume and surface area components of the measured stem sections. The temperature response in Rt was slightly higher at Jarú than at Mbalmayo, with Q10 values of 1·8 (± 0·1 SE) and 1·6 (± 0·1 SE), respectively. A log–log regression showed that Rt was significantly related to stem diameter, D (P < 0·001; r2 = 0·58–0·62) and was significantly higher at Mbalmayo than at Jarú (P < 0·001), but that the rate of increase in Rt with stem diameter, D, was similar between sites. At the Mbalmayo site, tree growth measurements made over a 4 month period were used to make two estimates of the maintenance (Rm) and construction (Rc) components of respiration embedded in Rt. The two methods agreed closely, suggesting that Rm was approximately 80% of Rc at this site. Rm could be strongly related to D using a sigmoidal relationship that described both surface area and volume components as sources of respiratory CO2 (r2 = 0·71). This functional model was combined with inventory, growth and climate data for the Mbalmayo site to make a first estimate of annual above‐ground woody tissue respiration, RA, which was 257 (± 18 SE) g C m?2 year?1. This value corresponds to approximately 10% of GPP, slightly lower than that found for another tropical rain forest, but higher than for temperate forests. When combined with data from six other sites in tropical, temperate and boreal settings, a very strong relationship was found between RA and leaf area index (LAI), and between RA/GPP and LAI (P < 0·001, r2 = 0·98). This indicates that RA exerts an appreciable constraint on NPP and that this constraint varies closely with LAI across widely differing types of woody vegetation.  相似文献   

3.
长白落叶松是东北地区主要的用材树种,其种子雨和种子库研究鲜见报道。在辽东山区用收集器收集的种子分析了长白落叶松种子雨组成、质量和扩散距离,每隔2个月调查1次种子库数量,并结合靛蓝染色法测定每次种子的活力来分析土壤种子库动态。结果表明,辽东山区的长白落叶松种子雨从8月中旬开始,9月末到10月初达到高峰期,11月初结束。在起始期,种子雨以干瘪的不完整种子为主,而从高峰期开始,种子雨以完整种子为主。整个长白落叶松种子雨中不完整种子约占种子雨总量的45%,这些不完整种子由被动物取食、空粒和病虫害危害种子组成。完整种子的平均生活力为56.4%,即有活力的种子仅占整个种子雨的30%。种子雨集中在母树周围,在林缘1次扩散距离一般不超过1.5倍树高。种子雨到达地面之后,主要分布在枯枝落叶层,土壤0—5em层有少量分布,土壤5em以下没有种子分布;土壤种子库的种子主要在翌年雪融化后开始萌发、被取食、搬运以及腐烂,其中腐烂种子数占45.4%,动物取食为30.0%。种子库的种子数量和活力在冬季没有明显变化,而在翌年,种子数量和活力明显减少,4、6月和8月份种子数量分别为(506.3±35.56)粒m^-2,(267.1±17.47)粒m^-2和(143.6±9.83)粒m^-2,对应的活力分别为47.8%±4.68%,19.4%±3.39%和0%,这表明长白落叶松种子不能在地面形成连续的种子库。  相似文献   

4.
辽东山区长白落叶松(Larix olgensis)种子雨和种子库   总被引:1,自引:0,他引:1  
长白落叶松是东北地区主要的用材树种,其种子雨和种子库研究鲜见报道。在辽东山区用收集器收集的种子分析了长白落叶松种子雨组成、质量和扩散距离,每隔2个月调查1次种子库数量,并结合靛蓝染色法测定每次种子的活力来分析土壤种子库动态。结果表明,辽东山区的长白落叶松种子雨从8月中旬开始,9月末到10月初达到高峰期,11月初结束。在起始期,种子雨以干瘪的不完整种子为主,而从高峰期开始,种子雨以完整种子为主。整个长白落叶松种子雨中不完整种子约占种子雨总量的45%,这些不完整种子由被动物取食、空粒和病虫害危害种子组成。完整种子的平均生活力为56.4%,即有活力的种子仅占整个种子雨的30%。种子雨集中在母树周围,在林缘1次扩散距离一般不超过1.5倍树高。种子雨到达地面之后,主要分布在枯枝落叶层,土壤0~5 cm层有少量分布,土壤5 cm以下没有种子分布;土壤种子库的种子主要在翌年雪融化后开始萌发、被取食、搬运以及腐烂,其中腐烂种子数占45.4%,动物取食为30.0%。种子库的种子数量和活力在冬季没有明显变化,而在翌年,种子数量和活力明显减少,4、6月和8月份种子数量分别为(506.3±35.56) 粒  m-2,(267.1±17.47)粒  m-2 和(143.6±9.83)粒  m-2,对应的活力分别为47.8%±4.68 %,19.4%±3.39 %和0 %,这表明长白落叶松种子不能在地面形成连续的种子库。  相似文献   

5.
6.
Although the canopy can play an important role in forest nutrient cycles, canopy‐based processes are often overlooked in studies on nutrient deposition. In areas of nitrogen (N) and phosphorus (P) deposition, canopy soils may retain a significant proportion of atmospheric inputs, and also receive indirect enrichment through root uptake followed by throughfall or recycling of plant litter in the canopy. We measured net and gross rates of N cycling in canopy soils of tropical montane forests along an elevation gradient and assessed indirect effects of elevated nutrient inputs to the forest floor. Net N cycling rates were measured using the buried bag method. Gross N cycling rates were measured using 15N pool dilution techniques. Measurements took place in the field, in the wet and dry season, using intact cores of canopy soil from three elevations (1000, 2000 and 3000 m). The forest floor had been fertilized biannually with moderate amounts of N and P for 4 years; treatments included control, N, P, and N + P. In control plots, gross rates of NH4+ transformations decreased with increasing elevation; gross rates of NO3? transformations did not exhibit a clear elevation trend, but were significantly affected by season. Nutrient‐addition effects were different at each elevation, but combined N + P generally increased N cycling rates at all elevations. Results showed that canopy soils could be a significant N source for epiphytes as well as contributing up to 23% of total (canopy + forest floor) mineral N production in our forests. In contrast to theories that canopy soils are decoupled from nutrient cycling in forest floor soil, N cycling in our canopy soils was sensitive to slight changes in forest floor nutrient availability. Long‐term atmospheric N and P deposition may lead to increased N cycling, but also increased mineral N losses from the canopy soil system.  相似文献   

7.
We compared various aspects of the seed biology of eight non-pioneer tree species from a tropical seasonal rain forest in Xishuangbanna, SW China, that differ in time of dispersal, size and fresh seed moisture content (MC). Seeds were tested for germination under laboratory conditions after dehydration to different moisture levels and under 3.5, 10 and 30% solar irradiances in neutral-shade houses. For six species, germination was also compared in forest understory (3.5% light) and center of a forest gap (32.5% light). Under continuous dehydration over activated silica gel, 100% of seeds of four species had lost the ability to germinate after 48 h, and those of all species except Castanopsis hystrix (decreased from >90 to 30% germination) had lost the ability to germinate after 120 h. Four species did not differ in final germination percentages at the three irradiances (i.e. uniform germination). However, final germination percentages of Horsfieldia pandurifolia and Litsea pierrei var. szemaois were significantly lower in 30% than in 10 or 3.5% light, and seeds of Antiaris toxicaria and C. hystrix germinated to higher percentages in 30 and 10% than in 3.5% light. Mean time to germination (MTG) of the eight species (forest and shade house data combined) ranged from 5–5 days for Pometia tomentosa to 72–207days for L. pierrei; MTG for four species was ≤21 days. There was no obvious relationship between relative desiccation resistance and either time of dispersal, MTG or uniformity of germination at the three light levels, or between seed size and MC or MTG. However, the relationship between seed MC at maturity (25–60% fresh mass basis) and MC at 50% loss of seed viability (12.4–42.5%) was significant. Seven of the species fit Garwood’s (Ecol Monogr 53:159–181, 1983) rapid-rainy germination syndrome and one, L. pierrei, either her delayed-rainy or intermediate-dry germination syndrome. However, fresh, non-dehydrated seeds of all eight species germinated in ≤30 days at constant 30°C in light.  相似文献   

8.
黄土高原子午岭油松林的种子雨和土壤种子库动态   总被引:7,自引:1,他引:7  
对黄土高原区子午岭不同林龄(18a、29a、40a、54a)油松(Pinus tabulaeformis carr.)人工林及天然林(约75a)的种子雨和土壤种子库进行了研究.结果表明,该区油松种子雨一般从每年9月初开始,一直到11月底结束,种子雨降落历程与林龄大小有关,种子雨发生时间和降落高峰期有所不同.不同林龄的油松种子雨强度不同,种子雨总量大小顺序为:40a人工林((489 9±8.64)粒· m-2)>29a人工林((346.8±7.45)粒· m-2)>54a人工林((327.1±8.13)粒· m-2)>天然林((146.9±5.25)粒· m-2)>18a人工林((78.1±2.72)粒· m-2).种子雨总量随林龄的增加而增加,约40a时达到高峰,种子雨活力也以40a时最高.不同林龄油松林土壤种子库存在显著差异,其中18a人工林种子库最小,40a人工林种子库最大.从种子雨降落到次年4月,5种林分土壤种子库总量下降了42.34%~53.59%,空粒种子增加了26.72%~48.69%;从4月到8月份种子腐烂率由10.28%~13 62%增加到57.25%~63.28%.动物的搬运、取食和种子腐烂死亡是种子库损耗的主要因素.土壤种子库中的油松种子主要集中在枯枝落叶层,其次为0~2cm层,2~10cm层种子最少.到8月中旬,土壤中98.26%的油松种子都已丧失活性.不同林分下油松幼苗的密度差异较大,40a人工林下幼苗最多,其余依次为29a人工林、54a人工林和天然林,18a人工林下的实生苗极少,幼苗死亡率极高.在一定龄级范围内,人工林结实能力和更新潜力随林龄增加而增加,40a时更新潜力最大.虽然有大量种子下落,但由于种子大量损耗和幼苗死亡,通过环境筛作用而最终可以成熟的个体数量十分有限.  相似文献   

9.
降雨作为一个重要的环境因子,对土壤呼吸具有重要的影响。研究土壤呼吸与降雨的关系,对准确估算大气中的CO2含量具有重要意义。本研究通过人工模拟降雨事件,应用野外原位测定方法,测量了热带次生林和橡胶林土壤呼吸速率、地下5cm土壤温度和土壤含水量的变化,以探究热带两种主要植被类型的土壤呼吸、土壤温度、土壤含水量对旱季单次降雨事件的响应过程与规律。研究发现,在旱季连续一周没有降雨的情况下,人工模拟降雨事件使土壤呼吸在降雨后的2h内被迅速激发,次生林的土壤呼吸最大达到11.15 μmolCO2·m-2·s-1,是对照的近7倍;橡胶林的土壤呼吸最大达到了15.88 μmolCO2·m-2·s-1,是对照的近11倍。随后激发效应迅速降低,尤其是橡胶林,在人工模拟降雨6h后处理与对照间无显著差异。人工模拟降雨前两种林型的土壤含水量与对照相比均无显著性差异,人工模拟降雨后的2d内土壤含水量均显著高于对照;人工模拟降雨前后土壤温度与对照相比均无显著性差异。本研究结果支持了"Birch effect",2种主要热带林型在旱季时期,由于单次降雨事件激发而释放到大气中的CO2是降雨前的数倍。  相似文献   

10.
Large animal species, which provide important ecological functions such as dispersal of seeds or top–down control of seed predators, are very vulnerable in fragmented forests, being unable to survive in small fragments, and facing increasing hunting pressure. The loss of large animals affects two main ecological processes crucial for the tree reproductive cycle: seed dispersal of large seeds (e.g. provided by tapirs) and control of seed predator population (e.g. provided by large cats). The changes in both processes are expected to increase seed mortality since seeds are not dispersed away from conspecifics (causing increased pre‐dispersal mortality due to negative density dependent effects) and/or face increased predation after a dispersal event (post‐dispersal mortality). Although an extensive body of empirical knowledge exists on seed predation, the link between seed loss and adult tree community composition and structure is not well established, as well as the temporal scale seed changes affect adults. Using an individual‐based forest model (FORMIND), we evaluate the long‐term consequences of increased pre and post‐dispersal seed mortality on the future forest biomass retention of a Brazilian northeastern Atlantic forest. Our results show that forest biomass is significantly affected after 80–93% pre‐dispersal loss of large seeds, or post‐dispersal predation densities of 20–25 predators per parent tree. Large‐seeded tree species are at increased risk of local extinction causing up to 26.2% loss of forest biomass when both pre and post‐dispersal processes are combined. However, these changes can last up to 100 years after the occurrence of defaunation. In summary we conclude that large animal loss has the potential to reduce future forest biomass and tree species‐richness by impacting seed survival, and should be considered in the planning of biodiversity friendly landscapes as well as in calculations of the global carbon budget.  相似文献   

11.
The frugivory and ranging habits of howling monkeys living in the rain forest of Los Tuxtlas, Veracruz, Mexico, were studied for 5 consecutive years with the aim of investigating the role of seed dispersal agents played by the howling monkeys. The howling monkeys' consumption of fruit occupied half of their feeding time, and 80% of this time was spent feeding on mature fruit. Observations confirmed use of 19 tree species and a preference for a few species of Moraceae and Lauraceae. Fruit exploitation was very seasonal; only two species provided fruit year-round. Home range size was about 60 ha, and animals in the troop (N = 16) showed a day range of 10–893 m. Monthly collection of fecal samples during 2 years indicated that 90% of the seeds (N = 7,928) in the samples belonged to eight tree species and to one liana; the rest belonged to 15 unidentified species of vines. Germination success for the seeds in the feces was about 60% and for control seeds was 35%. Howling monkeys created diverse seed shadows in the vicinity of their leaf and fruit sources, and while they dispersed the seeds of some plant species, they also produced a great deal of fruit and seed waste for others.  相似文献   

12.

Background and Aims

Globally, conifer dominance is restricted to nutient-poor habitats in colder, drier or waterlogged environments, probably due to competition with angiosperms. Analysis of canopy structure is important for understanding the mechanism of plant coexistence in relation to competition for light. Most conifers are shade intolerant, and often have narrow, deep, conical crowns. In this study it is predicted that conifer-admixed forests have less distinct upper canopies and more undulating canopy surfaces than angiosperm-dominated forests.

Methods

By using a ground-based, portable light detection and ranging (LIDAR) system, canopy structure was quantified for old-growth evergreen rainforests with varying dominance of conifers along altitudinal gradients (200–3100 m a.s.l.) on tropical and sub-tropical mountains (Mount Kinabalu, Malaysian Borneo and Yakushima Island, Japan) that have different conifer floras.

Key Results

Conifers dominated at higher elevations on both mountains (Podocarpaceae and Araucariaceae on Kinabalu and Cupressaceae and Pinaceae on Yakushima), but conifer dominance also varied with soil/substrate conditions on Kinabalu. Conifer dominance was associated with the existence of large-diameter conifers. Forests with higher conifer dominance showed a canopy height profile (CHP) more skewed towards the understorey on both Kinabalu and Yakushima. In contrast, angiosperm-dominated forests had a CHP skewed towards upper canopy, except for lowland dipterocarp forests and a sub-alpine scrub dominated by small-leaved Leptospermum recurvum (Myrtaceae) on Kinabalu. Forests with a less dense upper canopy had more undulating outer canopy surfaces. Mixed conifer–angiosperm forests on Yakushima and dipterocarp forests on Kinabalu showed similar canopy structures.

Conclusions

The results generally supported the prediction, suggesting that lower growth of angiosperm trees (except L. recurvum on Kinabalu) in cold and nutrient-poor environments results in a sparser upper canopy, which allows shade-intolerant conifers to co-occur with angiosperm trees either as emergents or as codominants in the open canopy.  相似文献   

13.
冠层截留研究对于了解区域水资源分配和评估生态水文功能至关重要,山地复杂多样的环境使其存在较大的不确定性,遥感的发展为揭示山地系统冠层截留的特征提供了机遇。以秦巴山地为研究区,基于降雨数据和叶面积指数遥感数据,耦合植被冠层降雨截留模型,定量模拟和分析秦巴山地2003-2020年植被冠层降雨截留能力及其时空变化特征,并验证其精确性;采用地理探测器、相关分析和约束线法探究冠层截留的驱动因素。结果表明:(1) 与PML_V2数据集和实测数据相比,3.5以下的均方根误差和0.75以上的有效系数证实了A.P.J.DE ROO模型模拟的可靠性。(2) 近18年截留量和截留率整体呈上升趋势,截留率在2015年发生逆转,由增(0.08%/a)向减(-0.15%/a)转变。(3) 秦巴山地冠层截留总体上呈西部高山区和东北部边缘低,秦岭和大巴山区高的空间格局,其随海拔上升呈现"上升-稳定-下降"的分布特征;空间变化以上升趋势为主,显著下降的区域主要分布在汉江河谷的中心;低海拔区域变化差异较大,中海拔区域以显著增加为主,高海拔区域无显著变化。(4) 叶面积指数和降雨量是影响冠层截留的主要因子,约束关系分别为正线型和正凸型;阔叶林截留率与小降雨事件的相关性高,针叶林、灌丛截留率与强降雨事件相关性较强,气候因子对冠层截留的影响在类别和解释程度上存在空间差异。研究可为区域尺度冠层截留的估测提供思路,且有助于评估气候变化背景下生态系统对水循环的影响。  相似文献   

14.
Soil respiration constitutes the second largest flux of carbon (C) between terrestrial ecosystems and the atmosphere. This study provides a synthesis of soil respiration (R s) in 20 European grasslands across a climatic transect, including ten meadows, eight pastures and two unmanaged grasslands. Maximum rates of R s ( ), R s at a reference soil temperature (10°C; ) and annual R s (estimated for 13 sites) ranged from 1.9 to 15.9 μmol CO2 m−2 s−1, 0.3 to 5.5 μmol CO2 m−2 s−1 and 58 to 1988 g C m−2 y−1, respectively. Values obtained for Central European mountain meadows are amongst the highest so far reported for any type of ecosystem. Across all sites was closely related to . Assimilate supply affected R s at timescales from daily (but not necessarily diurnal) to annual. Reductions of assimilate supply by removal of aboveground biomass through grazing and cutting resulted in a rapid and a significant decrease of R s. Temperature-independent seasonal fluctuations of R s of an intensively managed pasture were closely related to changes in leaf area index (LAI). Across sites increased with mean annual soil temperature (MAT), LAI and gross primary productivity (GPP), indicating that assimilate supply overrides potential acclimation to prevailing temperatures. Also annual R s was closely related to LAI and GPP. Because the latter two parameters were coupled to MAT, temperature was a suitable surrogate for deriving estimates of annual R s across the grasslands studied. These findings contribute to our understanding of regional patterns of soil C fluxes and highlight the importance of assimilate supply for soil CO2 emissions at various timescales.  相似文献   

15.
以海南岛吊罗山热带山地雨林101个物种的幼苗幼树为试验材料,测定其光合、叶片氮、磷含量及比叶面积;检验其相关关系,并按乔木,乔灌木(小乔木至大灌木)和灌木3个生活型组进行分组检验。研究结果表明,单位叶面积(Aarea)和单位叶重量的光合速率(Amass)均表现出灌木>乔木>乔灌木,方差分析表明,灌木和乔灌木之间Aarea差异显著;灌木和乔木以及灌木和乔灌木之间Amass差异显著(p<0.05)。Aarea与叶氮含量之间的相关性在不同生态型组和所有物种之间均达到极显著水平(p<0.0001);与叶磷之间的相关关系在灌木(p=0.0038),乔灌木(p=0.0002)以及所有物种(p<0.0001)之间达到极显著水平,但是在乔木中未达到显著水平(p>0.05);与SLA之间在灌木(p=0.0006)、乔木(p<0.0001)和所有物种(p<0.0001)之间达到极显著水平,但是在乔灌木中未达到显著水平(p>0.05)。Amass与叶片氮含量、SLA的相关关系在不同生活型组和所有物种中都达到极显著水平(p<0.0001);与叶磷含量之间的相关性在灌木(p=0.0004),乔灌木(p=0.0018)及所有物种(p<0.0001)中极显著,在乔木生活型组中也达显著水平(p=0.0377)。逐步回归表明,与Aarea相比,Amass估计结果更接近于实际测值。由此可见,海南岛热带山地雨林林下幼苗幼树的光合和叶氮、磷含量及SLA之间相关关系与基于成树的研究非常相似,并且A比A更能稳定体现这种相关性。  相似文献   

16.
Vertical stratification (VS) is a widespread phenomenon in plant and animal communities in forests and a key factor for structuring their species richness and biodiversity, particularly in tropical forests. The organisms composing forest communities adjust and shape the complex three-dimensional structure of their environment and inhabit a large variety of niches along the vertical gradient of the forest. Even though the degree of VS varies among different vertebrate groups, patterns of compositional stratification can be observed across taxa. Communities of birds, bats, primates, and non-flying small mammals are vertically stratified in terms of abundance, species richness, diversity, and community composition. Frugivorous members of these taxa play important roles as seed dispersers and forage on fruit resources that, in turn, vary in quantity and nutritional value along the vertical gradient. As a consequence, plant–seed disperser interaction networks differ among strata, which is manifested in differences in interaction frequencies and the degree of mutual specialization. In general, the canopy stratum is composed of strong links and generalized associations, while the lower strata comprise weaker links and more specialized interactions. Investigating the VS of communities can provide us with a better understanding of species habitat restrictions, resource use, spatial movement, and species interactions. Especially in the face of global change, this knowledge will be important as these characteristics can imply different responses of species and taxa at a fine spatial scale.  相似文献   

17.
本文采用种子雨收集器、土壤种子库筛选、室内萌发实验及野外实地调查等手段,研究了贡嘎山海螺沟内不同林龄和海拔分布上下界限的6个峨眉冷杉(Abies fabri)林的土壤种子库、种子雨的组成和时空分布特征.结果表明:土壤种子库分布随土壤深度增加而减少,主要集中在凋落物层;在同一海拔,随着林龄增加,土壤种子库和种子雨大小先增加再降低,成熟林达到最大值,且其完整种子比例最高,整体质量最好;不同海拔,林龄相近的成熟林调查结果显示,海拔分布上下界限的峨眉冷杉林土壤种子库和种子雨显著小于海拔分布中段的成熟林,这可能与海拔引起的水热条件差异有关;峨眉冷杉林的最佳结实阶段在成熟林,其种子质量好,且散布后在林下保存得最好;树种生物学特性和林下微生境可能是主要原因.  相似文献   

18.
土壤种子库的结构与动态   总被引:31,自引:1,他引:31  
班勇 《生态学杂志》1995,14(6):42-47
土壤种子库的结构与动态班勇(中国林业科学院林业研究所,北京100091)StructureandDynamicsofSeedsBanksinSoil.¥BanYong(ResearchInstituteofForestry,ChineseAcadem...  相似文献   

19.
李向飞  王传宽  全先奎 《生态学报》2013,33(13):4172-4180
细根(直径≤2 mm)的生长和死亡动态及其影响因子是森林生态系统能量流动和物质循环的重要研究内容,但因受到研究方法的限制而了解甚少.于2010年5-10月采用微根管技术对东北东部山区5种温带森林生态系统的细根生长量(FRP)和死亡量(FRM)进行了动态跟踪测定,并同步测定了土壤温度(Ts)、土壤湿度(Ms)、叶面积指数(LAI)等相关因子.结果表明:不同林型和取样时间的FRP和FRM均差异显著(P<0.001).杨桦林、硬阔叶林、兴安落叶松林、红松林、蒙古栎林的FRP和FRM分别为:(13.34 ±0.90) μm·cm-2·d-1(平均值±标准误)和(5.02±0.36) μm· cm-2·d-1、(13.04±0.82)μm·cm-2·d-1和(6.85±0.32) μm· cm-2·d-1、(8.74±1.44) μm·cm-2·d-1和(5.05±0.61) μm·cm-2·d-1、(8.02±2.27) μm·cm-2·d-1和(3.88±0.35)μm·em-2·d-1、(7.59±0.82) μm·cm-2·d-1和(3.88±0.61) μm· cm-2·d-1.所有林型生长季期间FRP的时间变化均呈现明显的单峰型,但峰值出现的时间却因林型而异.FRM随生长季的进程而逐渐增加,杨桦林和硬阔叶林FRM在8月初出现峰值,而红松林、兴安落叶松林和蒙古栎林的FRM峰值均出现在生长季末期.Ts、Ms和LAI对FRP和FRM均存在显著的正效应(P<0.05),3个因子的综合作用对各个林型FRP和FRM变异性的解释率分别达68%和53%以上,表明这些温带森林生态系统细根生长和死亡的时间动态主要受土壤温湿度和叶面积变化的联合影响.  相似文献   

20.
三种人工林分的冠层结构参数与林下光照条件   总被引:2,自引:0,他引:2  
以样方法为基础,用半球面影像技术测定了桉树林、湿地松林和混交林(木荷+青冈+银木荷)3种人工林分的冠层结构(叶面积指数LAI和林冠孔隙度CO)和林下光照条件(林下直射光TransDir和林下散射光TransDif),并分析了冠层结构与林下光照条件之间的关系.测定结果表明,桉树林、湿地松林和混交林的LAI平均值分别是1....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号